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We study the statistical properties of scalar fields undergoing reversible chemical reactions
in a turbulent environment by means of numerical simulations. To produce strong chemical
fluctuations in a wide region of the domain, an original flow configuration has been
proposed, where the species are supplied from buffer boundaries with adjustable thickness,
while the flow is developed homogeneous and isotropic turbulence in a periodic domain.
With the presence of the mean scalar gradient in the bulk region, the strength of turbulent
advection is comparable with the chemical source, which is quantified by the Damkohler
number. Our analysis focuses on the global and spatial properties of the reactive scalars
in their statistically steady regime. We show how for the case of a second-order reaction
such features can be connected to the properties of a non-reactive scalar field advected in
the same system. Analytical predictions of the scalar moments in the fast reaction regime
agree satisfactorily with the direct numerical simulation results. In comparison with the
existing results of the isotropic turbulence case, we conclude that the scalar correlation is
jointly determined by both the chemical source and the flow configuration. Moreover, the
chemical reaction also plays an important role in determining the scalar energy spectra.

Key words: turbulent reacting flows, turbulence modelling, turbulence theory

1. Introduction

Among various fundamental turbulence related problems, the reactive scalar in constant
density turbulence needs to be addressed because of its peculiarities. On the one hand,
the reactive scalar problem has been extensively studied in turbulent combustion (Libby
& Williams 1976; Peters 2000; Pope 2000; Chakraborty & Cant 2004; Demosthenous
et al. 2016; Zhao, Wang & Chakraborty 2018a,b), where rapid heat release due to species
reactions leads to a strong interaction between turbulence and flames, either premixed or
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non-premixed. Because of the large change of the fluid density, reactions have here strong
feedback effects on the fluid dynamics. Thus, the species are considered as active. On the
other hand, in constant density turbulent flows scalars are typically treated as non-reactive
and passive, which has been the research focus in the turbulence community (Kraichnan
1968; Monin & Yaglom 1975; Shraiman & Siggia 2000; Warhaft 2000; Mitrovic &
Papavassiliou 2004). However, constant density reactive turbulent flows are ubiquitous
as well. From the viewpoint of fundamental aspects, this topic has a special importance
as it can enrich the understanding of turbulence physics. In applications, a number of
meaningful scenarios of relevance exist and are here briefly presented.

To control the harmful effects of reactive pollutants, the study of chemically reactive
atmospheric systems has attracted considerable attention, e.g. the impact of climate change
on the chemical composition of the atmosphere (Brasseur et al. 2006), or the formation
and evolution of aerosol particles (Wang et al. 2020). Since the change of temperature
associated to these processes is small, the flow is typically incompressible. A better
understanding of the reactive scalar interaction and the effects of turbulence will be helpful
for pollution controls. Another important example of the present topic is the behaviour
of marine species in a turbulent environment. Typically the driving forcing to generate
turbulence is induced by the interactions between the oceanic and atmospheric flows at
the interface (Pearson & Fox-Kemper 2018). The large-scale ocean circulation will also
impose atmospheric fluxes of momentum, heat and moisture. How to model the species
transport process, either in the interior or at the interface of the ocean is particularly
relevant for biogeochemical studies. In such turbulent conditions, species interaction, in
the form of reactions, are important or even determinant to the species evolutions. For
instance, the mixing process at the ocean and atmosphere interface drives the pelagic food
because of the light available for photosynthesis at the surface. Species interaction can be
modelled as chemical or biological reactions, e.g. between preys and predators or species
and nutrition (Powell & Okubo 1994; Lopez et al. 2001; Hernandez-Garcia & Lopez
2004; Groselj, Jenko & Frey 2015). Although in some situations rather strong turbulence
can be induced by the organisms (Dewar 2009; Kunze 2019), for simplicity, the species
are considered here as passive. Moreover, in chemical engineering, mixing processes
involving reactions in incompressible turbulence occur in many industrial applications
(Hill 1976; Sykes et al. 1994).

