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ABSTRACT

The effects of a dispersed particulate phase on the onset of Rayleigh–B�enard (RB) convection in a fluid layer are studied theoretically by
means of a two-fluid Eulerian modelization. The particles are non-Brownian, spherical, with inertia and heat capacity, and are assumed to
interact with the surrounding fluid mechanically and thermally. We study both the cases of particles denser and lighter than the fluid that are
injected uniformly at the system’s horizontal boundaries with their settling terminal velocity and prescribed temperatures. The performed lin-
ear stability analysis shows that the onset of thermal convection is stationary, i.e., the system undergoes a pitchfork bifurcation as in the classi-
cal single-phase RB problem. Remarkably, the mechanical coupling due to the particle motion always stabilizes the system, increasing the
critical Rayleigh number (Rac) of the convective onset. Furthermore, the particle to fluid heat capacity ratio provides an additional stabilizing
mechanism that we explore in full by addressing both the asymptotic limits of negligible and overwhelming particle thermal inertia. The over-
all resulting stabilization effect on Rac is significant: for a particulate volume fraction of 0.1%, it reaches up to a factor of 30 for the case of the
lightest particle density (i.e., bubbles) and 60 for the heaviest one. This work extends the analysis performed by Prakhar and Prosperetti
[“Linear theory of particulate Rayleigh-B�enard instability,” Phys. Rev. Fluids 6, 083901 (2021)], where the thermo-mechanical stabilization
effect has been first demonstrated for highly dense particles. Here, by including the effect of the added-mass force in the model system, we
succeed in exploring the full range of particle densities. Finally, we critically discuss the role of the particle injection boundary conditions
which are adopted in this study and how their modification may lead to different dynamics that deserve to be explored in the future.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0238106

I. INTRODUCTION

Virtually all fluids present in the natural environment contain
dispersed matter, i.e., matter of a different composition from the one
of the surrounding environment. This occurs in the form of solid par-
ticles, liquid drops, or gaseous bubbles. Examples include phenomena
as diverse as sand and pollens in the near ground air, rain drops and
ice crystals in clouds, air bubbles entrained at the sea-air interface, vol-
atile elements springing up in solidifying magma, and planktonic
microorganisms dispersed in the ocean.1–9 Such particle laden fluids
are often set into motion by thermal differences present in the environ-
ment. However, while most of the time the role played by the dispersed
phase is negligible for the overall dynamics of the fluid—think, e.g., to
the passive role of the grains of dust brought in suspension by a
storm—there are situations where the mechanical agitation and/or the
thermal coupling produced by the dispersed phase are relevant for the
resulting flow dynamics (one of such examples is bioconvection10).
Fluid-particle coupling phenomena are also of interest for industrial
applications such as for optimization of mixing in bubble column

reactors or for the design of particle based solar collectors.11–14 The
widespread relevance of this topic has spurred extensive research
aimed at understanding the complex interplays governing the dynam-
ics of particle-laden fluid flows.15–17

To gain insight into particle-fluid systems, several approaches are
possible, each corresponding to different physical conditions of the
problem at hand but also to distinct levels of abstraction in their
description. At the most refined level, we find the “particle resolved”
approach that treats the complete fluid-dynamical and thermal fluid–
solid body interaction problem. This is the only sound modelization
when the characteristic scales of the particulate phase are large as com-
pared to the ones of the fluid. However, the major drawback of this
approach is the complexity of its mathematical treatment even with
state-of-the-art numerical methods due to the high numbers of degrees
of freedom involved.18 When the particle sizes are of the same order or
smaller than the typical spatial scales of the flow and of the heat trans-
fer process, the particle description can be approximated by material
points (dubbed “point particles”). Their coupling to the fluid can be
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described by localized forces or source terms that satisfy global conserva-
tion laws of mass, momentum, and energy. It falls in this case the so-
called Eulerian–Lagrangian modelization of particulate laden flows,
where the fluid variables are treated as continuous fields evolving in the
Eulerian frame, while the particles are described as individual entities in
the Lagrangian frame. A further level of abstraction is represented by the
two-fluid or Eulerian–Eulerian methods where both phases are
described in terms of conservation equations for continuous and differ-
entiable fields. The particulate state variables are typically their mass
concentration, velocity, and local temperature but additional degrees of
freedom can be introduced (e.g., the local particle orientation, in the case
of nonspherical particles).19,20 The latter approach has even a more
restrictive domain of applications as it requires the particles not only to
be tiny in size but also to be sufficiently numerous in order to be able to
define continuous state variables in space and time. One appealing
aspect of fully Eulerian models is the relative simplicity of their govern-
ing equations, which are expressed in the form of partial differential
equations that closely resemble the local conservation laws of fluids and
transported scalar fields. This also implies that analytical approaches, as
for instance, the ones of hydrodynamic stability21 or fluctuating hydro-
dynamics22 can be straightforwardly adapted to this type of modeling.

In this work, we aim at understanding how settling and rising
thermal inertial particles affect the hydrodynamic stability of an immo-
bile thermally stratified fluid layer. This will be achieved by adopting a
fully Eulerian modelization and by performing a fluid dynamics linear
stability analysis of the system’s governing equations. The system we
study in this article builds on the classical model of natural convection,
known as the Rayleigh–B�enard (RB) model system, which is a layer of
fluid between two horizontal planes kept at different constant tempera-
tures, the above one being colder so that the fluid layer is slightly
denser on top with respect to the bottom.23 If the system does not con-
tain a pure fluid but rather a suspension of material particles, it goes
under the name of the particulate Rayleigh–B�enard (pRB) system.24

The research questions of interest in the pRB context are multiple. On
the one hand, it is interesting to understand how the fluid flow affects
the particle dynamics. In particular, how it impacts on the particle spa-
tial distribution and clusters formation, or how it affects the settling
speeds, the resulting sedimentation patterns forming at the walls and
the possibility of particle resuspension and entrainment by the flow.
On the other hand, it is pertinent to tackle how the feedback of the
particulate phase can in turn influence the spatial structure and the
temporal evolution of the flow, affecting its thermal stability, modulat-
ing the heat transfer across the system or disrupting the coherent flow
structures that characterize the single phase RB flow. Many of these
questions have been addressed in former studies, and a comprehensive
overview of them goes beyond the scope of this brief introduction. It is
worth mentioning here the pioneering experimental studies by
Solomatov et al.25 and Lavorel and Le Bars,26 focused on the settling
dynamics of solid particles and to their resuspension in vigorously con-
vective fluids, the more recent experiments on vapor droplets dynam-
ics in a supersaturated RB cell (cloud chamber),27 and the studies on
the dynamics of large non-isotropic particles in RB.28,29 More frequent
are the numerical studies that have attempted a characterization of the
one-way coupled dynamics of particles in RB.30–34 When the so-called
two-way coupling is considered, i.e., the particle feedback on the fluid
flow, the dynamics and the parameter space of the problem becomes
much wider. Oresta et al.35–37 showed that the presence of vapor

bubbles or suspended particles in a cylindrical convective cell signifi-
cantly influence flow and heat transfer.