Chemical reactions introduce various complexities to the passive scalar problem, e.g.
new characteristic time scales and the nonlinear source of the governing equation (Lamb
& Shu 1978; Heeb & Brodkey 1990; Molemaker & de Arellano 1998). Komori et al.
(1991) simulated two reactants of second-order irreversible reaction introduced in different
parts of the bounding surface of the turbulent flow. They developed a model with the
Damkohler number based on the integral time scale to estimate the segregation parameter,
which characterizes the mixing of reactants. Corrsin (1961) studied the mixing of a
scalar contaminant undergoing a first-order chemical reaction in isotropic turbulence
and he deduced theoretically the power spectrum of the reactive scalar in different
wavenumber ranges. Pao (1964) investigated the dilute turbulent concentration fields
of a multicomponent mixture with first-order reaction in an isothermal environment,
and proposed a unified spectral transfer concept for deducing the scalar spectrum
at large wavenumbers. For higher-order reactions, nonlinearities from the chemical
sources are also introduced into the problem. O’Brien (1966, 1971) worked on decaying
second-order, isothermal reactions in turbulence. The asymptotic decay rate of the scalar

energy was found as r~'1/2 for the moderate reaction, and r~3/? for the rapid reaction.
Lin & O’Brien (1974) proposed a theoretical connection between the probability density
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functions (p.d.f.s) of the reactive species and those of the non-reacting species, which
are in general of easier theoretical/experimental access. Similar analysis was also made
in studying the scalar mixing layer problem (Bilger & Krishnamoorthy 1991). Meyers,
O’Brien & Scott (1978) further derived the general solution of the p.d.f. equation for
reactive scalars under some limiting conditions. The covariance between reactants and
the corresponding model terms are important topics of turbulent mixing analyses as well
(Lamb & Shu 1978; Heeb & Brodkey 1990). For the dual non-premixed reactants case, it
was surprisingly found (Toor 1969) that the covariance is almost invariant for very slow
and very rapid second-order reactions.

Wu et al. (2020) analysed the reversible multicomponent reactions in isotropic
turbulence in the near equilibrium condition with almost zero net reaction rates. It was
observed that at the close-to-equilibrium state, the reactive scalar fluctuations have a
Gaussian distribution. Overall, the net reaction rate is much smaller than the turbulent
advection term. Therefore, the energy spectra are essentially uninfluenced by the chemical
reaction. Even so, the chemical processes tend to reorganize the spatial distribution of the
reactive scalars, a reduced reactant concentration fluctuation and an enhanced correlation
intensity were observed, at odds with the effects induced by turbulent mixing that increases
fluctuations and removes relative correlations. One main finding was that the correlations
of the scalar quantities can be quantified based on a unique control parameter, the
Damkohler number based on the scalar Taylor scale (Day), defined as the ratio between the
time scale of scalar diffusion across a distance of the size of the scalar Taylor microscale
and the globally averaged chemical reaction time scale. The larger the value of Dag,
the more depleted the scalar fluctuations were as compared with the fluctuations of a
non-reactive scalar field in the same conditions, and vice versa.

However, reactive turbulent flows can be also in strongly non-equilibrium chemical
conditions, i.e. they may have important net reaction rates due to different forward and
backward rates. To gain deeper insights on this aspect, it is interesting to explore the cases
where the net reaction rate is more important than the advection term or even dominant. In
the present work, a two stream-fed like flowing system is proposed to ensure locally strong
chemical reactions by solving the governing equations of the total scalar fields instead
of their fluctuating components. This new configuration for studying passive reactive
scalars is presented and characterized in a statistical sense. As a second step, p.d.f.s of
scalar fields and of their reaction rates are investigated. Then a theoretical model based on
the a priori knowledge of the p.d.f. of the non-reactive scalar is proposed for predicting
the mean and fluctuation of the reactive scalars. This model is in good agreement with the
numerical results when the forward reaction is dominant. The correlation coefficient and
spectrum of variance of the reactive scalars are also examined to explore the interactions
across spatial scales between the turbulent mixing and the chemical kinetics in such a
configuration.