Studies with a similar Eulerian–Lagrangian point-particle numer-
ical approach were conducted by Park et al.24 and in Refs. 38–41. This
line of research goes even beyond the RB setting and extend to general
convective turbulent flows, see, e.g., Ref. 42. Numerical studies adopt-
ing a particle resolved approach, where both mechanical and thermal
couplings between dispersed phase and the fluid are included, are, on
the other hand, quite recent with limitations in the number of par-
ticles.43–45 This constraint, however, will become likely less severe in
the forthcoming future as more computational power will be available.

In this work, we build upon the recent key findings of the work
by Prakhar and Prosperetti,46 which demonstrated theoretically by
means of a two-fluid modelization that the introduction of particles,
whose density is much larger than the fluid one, has a sensible stabiliz-
ing effect on the onset of convection in the Rayleigh–B�enard system.
This stabilizing influence becomes increasingly pronounced with
increasing particle concentration and the mass density and is primarily
attributed to the mechanical interactions between the particles and the
fluid. Furthermore, these authors find that the thermal inertia of the
particles acts as an additional stabilization factor, and this is regardless
of the temperatures of the injected particles. One might argue that the
physical origin of this mostly mechanical stabilization effect comes
from the fact that collectively the falling particles acts as a widespread
negative buoyancy force, and the effect might be reversed for particles
that are lighter than the fluid. Indeed it is well known that a rising bub-
ble front can destabilize a quiescent fluid layer,47 and that bubbles are
very effective to enhance mixing.17 On the other hand, the stabilization
might be due to the enhanced dissipation produced by the dispersed
phase, that would reduce the effective Rayleigh number (as the latter
can be seen as a ratio between buoyant and dissipative forces), simi-
larly to what occurs for the RB instability in superdiffusive media.48

According to the latter argument, the particulate phase would lead to
the fluid layer stabilization independently of its mass density and set-
tling direction. This open question represents the primary motivation
of the present study.

Our work extends the model adopted in Ref. 46 by considering
particles of arbitrary mass density with respect to the fluid in order to
encompass the cases of stone-like to bubble-like particles. This
amounts to take into account the role of the added mass hydrody-
namic force. Remarkably, we find that the mechanical stabilization
effect persists even for particles which are lighter than the flow,
although the effect tends to vanish when the particle mass density
becomes negligible with respect to the fluid one (such as for the case of
bubbles). In this study, we also further explore the influence of the
combined thermo-mechanical coupling. The linear stability threshold
for the onset of convection depends upon factors such as the particle
diameter and the specific heat capacity ratio of the particle and fluid
phases. A thermal/kinetic energy budget analysis is used to validate the
stability results and to reveal the thermal and mechanical coupling
contributions to system stabilization. Finally, we critically discuss the
role of the key assumption taken in this study for the particle injection
modelization and how their variation could lead to different dynamics
that deserve to be explored in the future.

II. PARTICULATE RAYLEIGH–B�ENARD MODEL SYSTEM

As we have already mentioned, in this study we adopt an
Eulerian model system for the description of the dynamics of a
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non-Brownian suspension of particles in the Rayleigh–B�enard (RB)
setting. The particle volume concentration is assumed small every-
where so that the fluid can be considered incompressible and described
by the conventional Boussinesq system of equations for the fluid veloc-
ity field uðx; tÞ and its temperature Tðx; tÞ. However, due to the total
conservation of momentum and thermal energy, the particulate phase
can exert on the fluid both mechanical and thermal feedbacks. The
particulate phase is characterized by the individual particle material
properties, the mass density qp, particle diameter dp, specific thermal
capacity (at constant pressure) cp, and by the fields of volume concen-
tration aðx; tÞ, velocity wðx; tÞ, and temperature Tpðx; tÞ.

The conservation equations of mass, momentum, and heat for
the fluid and particle phases read as follows:

0 ¼ r � u; (1)

da
dt

¼ �aðr � wÞ; (2)

Du
Dt

¼ �rp
q

þ �r2uþ 1� bTðT � TrÞ½ �g

þ a
Du
Dt

� g

� �
þ
qp
q

g� dw
dt

� �" #
; (3)

dw
dt

¼ b
Du
Dt

þ u� w
sp

þ ð1� bÞg; (4)

DT
Dt

¼ jr2T � aE
T � Tp

sT
; (5)

dTp

dt
¼ T � Tp

sT
: (6)

Some observations are in order. First, D
Dt ðÞ ¼ @tðÞ þ u � rðÞ

denotes the fluid material derivative, while d
dt ðÞ ¼ @tðÞ þ w � rðÞ is

the particulate phase material derivative. Second, we take into account
the effect of three main hydrodynamics forces on the particle: the

Stokes drag force, the fluid acceleration force with the added mass cor-
rection and the buoyancy. The drag is parameterized by the viscous
response time sp ¼ d2p=ð12�bÞ, where � is the fluid viscosity.

The added mass force intensity by the modified density ratio
b ¼ 3q=ðqþ 2qpÞ with q being the fluid mass density. Apart from
the history force (i.e., unsteady Stokes drag) and Fax�en correction,
which are here ignored, Eq. (4) is the well-known Maxey–Riley–
Gatignol equation49,50 for the dynamics of a material spherical particle
in an unsteady and inhomogeneous flow. The lift force, whose role can
be relevant for bubbles (b¼ 3), see e.g., Ref. 51, is here neglected.
Third, the temperature inside each particle is assumed constant
(lumped approximation), and its relaxation to the equilibrium is given
by the timescale sT ¼ d2pE=ð12jÞ with j being the fluid thermal diffu-

sivity and E ¼ qpcp=ðqcÞ with c being the fluid specific heat at con-
stant pressure. We note that the parameter E describes the intensity of
the thermal coupling between the particulate phase and the fluid (such
coupling vanishes in the E¼ 0 limit). The thermophoretic force on the
particle is neglected, as normally done for non-Brownian particles.
The remaining constants represent the fluid volumetric thermal
expansion coefficient bT at the reference temperature Tr, the gravity
vector g, and the pressure field pðx; tÞ.

The system spatial domain is three-dimensional, confined by
two-infinite parallel horizontal walls at coordinates z ¼ 6H=2, with ẑ
pointing upwards. The boundaries are no-slip for the fluid velocity
(u ¼ 0), and isothermal with a thermal gap of DT between them, the
bottom wall being the warmest. In this way, when the thermal expan-
sion coefficient of the fluid (bT) is positive, an unstable density stratifi-
cation is created. In order to help the reader to visualize the model
system, a schematic representation is provided in Fig. 1.

The particles are injected from one of the boundaries, denoted as
an inlet, at a constant volume concentration a0 and at their terminal
velocity, w0 ¼ ð1� bÞspg. Such a velocity can be easily computed by
setting uniformly the fluid velocity to zero in Eq. (4). Particles with

FIG. 1. Sketch of the particulate Rayleigh–B�enard model system, for the case of heavy (a) and light particles (b). The fluid domain has a height H and is infinitely extended in
the horizontal directions. From the stability point of view, only one lateral dimension is important; hence, the system can be though and represented as two-dimensional. The
horizontal boundaries are isothermal, with the bottom being warmer of DT > 0, and no-slip for the fluid velocity. The particles are injected either from top (for heavier than the
fluid particles) or from the bottom walls (for light particles) at their terminal velocity with a prescribed volume flow rate. The overall set of parameters specifying the fluid and par-
ticle properties are in indicated in panel (c). They are for the fluid: � kinematic viscosity, j thermal diffusivity, q mass density, bT thermal expansion coefficient, c the specific
heat capacity at constant pressure. For the particle: dp the diameter, cp the specific heat capacity. qp the mass density.
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b < 1, hereafter denoted as heavy particles, are injected from the top
boundary, while b > 1 ones, i.e., light particles, are injected from the
bottom. The particle inlet temperature is also prescribed at a specific
value T�

p . In other words, the inlet particle condition is prescribed by a
concentration particle flux whose intensity is J ¼ a0jw0j, and by an
analogous thermal flux J T ¼ a0jw0jT�

p . On the other hand, the parti-
cle accumulation on the opposite boundary, the outlet, is neglected, as
if they are removed from the domain as soon as they reach the oppo-
site wall. We note that the corresponding outlet mass and thermal
fluxes do not need to match those at the inlet. Importantly, the equa-
tions for the particulate phase are first-order in space (without a dissi-
pation term in the form of a Laplacian) as a consequence just the inlet
boundary condition is necessary for their solution.

A. Dimensionless system

In view of the stability study that will be performed later, it is con-
venient to dimensionalize the model system in terms of its height
(X ¼ x=H), the corresponding conductive timescale, (T ¼ tj=H2)
and the fluid density q. This leads to the introduction of the dimen-
sionless fields

U ¼ u
H
j
; P ¼ pH4

qj2
; H ¼ T � Tr

DT
; W ¼ w

H
j
; Hp ¼

Tp � Tr

DT
:

respectively, for the fluid velocity, pressure, and temperature and for the
particulate velocity and temperature. Without any loss of generality, we
take the reference temperature Tr to be equal to the fixed temperature of
the top (cold) wall. Keeping the same notation for the dimensionless
material derivatives and the differential operator (r), and making
explicit the particles momentum feedback, Eqs. (1)–(6) read as

0 ¼ r � U; (7)

da
dT ¼ �aðr �WÞ; (8)

DU
DT ¼ �rP þ Prr2Uþ PrRaHẑ

þ a
2

ðb� 1Þ DU
DT þ KẐ

� �
� 12Prð3� bÞU�W

U2

� �
; (9)

dW
dT ¼ b

DU
DT þ 12Pr

U�W

U2

� �
� ð1� bÞKẐ; (10)

DH
DT ¼ r2H� a12

H�Hp

U2 ; (11)

dHp

dT ¼ 12
E

H�Hp

U2 ; (12)

where we have introduced the following dimensionless characteristic
parameters:

Ra ¼ bTDTgH
3

�j
; Pr ¼ �

j
; K ¼ gH3

j2
¼ GaPr2; U ¼ dp

H
:

(13)

Here, Ra represents the Rayleigh number which indicates the strength
of thermally induced buoyancy as compared to the system mechanical
and thermal dissipation, Pr is the Prandtl number characteristic of the
fluid phase, and Ga is the Galileo number, which parameterizes the

ratio between the gravitational and viscous dissipative force. Together
with the modified fluid-to-particle density ratio b and the particle
global volume fraction a0, they constitute the full set of control param-
eters of the system. In conclusion, the system state is identified by
seven parameters, three relative to the fluid (Ra; Pr;K), two to the par-
ticulate phase (U; b) and two related to the intensity of their mechani-
cal and thermal couplings (a0; E).

In terms of the dimensionless variables, the boundary conditions
read as

U ¼ 0; H ¼ 1 at Z ¼ � 1
2
;

and

U ¼ 0; H ¼ 0 at Z ¼ 1
2
; (14)

a ¼ a0; W ¼ W0 ¼
1� b
b

KU2

12Pr
Ẑ; Hp ¼ H�

p at Z ¼ Z�;

(15)

with Z� denoting the location of the inlet boundary condition. We
observe that in the present model system, the coupling between the
fluid and the particles depends linearly on the local volume fraction a.
The parameter E, particle to fluid mass specific heat capacity ratio,
controls the thermal coupling between the two phases. If E ! 0 then
Hp ! H meaning that the particle phase immediately adapts to the
temperature of the fluid. In the opposite limit E ! 1, the particles do
not change their temperature and act as volume heat sources in the
fluid. The parameter b that varies in the range [0, 3] discriminates
between the cases of particles heavier than the fluid, b < 1, or lighter
than the fluid, b > 1, the limiting cases corresponding respectively to
the infinitely heavy (ballistic limit) and infinitely light (which is a good
approximation, e.g., for air bubbles in water). Finally, we note that the
parameter K (or the Galileo number Ga) although it does not depend
on the particle properties, it only becomes relevant when the coupling
between the particle and the fluid is considered.

III. LINEAR STABILITY ANALYSIS
A. Conductive state

We start to analyze a condition where the fluid is at rest, the par-
ticles are uniformly distributed in the domain with a volume concen-
tration a0, and they continuously enter the system domain at the
terminal velocity, W0, defined in (15). Oresta and Prosperetti36

observed that injecting particles with a different velocity (e.g., close to
zero velocity) leads to the formation of a highly concentrated, nonuni-
form particle layer at the inlet boundary. Since this would complicate
considerably the stability analysis (see, e.g., Ref. 51 for the case of an
isothermal layer), we adopt the same strict hypothesis: particles are
injected at terminal velocity. This condition is realistic as long as the
spatial distance across which the particles accelerate is much smaller
than the cell height. The order of magnitude of such a distance is
jw0jsp (or in dimensionless terms jW0j U2

12Prb).

In such a stationary conductive state, usually denoted as the base
state, the pressure gradient is only Z-dependent function given by

�$P ¼ PrRaH0Ẑ þ a0ðb� 1ÞKẐ
2

þ 12Prð3� bÞW0

U2 ; (16)
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in which theH0 ¼ H0ðZÞ is the base fluid temperature field, which
can be computed according to the following steps. First, the parti-
cle temperature equations in the conductive state using Eq. (12)
reads as

H0 ¼ W0
EU2

12
@ZHp0 þHp0; (17)

where Hp0 ¼ Hp0ðZÞ is the undistributed particle temperature.
Second, upon elimination of the term ðH�HpÞ from Eqs. (11) and
(12) yields

@2
ZH0 �W0Ea0 @ZHp0 ¼ 0; (18)

third and finally, by eliminatingH0 from Eqs. (17) and (18), we get

@Z W0
EU2

12
@2
ZHp0 þ @ZHp0 �W0Ea0 Hp0

� �
¼ 0: (19)

This third order linear differential equation can be solved analytically
and, by means of the boundary conditions for the inlet particle

temperature and for the fluid temperature on top and bottom walls,
one gets the explicit expression

Hp0 ¼ H�
p þ C1 1� ek1ðZ�Z�Þ½ � þ C2 1� ek2ðZ�Z�Þ½ �: (20)

Here, C1 and C2 are integration constants and

k1;2 ¼
6

W0EU2 �16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þW2

0E2U2a0
3

s0
@

1
A
:

Using Eqs. (16) and (20), the base state temperature field in the
fluid phase is therefore determined as

H0 ¼ H�
p þ C1 1� ð1þ lk1Þek1ðZ�Z�Þ

h i
þ C2 1� ð1þ lk2Þek2ðZ�Z�Þ

h i
; (21)

where l ¼ W0EU
2=12. The integration constants are determined by

the fluid temperature boundary conditions at the top and bottom of
the cell, respectively, Z ¼ 6 1