The rest of this paper is organized as follows. In § 2 the definitions of the configuration
and problem studied in this work are provided. Section 3 elaborates the details of the
numerical methods. Then in § 4 the modelling analysis and numerical results are presented
and discussed. Finally the conclusions of this paper are summarized in § 5.

2. The model system
The reactions considered here are of the form

12!

R +Ry=—=—=P, 2.1
V2
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where Ry, Ry and P denote the three involved reactants (or reactive scalars). The process
is reversible with the respective forward and backward reaction rate coefficients y; and y».
The reactants are assumed to undergo diffusion and to be transported in a passive manner
by an incompressible velocity flow field upon which they do not exert any effect. The
evolution equations for the velocity field u(x, ¢) and for the scalar concentrations (R (x, 1),
R (x, t) and P(x, t)) read as

ou+ (u-VYu=vAu—Vp/p+f£, (2.2a)
V.-u=0, (2.2b)
and
R+ (u- V)R = DAR| — yiR1Ry + 2P + SR, (2.3a)
Ry + (u- V)R = DARy — y1R1Ry + 2P + 3R, (2.3b)
0P+ (u-V)P=DAP+ y1R\Ry — y»P + sp. (2.3¢)

Here p is the hydrodynamic pressure, p is the constant fluid density, v is the kinematic
viscosity and D is the species diffusivity (assumed identical for all species). The source
terms Sg,, Sg, and §p are prescribed later below.

In the following analyses, to gain primary insights of the turbulent transport physics, a
non-reactive species 7' is also considered for comparison with the governing equation

T+ (u-V)T =DAT + 57, 2.4)

where the molecular diffusion D is the same as for the reactive scalars and the source term
ST = SR,

In previous work by Wu ef al. (2020) it was shown that large-scale statistically
homogeneous and isotropic reactive scalar sources/sinks are not able to sustain a strong
deviation from the chemical equilibrium, which instead needs to be realized by imposing
non-zero mean gradient profiles for the reactants. Thus, we propose here a new flow
configuration, which is schematically illustrated in figure 1. In a cubic domain a large-scale
forcing term f is exerted into the momentum equation (2.2a) to sustain a statistically
stationary homogeneous and isotropic velocity field with periodic boundary conditions along
the three directions. Differently, the scalar fields are periodic only in the x and y directions.
Along the z direction, the following Dirichlet boundary conditions are implemented:

Ri=Ry,R, =0,P=0,T =Ry whenz=0,

(2.5)
Ri=0,R;=Ry,P=0,T=0 whenz=H.

Here H is the length of the domain in the z direction and Ry is the constant boundary
condition.

Numerically it is found that to realize reasonably large fluctuations for the scalar fields,
buffer layers where the scalar are kept approximately constant in the vicinity of the
Dirichlet boundaries are needed, as shown in figure 1 by the shadowed parts with the bulk
region in between. Inside both the upper and bottom buffer layers, the artificial sources g
with & = Ry, Ry, P or T are added in the scalar equations, (2.3) and (2.4). Specifically, sy
is designed here as

1
—(0p — 60) inthe buffer withz € [H — §, H] or z € [0, ]
T

0, in the bulk with z € (8, H — §).

Here 0y is the boundary value of 6, as defined by the Dirichlet boundary conditions
in (2.5); T is a characteristic time scale to control the strength of the source terms.
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X

Figure 1. Schematic diagram of the flow configuration and computational domain. For the scalar quantities,
the periodic boundary conditions are set along x and y directions, while a Dirichlet boundary condition is used
along the z direction. The shadowed layers near the boundaries are the ‘buffer layers’ generated artificially, in
which the quantities of scalars are close to the preset boundary values, as defined in (2.6). The part between
buffer layers is denoted as the bulk region. Such a set-up is statistically stationary and ensures the local
positiveness of scalar concentrations because it evolves directly the scalar concentration field rather than its
fluctuation with respect to a mean background profile.