2. Their complete expression is

C1 ¼
e

1
2þZ�ð Þk1 �e

1
2þZ�ð Þk2 � ð1þ k2lÞ ek2ð�1þH�

pÞ �H�
p

� �� �

e
1
2þZ�ð Þk1ð�1þ ek2Þð1þ k2lÞ þ ð1þ k1lÞ �e

1
2þZ�ð Þk2ð�1þ ek1Þ þ ðek1 � ek2Þð1þ k2lÞ

� � ; (22)

C2 ¼
e

1
2þZ�ð Þk2 �e

1
2þZ�ð Þk1 � ð1þ k1lÞ ek1ð�1þH�

pÞ �H�
p

� �� �

e
1
2þZ�ð Þk2ð�1þ ek1Þð1þ k1lÞ þ ð1þ k2lÞ �e

1
2þZ�ð Þk1ð�1þ ek2Þ � ðek1 � ek2Þð1þ k1lÞ

� � : (23)

The base fluid temperature vertical profile [Eq. (21)] is plotted
in Fig. 2 for the case of heavy particles with b ¼ 0:5 and different
values of the heat capacity ratio E and particle diameter U. In this
case, particles are injected from above with the same temperature as

the one of the top horizontal boundary temperature (H�
p ¼ 0). One

may observe that for small values of E, the profile remains close to
linear, which is what is expected in the single-phase Rayleigh–
B�enard system, but larger gradients appear for large values of E and
U. In the case where both E and U assume the largest values, it may
be observed that the fluid temperature remains almost constant on
the upper part of the system. As a consequence, a region of strong
unstable thermal stratification forms at the bottom. Figure 3 shows
the base fluid temperature vertical distribution for the case of light
particles with b ¼ 1:5, injected from the bottom with the hot wall
temperature (H�

p ¼ 1). The temperature field appears to be nearly
the upside-down mirrored copy of the ones just observed for the
heavy particle case. Additionally, the influence of inlet particles tem-
perature for both heavy (solid lines) and light (dashed lines) par-
ticles is presented in Fig. 4. In this case, temperature gradients can
appear also at the particle inlet wall due to the local heating/cooling
produced by the particulate phase on the fluid.

B. Linearization

We now proceed to linearize equations (7)–(12) assuming a small
departure from the previously calculated base state. According to the
standard linear stability approach,21 the dependent vector and scalar
fields in the governing equations are constructed as a superposition of
the base state and infinitesimal perturbations

FIG. 2. The base state fluid temperature vertical distribution in the cell for heavy
particles (H�

p ¼ 0) with respect to different values of the particle diameter U. The
particles to fluid heat capacity ratio E ¼ 5� 10�1 (solid lines) and E ¼ 5� 10�3

(dashed lines), the particle to fluid density ratio b ¼ 0:5. The particle volume frac-
tion is a0 ¼ 10�3, and the Galileo number K ¼ 48� 1010.
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P ¼ P0 þ �P0; U ¼ U0 þ �U 0; H ¼ H0 þ �H0; (24)

a ¼ a0 þ �a0; W ¼ W0Ẑ þ �W 0 Hp ¼ Hp0 þ �H0
p; (25)

where � � 1, the primed quantities represent the perturbations, and
base state fields are denoted by the index zero. Substituting the above
relations in the governing equations leads to a new system of equation
at different orders in �. Upon deducting the base-state relations and
disregarding higher-order terms in the perturbed quantities, the fluid-
phase governing equations at the leading order become

0 ¼ r � U 0; (26)

@T U
0 ¼ �rP0 þ Prr2U 0 þ PrRaH0Ẑ þ a0ðb� 1Þ

2
@T U

0

� a0
6Prð3� bÞ

U2 ðU 0 �W 0Þ

þ ðb� 1Þ
2

Kþ 6Prð3� bÞW0

U2

� �
a0Ẑ; (27)

@T H
0 þ U 0

Z@ZH0 ¼ r2H0 � 12a0
ðH0 �H0

pÞ
U2 � 12a0

ðH0 �Hp0Þ
U2 :

(28)

Adopting the same procedure as above the corresponding
particle-phase governing equations becomes

@T a
0 þW0@Za

0 ¼ �a0ðr �W 0Þ; (29)

@T W
0 þW0@ZW

0 ¼ b@T U
0 þ 12Prb

ðU 0 �W 0Þ
U2 ; (30)

@T H
0
p þW0@ZH

0
p þW 0

ZrHp0 ¼
12
E

H0 �H0
p

U2 : (31)

It subjects to the following boundary conditions:

U 0
Z ¼ 0 H0 ¼ 0 at Z ¼ 6

1
2
;

@ZU 0
Z ¼ 0 at Z ¼ 6

1
2
;

and for the particles

W 0
Z ¼ 0 H0

p ¼ 0 at Z ¼ Z�;

where Z� ¼ 1=2 for heavy particles (qp > q) and Z� ¼ �1=2 for light
particles (qp < q).

C. Problem reduction

The boundary condition for the particle velocity fluctuation at
the inlet wall, W 0 ¼ 0, implies that @XW 0 ¼ 0, and by means of (30)
also that @ZW 0 ¼ 0 at the same wall (Z ¼ Z�). This has a consequence
that r �W 0 ¼ 0 at the inlet. Now, as already observed in Ref. 46, tak-
ing the divergence of Eq. (30) we get

@T ðr �W 0Þ �W0@zðr �W 0Þ ¼ �12Prb
ðr �W 0Þ

U2 : (32)

This equation has solution

r �W 0ðZ; T Þ ¼ r �W 0jZ¼Z� e
12Prb
U2W0

ð1=2�ZÞ
: (33)

It follows that r �W 0 ¼ 0 everywhere in the system. The latter rela-
tion has an important consequence because through Eq. (29), which
becomes an advection equation, one obtains a0 ¼ a0jZ¼Z� ¼ 0. Hence,
the chosen inlet condition for the particles imposes that the particle
concentration is always constant throughout the system. In other
words, the phenomenon of particle clustering cannot occur in the pre-
sent conditions. This is an important point that will be further dis-
cussed in the concluding section of this work.

As a next step, we eliminate the pressure field from the fluid
momentum equation (27). This is achieved by taking the double curl
of the fluid momentum equation

@T r2U 0 ¼ Prr4U 0 � PrRaðrð@ZH0Þ � r2H0ẐÞ

þ a0ðb� 1Þ
2

@T r2U 0 þ a0
6Prð3� bÞ

U2

� ð�r2U 0 þ r2W 0 � rðr �W 0ÞÞ

� ðb� 1Þ
2

Kþ 6Prð3� bÞW0

U2

� �
� ðrð@Za0Þ � r2a0ẐÞ; (34)

by substitutingr �W 0 ¼ 0 and a0 ¼ 0 the problem is now reduced to
four equations for the unknowns U 0

z; W
0
z; H

0; H0
p,

FIG. 3. Same as previous figure for light particles with b ¼ 1:5 and H�
p ¼ 1.

FIG. 4. The base state fluid temperature vertical distribution in the cell for different
values of the particle inlet temperature H�

p ¼ �1; 0; 1; 2 heavy b ¼ 0:5 (dashed
dotted lines) and light b ¼ 1:5 (dotted lines) particles. The dimensionless particle
diameter U ¼ 10�2, the particles to fluid heat capacity ratio E ¼ 5� 10�1.
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@T r2U 0 ¼ Prr4U 0 � Pr Ra rð@ZH0Þ � r2H0Ẑ
	 


þ a0ðb� 1Þ
2

@T r2U 0 þ a0
6Prð3� bÞ

U2

� �r2U 0 þ r2W 0ð Þ; (35)

@T W
0 ¼ �W0@ZW

0 þ b@T U
0 þ 12Prb

ðU 0 �W 0Þ
U2 ; (36)

@T H
0 ¼ �U 0

Z@ZH0 þr2H0 � 12a0
H0 �H0

p

U2 ; (37)

@T H
0
p ¼ �W0@ZH

0
p �W 0

ZrHp0 þ
12
E

H0 �H0
p

U2 : (38)

IV. MODAL ANALYSIS

In the modal approach, the perturbation is assumed to have a
monochromatic wave like behavior in the homogeneous direction,
which allows the decomposition of the perturbed quantities in Fourier
modes of the form

n0ðX;Y ;Z; T Þ ¼ nnðZÞ eðikXþkT Þ þ c:c:; (39)

where n0 ¼ fU0;H0; P0; a0;H0
p;W

0g; c:c: is the complex conjugate,
and nn is the normal mode amplitude varying in the non-
homogeneous direction Z. According to the temporal stability
approach, k is the real wave number, and k ¼ kr þ i ki, where kr is the
temporal growth rate of the perturbation and ki is its oscillation
frequency.

By substituting the above prescribed transformations, we get the
final linearized non-dimensional system,

ðD2 � k2Þ 1� a0ðb� 1Þ
2

� �
kUn � ðD2 � k2ÞPrUn

� �
þ PrRak2Hn

þ 6a0Prð3� bÞ
U2 ðD2 � k2ÞðUn �WnÞ ¼ 0; (40)

kWn �
ð1� bÞ

b
KU2

12Pr
DWn � 12Prb

ðUn �WnÞ
U2 � bkUn ¼ 0; (41)

kHn þ UnDH0 � ðD2 � k2ÞHn þ 12a0
ðHn �HpnÞ

U2 ¼ 0; (42)

kHpn �
ð1� bÞ

b
KU2

12Pr
DHpn þWnDHp0 �

12
E

ðHn �HpnÞ
U2 ¼ 0;

(43)

subject to the following boundary conditions for the fluid:

Un ¼ DUn ¼ 0; Hn ¼ 0 at Z ¼ 6
1
2
;

and for the particles

heavy ðb < 1Þ: Wn ¼ 0 Hpn ¼ 0 at Z ¼ 1
2
;

light ðb > 1Þ Wn ¼ 0 Hpn ¼ 0 at Z ¼ � 1
2
;

where D represents the derivative with respect to Z. The linearized
boundary value problem (BVP) (40)–(43) is solved by means of a
shooting method. The values of Ra and k are numerically obtained for
prescribed values of the wave number k. Then, by minimizing Ra with

respect to k, the critical condition ðRac; kc; kcÞ is determined. The
same approach and algorithm has been employed in previous stud-
ies52,53 and is discussed in detail in Ref. 54. We also employed the
Galerkin method to validate the results obtained from the shooting
method. Notably, both methods produced matching results, reinforc-
ing the accuracy of our findings. For the sake of conciseness, we omit
here the details of the numerical procedure.

V. RESULTS AND DISCUSSION

This section describes the main results on the onset of convection
in the pRB model system, obtained by means of the linear stability
analysis. Before venturing into this, it is worth briefly discussing the
system’s behavior in some limiting cases, which offer an easier insight.
Notably, we first examine the case of small particles (U ! 0) where a
perturbative solution of the system is possible. Second, we consider
what happens in the limiting cases of the thermal coupling, i.e., when
particles are thermally ineffective for the fluid, E¼ 0, (pure mechanical
coupling) and the opposite case when their particle thermal inertia is
overwhelming, E¼þ1. The linear stability analysis will then focus
on trends as compared to different parameters: the particle to fluid
mass density ratio (b), the particle size (U), the particulate volume flux
(a0W0), and finally the particulate temperature (H�

p) (that determines
the particulate inlet heat flux).

A. Perturbative solution in the U2fi0 limit

If Eqs. (10) and (12) are multiplied by U2 then we can take the
limit for U ! 0 and the solution W ¼ U is readily obtained. This
implies that for small values of U2 the value of W should be close to
the one of the fluid velocity U. In the limit of small but non-vanishing
U2, a perturbative solution of the above equations can indeed be
obtained. We consider that the solution of W and Hp will be of the
form

W ’ Uþ U2W1; Hp ’ Hþ U2Hp1; and a ¼ a0 þ U2a1:

Substituting these expressions into the equations forW,Hp and a
at the leading order in U2 we obtain the following relations for the par-
ticle’s variables:

W ¼ Uþ U2 b� 1
12Prb

DU
DT þ KẐ

� �
; (44)

Hp ¼ Hþ U2 E
12

DH
DT

� �
; (45)

Da0
DT ¼ 0;

Da1
DT ¼ a0

12Pr
1� b
b

rU : rU: (46)

Taking this into account, the fluid equations reduce to

DU
DT ¼ �rP þ Prr2Uþ PrRaHẑ

þ ða0 þ a1U
2Þ 3ðb� 1Þ

2b
DU
DT þ KẐ

� �" #
; (47)

DH
DT ¼ r2Hþ ða0 þ a1U

2ÞE DH
DT : (48)

Introducing the boundary condition (a ¼ a0), the above equations
simplify to
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DU
DT ¼ �rP0 þ Pr

1� a0
3ðb� 1Þ

2b

� �r2Uþ PrRa

1� a0
3ðb� 1Þ

2b

� �Hẑ;

(49)
DH
DT ¼ 1

1� a0E
r2H; (50)

where P0 is a redefined pressure. Now redefining the time as
~T ¼ T =ð1� a0EÞ. We obtain

D~U

D ~T
¼ �r~P þ Prð1� a0EÞ

1� a0
3ðb� 1Þ

2b

� �r2 ~U þ PrRað1� a0EÞ2

1� a0
3ðb� 1Þ

2b

� �Hẑ;

(51)

DH

D ~T
¼ r2H; (52)

which has the form of the usual Boussinesq system. It is linearly unsta-
ble for Rað1� a0EÞ� 1708 at any value of Pr and b. This correction
is always tiny in the range of parameters considered in this study. In
fact we will consider at most a0E ¼ 10�4.

B. Thermal coupling limiting cases

In this section, we will present the thermal coupling limiting cases
(i) E ! 0 and (ii) E ! 1.