Small values of t imply a fast source capable of efficiently maintaining the scalar values
close to the boundary values. In our present simulation cases, T is set on the order of
the Kolmogorov time scale of the turbulent flow 7,, which is numerically 100 times the
simulation time step. Another parameter, §, is the buffer layer thickness, which can be
tailored to adjust the scalar source (i.e. a larger thickness corresponds to a larger species
source) and the scalar mean gradient.

3. Numerical implementation

First of all, it is convenient to non-dimensionalize the above set of equations by choosing
reference scales appropriate for the present system. The domain size H, the overall
scalar difference Ry in (2.5) and the overall fluctuating velocity ' (single-component
root-mean-square (r.m.s.) velocity obtained from the average over the three-dimensional
domain and in time) are used as the reference quantities for the length scale, scalar
and velocity, respectively. For simplicity, in the following, the quantities will be in
dimensionless units without special notation. It then yields

atu+(u-V)u:Re_lAu—Vp+f, V-u=0, (3.1a,b)

&R1 4 (u- V)R, = (ScRe) ' ARy — Da\R\R; + DayP + $g,, (3.2q)
Ry + (u-V)Ry = (SCRe)flARz —DaiRiRy + DayP + §g,, (3.2b)
%P+ (u- V)P = (ScRe) "' AP + Da\R\Ry — DaxP + sp, (3.2¢)
T + (u-V)T = (ScRe) ' AT + s, (3.2d)

where Re = Hu'/v is the Reynolds number; the Schmidt number Sc = v/D is the ratio
of viscous diffusion to molecular diffusion; the ratios of the flow time scale to the
chemical time scales of forward and backward reaction define the Damkodhler numbers
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Re Re, Sc u 2 N klwar-n T Da r L T; At B
1180 823 1 1 0.067 256° 253 0017 134 10100 024 052 7.6x1075 1/8

Table 1. Non-dimensionalized parameters for the simulations: Re = u’H /v is the Reynolds number based on
large scale, where u’ is the single-component r.m.s. velocity, H is the size of the simulation domain, v is the
viscosity; Rey = u’A/v is the Taylor scale A-based Reynolds number; Sc is the Schmidt number (v/D); N3 is
the number of total grid points; |k|muqyx - 17 is the resolution condition, where |k|,;4y is the maximum amplitude
of the wavenumber kept by the dealiasing procedure, 7 if the Kolmogorov length scale; 7, is the Kolmogorov
time scale; I" = Day /Day, with Da; and Da; as the Damkholer numbers for forward and backward reactions,
respectively; Ly is the integral length scale; 7} is the integral time scale; At is the numerical time step.

3.0

2.5

2.0

Reaction rate
W

Figure 2. The reaction rates computed from the mean quantities as functions of z. The solid lines are for the
forward reaction rates Daj (R R;) and the dashed lines are for the backward reaction rates Day(P). A clear
difference can be observed. Vertical dotted lines mark the interfaces between the buffer layers and the bulk
region.

Da; = HyRy/u' and Day = Hy»/u/, respectively, and I = Daj/Da; characterizing the
relative importance of the forward reaction to the backward reaction. The dimensionless
boundary conditions (for scalars) are

Ri=1,Rh=0,P=0,T=1 whenz=0, 33
Ri=0,Rb=1,P=0,T=0 whenz=1. (3-3)
In this study, Daj is set as constant and Da; is varied. The key involved parameters in
the present simulations are listed in table 1. For the near equilibrium case in the previous
work by Wu et al. (2020), the forward and backward reactions almost balance each other
and, thus, only one Damkohler number was needed to describe the reaction intensity of
the reaction. However, for the present configuration at strongly non-equilibrium state, the
global forward and backward reactions are apparently different. As shown in figure 2
with the increase of I, the global forward rate, estimated by Daj (R|R»), is clearly larger
than the global backward rate Daj(P), where (-) means the average in time and the x—y
plane at a specific z.
The statistically stationary homogeneous and isotropic turbulent flow is sustained
by a large-scale forcing term (Eswaran & Pope 1988; Mansour & Wray 1994;