Case (i) E ! 0:
When the thermal specific heat capacity ratio (E) number is very

small, fluid and particulate temperatures are strongly coupled so that
Hp � H. Fluid and particle momentum equations are given by (40)
and (41). The fluid energy equation will become

kHn þ UnDH0 � ðD2 � k2ÞHn ¼ 0; (53)

and particle energy equation can be discarded.
Case (ii) E ! 1:
In the case of extreme heat capacity ratio (E ! 1), the tempera-

ture of the particulate phase does not change and also in this case the
particle energy equation can be discarded. We have to reconstruct the
base state which follows from Eqs. (11) and (12) as

@2
zH0 �

12a0
U2 ðH0 �H�

pÞ ¼ 0: (54)

The expression for the fluid base state, as illustrated in Fig. 5, is
derived using Eq. (54). After substitution of the boundary conditions,
we get

H0 ¼
e�

2
ffiffiffiffiffi
3a0z

p
U �e

ffiffiffiffi
3a0

p
U þ e

2
ffiffiffiffiffi
3a0z

p
U

� �
e
2
ffiffiffiffi
3a0

p
U þ e

ð1þ2zÞ
ffiffiffiffi
3a0

p
U

� �
ð�1þH�

pÞ �H�
p � e

ð3þ2zÞ
ffiffiffiffi
3a0

p
U H�

p

� �

�1þ e
4
ffiffiffiffi
3a0

p
U

: (55)

C. Linear properties of the instability

In this section, we present the effects of both heavy and light par-
ticles on the stability of the RB system. In addition to the Rayleigh and
Prandtl numbers Ra and Pr, the presence of a particulate phase also
introduces the following dimensionless parameters: the global particle
volume fraction a0, the added mass-adjusted fluid-to-particle density
ratio b, the dimensionless particle diameter U, the heat capacity ratio

E, the Galileo number Ga ¼ K=Pr2, and the dimensionless injection
temperature of the particlesH�

p .
Parameter values for some representative systems of heavy and

light particles are given in Table I. The dimensionless parameters were
obtained by considering a layer of height H ¼ 0:1m. In order to sim-
plify the analysis, we chose to take water as a representative working
fluid and fix in all the calculations a0 ¼ 10�3; K ¼ 48� 1010, and

FIG. 5. The base state fluid temperature vertical distribution in the cell for different particle diameter values U: (a) heavy particles (b ¼ 0:5;H�
p ¼ 0) and (b) the light particles

(b ¼ 1:5;H�
p ¼ 1).
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Pr¼ 5. Even though we cannot prove that the principle of exchange of
stabilities holds for the present problem, we found that the least stable
modes have pure imaginary eigenvalues (ki ¼ 0). In other words, the
system undergoes a pitchfork bifurcation giving rise to stationary con-
vection for all cases studied.

Let us first focus on the influence of b on the stability of the par-
ticulate RB system. The case b¼ 1 corresponds to neutrally buoyant
particles, and at this particular value, our model presents a singularity
as the inlet particle flux cannot be different from zero. Heavy particles
(b < 1) are injected from the top with the cold wall temperature
(H�

p ¼ 0), and light particles (b > 1) are injected from the bottom
with the hot wall temperature (H�

p ¼ 1), unless specified otherwise.
Figure 6 shows the critical thresholds as a function of b, for different
values of the heat capacity ratio E. The limiting case E¼ 0 corresponds

to instant thermal coupling, i.e., the particle and fluid temperature
fields are the same. On the other hand, when E ! 1 the particles
temperature remains constant ðHp ¼ H�

pÞ and they act as internal
heat source. One can remark that the introduction of particles, either
heavy or light, stabilizes the system with respect to the single-phase RB
threshold Rac ’ 1708 and kc ¼ 3:11. The system becomes increas-
ingly stable as the density of heavy particles increases (i.e., as b
decreases from 1), and for large values of E the critical thresholds tend
to the asymptotic values Rac 	 105 and kc 	 8. On the contrary, as
light particles become lighter (i.e., as b increases from 1), for large E
the system experiences a sharp stabilization followed by mild decrease
in Rac, until the limiting value b¼ 3. As it will be evident in the energy
budget analysis of Sec. VD, at this value of b, the stabilizing role played
by the particles is entirely due to the thermal coupling. Indeed, the
Stokes drag term in Eq. (40) vanishes for b¼ 3. Note that in the neu-
tral stability state, the added mass term of this equation [which multi-
plies a0ðb� 1Þ=2] does not affect the linear stability results since the
bifurcation is stationary (k¼ 0). Finally, by comparing the trends of
Rac and kc vs b [panels (a) and (b) of Fig. 6] an approximate propor-
tionality relation is clearly noticeable. This is likely related to the form
of the fluid temperature base state which is characterized by strong

TABLE I. Dimensional and dimensionless parameter values for some representative
systems. The parameters are defined as follows: qp: Density of the particle material,
cp: Specific heat capacity of the particle material, q: Density of the fluid, c: Specific
heat capacity of the fluid, j: Thermal diffusivity of the fluid, �: Kinematic viscosity of
the fluid, b: modified fluid-to-particle density ratio, E: Particle-to-fluid thermal heat
capacity ratio, K: Galileo number, Pr: Prandtl number.

Glass/water

qp 2:5 g=cm3 b 0.5
cp 0:84 J=g E 0.5
q 1 g=cm3 K 48� 1010

c 4:1813 J=g Pr 5
j 1:43� 10�7 m2=s
� 10�6 m2=s

Polypropylene/water

qp 0:86 g=cm3 b 1.1
cp 1.92 J/g E 4� 10�4

q 1 g=cm3 K 48� 1010

c 4:1813 J=g Pr 5
j 1:43� 10�7m2=s
� 10�6 m2=s

Ice crystals/water

qp 0:92 g=cm3 b 1.6
cp 2:09 J=g E 0.45
q 1 g=cm3 K 48� 1010

c 4:1813 J=g Pr 5
j 1:43� 10�7 m2=s
� 10�6 m2=s

Air bubbles/water

qp 0:001 225 g=cm3 b 3
cp 1:005 J=g E 3� 10�4

q 1 g=cm3 K 48� 1010

c 4:1813 J=g Pr 5
j 1:43� 10�7 m2=s
� 10�6 m2=s

FIG. 6. (top) Critical Rayleigh number and (bottom) corresponding wave number as
function of the modified density ratio b. Results obtained for fixed U ¼ 0:01 and
H�

p ¼ 0 (b < 1), H�
p ¼ 1 (b > 1). The horizontal dashed lines correspond to the

single-phase Rayleigh–B�enard thresholds.
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gradients near the top/bottom walls (respectively, for heavy/light par-
ticles see Figs. 2 and 3). This form of the temperature profile effectively
reduces the height of the thermally unstable layer in the system. As a
consequence, the convective rolls at the onset appears only in these
layers which are characterized by smaller horizontal wave vectors as
compared to the RB case (as the rolls have approximately a unit aspect
ratio) and by a Rayleigh number that roughly increases by a factor
ðH=kcÞ3 (i.e., the ratio between the usual Rayleigh number based on
the cell height and the effective Rayleigh number based on the roll
height). That is why when kc increases, Rac also increases.

One may wonder if the inlet particulate flux affects the stability of
the overall system. This question is appropriate because the special
choice of injecting particles at their terminal velocityW0 and at a pre-
scribed fixed concentration a0 implies that the particle volumetric flux
J ¼ a0W0 is a function of b. In Fig. 7(a), blue line, we show the
dependence of the intensity of the particulate flux jJ j as a function of
b. Its qualitative behavior reflects some (but not all) of the features of

the RacðbÞ curve of Fig. 6. The flux intensity is moderate for the case
of bubbles, null for neutral particles, and progressively increasing and
even diverging in the limit of very heavy particles. To better under-
stand the impact of the particulate inlet flux on the instability as a
function of the b-type of particle we carry on an additional stability
calculation where the inlet flux is kept constant. The particles are still
inserted in the system at their terminal velocity, W0, but their volume
concentration a0 is adjusted so that jJ j is the same for all b. In partic-
ular, we fix jJ j to the value adopted for bubbles (b¼ 3) or equivalently
to the case of heavy particles with b ¼ 0:6 [corresponding to the
dashed horizontal line in Fig. 7(a)]. The results for two representative
cases (E ¼ 0; 0:05) are shown in Fig. 7(b). The curves, at fixed flux,
have quite different trends. The extreme values of b point to a mild sta-
bilization of the system, while a stronger stabilization (larger Rac values
are attained for cases approaching neutral particles). The fact that these
curves are not flat, i.e., independent of b, confirms that the stabilization
effect cannot be completely ascribed to the intensity of the particulate
inlet flux, and particulate hydrodynamics forces and feedback do play
a role in the stability of this model system.

Figure 8 illustrates the effects of the dimensionless particle diame-
ter U ¼ dp=H on the stability thresholds of heavy and light particles.
The trends are similar for the two cases and for all values of the heat
capacity ratio E: the critical Rayleigh number (wave number) remains
close to the single-phase value for small U, then it quickly rises, reaches
a maximum and then starts to decrease. This sharp increase on Rac
can be explained as follows. From the particle momentum equation
(41) in neutral conditions, and for k¼ 0, one may infer that the magni-
tude of the velocity difference jU 0

n �W 0
nj grows with U. This differ-

ence appears on the last term of the fluid momentum equation (40),
which accounts for the drag exerted by the particles on the fluid
(Stokes drag). Therefore, as U increases, this term gains importance,
and as a consequence the flow is stabilized. This explanation can be
confirmed by inspection of the eigenvectors of Fig. 9, computed for
b ¼ 0:5, E¼ 0.5 and three values ofU: just before the “jump” observed
on Rac (U ¼ 10�3), at the inflection point where Rac reaches a maxi-
mum (U ¼ 4� 10�3), and after a smooth decrease on Rac
(U ¼ 6� 10�3). Before the jump, the particles diameter is relatively
small, and the fluid and particle vertical velocity profiles are nearly the
same. However, a significant difference can be observed on the eigen-
vectors obtained for larger values of U, meaning that the velocity dif-
ference jU 0

z �W 0
zj is large enough to play a stabilizing role through

the last term of equation (40). After the jump, the critical Rayleigh
number decreases smoothly with increasing U. A possible explanation
for this destabilization lies in the non-trivial role played by U on the
fluid/particle thermal coupling, as U appears not only on the coeffi-
cients of equations (42) and (43), but also on the base state expressions
H0 and Hp0. This point will be further discussed in Sec. VD. We
remark that the destabilization of the flow with increasing particle
diameter was also observed by Prakhar and Prosperetti (see Figs. 2 and
3 of Ref. 46) with a similar model and for U 
 0:01.

The increase in Rac with the dimensionless particle diameter is
accompanied by an increase on the critical wave number, as shown in
Fig. 8(b). This can be explained as follows. As U increases, the linear
fluid temperature base profile turns into a nonlinear profile with
important thermal gradients on the bottom of the layer (see Fig. 2). As
a consequence, convective rolls emerge in the bottom with a shorter
wavelength (i.e., higher wave number). Then, convective motion which

FIG. 7. (top) Intensity of the particulate volumetric inlet flux J ¼ a0W0 as a func-
tion of b. The horizontal dashed line corresponds to the reference flux intensity
taken for the calculations at fixed flux presented in panel (bottom). (bottom) Critical
Rayleigh number vs b for the cases of variable (J ¼ a0W0) and fixed inlet particle
flux. In the second case, the fixed flux is taken equal to the case of b¼ 3 and
b ¼ 0:6. All the other conditions are the same as in Fig. 6. The horizontal dashed
line correspond to the single-phase Rayleigh–B�enard threshold.
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begins in the bottom layer drives the movement in the upper (less
unstable) part of the layer, as illustrated in Fig. 10.

The stabilizing effect of the heat capacity ratio E illustrated in
Fig. 11 can be easily understood. The fluid/particle temperature differ-
ence increases with E. Indeed, the case E ! 0 corresponds to instant
local thermal equilibrium between the fluid and the particles, i.e.,
H0 ¼ H0

p, and to a linear base fluid temperature profile. When cold
heavy particles (H�

p ¼ 0) are being injected from above with a high
thermal inertia (i.e., high E), particles are still cold when they get to the
bottom, hence contributing to homogenize the fluid temperature
within the layer. With smaller thermal gradients, the fluid gets stabi-
lized. The inverse reasoning can be done for hot light particles being
injected from the below (H�

p ¼ 1). From Figs. 11(a) and 11(c), one
may also note that the stabilization provoked by E arrives earlier for
larger particles. Following the behavior of Rac, a sharp increase is also
observed on the critical wave number in Figs. 11(b) and 11(d), which
can be explained from the base fluid temperature profile as before.

Figure 12 shows the effect of particle injection temperature for
heavy and light particles, with E¼ 0.5 andU ¼ 0:01. The observed trend
is the same for both cases: the critical Rayleigh number increases, reaches
a maximum and then starts to decrease. This behavior can be understood
by inspecting the base temperature profiles of Fig. 4. For H�

p ¼ �1 one
may observe a large region in the lower part of the system where the
undisturbed vertical temperature gradient is destabilizing. By increasing
the particle temperature to H�

p ¼ 0, the extent of this region decreases
and as a consequence, the system becomes more stable. This is the cause

of the increase on the critical Rayleigh number observed in Fig. 12. For
H�

p ¼ 1, the unstable part of the undisturbed temperature gradient is
now located on the top of the cell (cf. Fig. 4). The extent of this unstable
region grows by further increasing particle temperature, which causes
destabilization and hence, the decrease in Rac observed forH

�
p ¼ 2.

D. Energy budget analysis

An a posteriori analysis of the energy transferred between the
base state and the critical mode is here employed to identify the physi-
cal mechanisms leading to flow instability and to validate the overall
energy conservation of our neutral mode. To that end, we employ a
methodology similar to the one presented in Ref. 52, and numerically
evaluate all terms in the spatially averaged linearized energy and
momentum conservation equations.

From Eq. (42), the following relationship for the spatially aver-
aged disturbance thermal energy eH is obtained:

keH ¼ ethH þ ediffH þ efpH

with

eH ¼
ð1=2
�1=2

Re jHnðzÞj2
� �

dz; (56)

ethH ¼
ð1=2
�1=2

Re ðUnDH0Þ �Hn

� �
dz; (57)

FIG. 8. Evolution of the critical thresholds with particle diameter U, obtained for: (a) and (b) heavy particles with b ¼ 0:5 and H�
p ¼ 0; (c) and (d) light particles with b ¼ 1:5

and H�
p ¼ 1.
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FIG. 9. Fluid and particles vertical velocity profiles at neutral conditions computed for parameters b ¼ 0:5 and E¼ 0.5, illustrating changes in system behavior at three values
of U: (a) just before the critical “jump” in Rac (U ¼ 10�3), (b) at the inflection point where Rac reaches its peak (U ¼ 4� 10�3), (c) and after the gradual decrease in Rac
(U ¼ 6� 10�3).

FIG. 10. Iso-contours of the fluid velocity field and heatmap of the temperature for the set of parameters of Fig. 9, showing the effect of particle diameter U on flow characteris-
tics. The panels illustrate cases with (a) U ¼ 1� 10�2, (b) U ¼ 4� 10�3, and (c) U ¼ 6� 10�2, all at E ¼ 5� 10�1 and b ¼ 0:5.
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ediffH ¼
ð1=2
�1=2

Re ðD2 � k2ÞðHn � �HnÞ
� �

dz; (58)

efpH ¼ � a012

U2

ð1=2
�1=2

Re ðHn �HpnÞð �HnÞ
� �

dz; (59)

where overbars denote the complex conjugate, ethH is the energy due to
thermal advection, ediffH corresponds to the thermal dissipation energy.

The energy exchange between particles and fluid as a result of drag
forces is represented by efpH. It quantifies how particle motion is
impacted by the fluid resistance, which results in transfers of energy
between particles and the surrounding fluid. The sign of the integrands
determines whether the local energy transfer acts as a destabilizing
(positive) or a stabilizing (negative) contribution. If the rate of change
of the total energy eH is positive, the basic flow is unstable, and vice
versa. Hence, the energy budget can also be used to verify the linear
stability results since the rate of change of the total energy must vanish
for the neutral modes. In our computations, such a condition is veri-
fied at the fifth digit. By normalizing the different contributions by the
absolute value of the dissipation energy, we obtain at neutral condi-
tions ðk ¼ 0Þ:

Eth
H þ Efp

H ¼ 1; (60)

where Eth
H ¼ ethH=je

diff
H j and Efp

H ¼ efpH=je
diff
H j.

By following the same procedure, Eq. (40) leads to the ensuing
relationship for the rate of change of the fluctuating kinetic energy eK,

keK ¼ eth þ ediff þ efp; (61)

with

ethK ¼ PrRa
ð1=2
�1=2

Re ðHnk
2Þ�Un

� �
dz; (62)

FIG. 11. Evolution of the critical thresholds with the heat capacity ratio E, obtained for: (a) and (b) heavy particles with b ¼ 0:5 and H�
p ¼ 0; (c) and (d) light particles with

b ¼ 1:5 and H�
p ¼ 1. The red horizontal dashed line represents the limiting case E ! 1, where the stability threshold remains constant, illustrating the asymptotic behavior

of Rac. The horizontal black dashed line represents single-phase Rayleigh–B�enard thresholds.

FIG. 12. Evolution of the critical Rayleigh number with particle injection temperature
for heavy and light particles for fixed E ¼ 5� 10�1 and U ¼ 10�2.
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ediffK ¼ �Pr
ð1=2
�1=2

Re ðD2 � k2Þ2ðUn � �UnÞ
� �

dz; (63)

efpK ¼ 6a0Prð3� bÞ
U2

ð1=2
�1=2

Re ðD2 � k2ÞðUn �WnÞ � �UnÞ
� �

dz: (64)

After normalization, we obtain at neutral conditions ðk ¼ 0Þ:

Eth
K þ Efp

K ¼ 1; (65)

where Eth
K ¼ ethK =je

diff
K j and Efp

K ¼ efpK=je
diff
K j. Figure 13 reports the

total thermal and kinetic energy budgets for the neutral modes as a
function of the density ratio b. Results show that both the thermal
and mechanical fluid/particle coupling contribute to the stabilization
of the base state. Heavy particles present a more pronounced
mechanical effect than light particles, while the thermal stabilization
effect is more important for light particles. As the particles become
lighter, the mechanical stabilization effect decreases, and as men-
tioned before, for b¼ 3 the contribution of Stokes drag is zero

(Efp
K ¼ 0).

The total energy budgets for varying U are presented in Fig. 14.
One may note that the curves present roughly three regions with dif-
ferent slopes: U� 10�3; 10�3 �U� 4� 10�3, and U� 4� 10�3,
corresponding to the three different slopes of Fig. 8(a) for E¼ 0.5.

VI. CONCLUSIONS

We theoretically studied the effects of a diluted dispersed particu-
late phase on the onset of Rayleigh–B�enard (RB) convection in a fluid
layer by means of a two-fluid Eulerian modelization. The particles are
macroscopic, spherical, with inertia and heat capacity, and are
assumed to interact with the surrounding fluid mechanically and ther-
mally. We examine both the cases of particles denser and lighter than
the fluid that are injected uniformly at the system’s top and bottom
walls respectively, with their settling terminal Stokes velocity and pre-
scribed temperatures. The presented linear stability analysis shows that
the onset of thermal convection is stationary, i.e., the system undergoes
a pitchfork bifurcation as in the classical single-phase RB problem.
Remarkably, the particle presence always stabilizes the system, increas-
ing the critical Rayleigh number (Rac) of the convective onset. The lim-
iting cases E ! 0 (when particles instantly adapt to fluid temperature)
and E ! 1 (when particles remain at their inlet temperature) were
discussed in detail. The overall resulting stabilization effect on Rac is
significant, reaching for a particulate volume fraction of 0.1% up to a
factor 30 for the case of the lightest density particles and 60 for the
heaviest ones. Particle diameter and inlet temperature have a non-
monotonic effect due to nonlinear particle/fluid interactions that we
have analyzed in detail. A thermal and kinetic energy budget analysis
was also carried out, clarifying the role of the different thermal and
mechanical contributions to the heavy and light particle systems.

FIG. 13. (a) Thermal and (b) kinetic energy budgets for E¼ 0.5 and U ¼ 0:01.

FIG. 14. (a) Thermal and (b) kinetic energy budgets for E¼ 0.5 and b ¼ 0:5.
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In spite of the fact that the present model system accounts for the
compressibility of the particulate velocity field and so can accommo-
date for the phenomenon of particle clustering, this aspect has not
been explored in this study. Indeed, by simultaneously imposing the
particle Stokes velocity and the particulate volume concentration at the
inlet, we constrained the divergence of the particle velocity field to zero
throughout the system. Although this assumption has the advantage of
reducing the dimensionality of the problem (from eight to four scalar
equations), this assumption is very restrictive and may have important
consequences on the stability. Relaxing such a condition is possible for
instance by imposing an inlet volume (or mass) flux of particles, how-
ever only at the price of more complex calculations. This may reconcile
the apparent counterintuitive nature of our current results, where any
kind of particle heavier/lighter than the fluid is capable to increase the
system stability. Although we are not aware of experiments in the exact
setting described by our pRB model system, as we already mentioned,
it is well known that bubbles rising in a isothermal still fluid produce
mechanical destabilizations that lead to enhance mixing and to con-
vective like movements.17,47,51 For this reason, it will be of primary
interest to check how different boundary conditions, in particular
resembling to the ones that could be realized in a laboratory experi-
ment, may have consequences on the overall hydrodynamic stability of
the system. Furthermore, as pointed out in Refs. 55 and 56, the inclu-
sion of the lift force for bubbles may also play key role in the fluid layer
destabilization. These aspects will be the subject of future works.
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