Sripakagorn et al. 2004; Hou & Li 2007), whose expression in the Fourier space f(k, 1)
938 A19-6
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reads as
~ 1 .
Sk =— > ak. . (3.4)
EPEN:

Here 77 is a time scale to be adjusted at each time step in order to provide a constant

power input, i.e. [j, f - udx® = const. (Schumacher, Sreenivasan & Yakhot 2007). Note
that the zeroth mode |k| = 0 is not forced in order to prevent the development of a
global mean flow, i.e. [ yu dx® = 0. The isotropic velocity field is obtained by numerically
solving (3.1a,b) using a pseudo-spectral code (Gauding, Danaila & Varea 2017, 2018) with
a smooth dealiasing technique (Hou & Li 2007) for the treatment of nonlinear terms in the
equations. Differently, the scalar equations (3.2) are solved by the finite difference method
with an eighth-order upwind scheme (using five upstream grids and three downstream
grids) and a tenth-order centre scheme for the first- and second-order spatial derivatives,
respectively.

The velocity field is initialized by prescribing the spectrum of kinetic energy in the
Fourier space u(k; 0) (Schumacher et al. 2007), where both the modulus and phases are
randomly determined, under the constraint of zero mean (&(0; 0) = 0) and prescribed
kinetic energy spectrum of

Eh:0)= Y |l 0) o [k|* e 20K/27, (3.5)
k=|k|
The scalars are linearly initialized as
Ri(x,y,z,0) =1—z,
Ry(x,y,7,0) =z,

P(x,y,2;0) =0,
Tx,y,z0) =1—12z.

(3.6)

Figure 3 shows a visualization of the R; field and of the reaction rate (DajR1Ry — DasP)
on the isosurface of Ry = 0.5 under the condition of I" = 10. It can be seen that with the
properly defined buffer layer, the spatial fluctuation of scalar can be self-sustained with
the total scalar quantities perfectly confined in the prescribed [0, 1] range.

The statistical stationarity of the set-up can be appreciated from the temporal evolution
of the scalar statistical moments. As an example, figure 4 shows that the evolutions of
the spatial averages of scalar concentrations and r.m.s.s of scalar fluctuations in the bulk
region with z € [§, 1 — ] for the case I" = 10. This indicates that the reacting system is
strongly deviated from chemical equilibrium. The following analyses will be focused on
the bulk region. Data samples are collected in a time span of about ten times the integral

time 7; = k/e with k = 3u'%/2, once the statistically stationary state is reached.

4. Result analyses

4.1. Properties of the buffer layer and the bulk region

In the present configuration the two buffer layers function as a source which sustains the
mean scalar gradient, while the bulk domain is where the turbulent mixing occurs and
where the present analysis is focused. The means and r.m.s. of the fluctuations of the
non-reactive scalars (7) in the configurations with different buffer layer thickness § are
shown in figures 5(a) and 5(b), respectively. As can be expected, in the bulk region the
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Figure 3. The three-dimensional instantaneous snapshots of (a) Ry, and (b) reaction rate (DajR{R> — Day P)
on the isosurface of Ry = 0.5, under the condition of I" = 10.
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Figure 4. Evolution of the spatial averages of scalar concentrations and r.m.s. of scalar fluctuations in the bulk

region with z € [8, 1 — 8] for the case of I" = 10. Time is normalized by the integral time k/e with k = 3u’>/2.
The dashed vertical lines mark the initial time for the computation of statistical quantities.

mean scalar profile follows a linear relation with respect to z, i.e. constant gradient, under
the action of isotropic turbulent velocity. From the prescribed geometrical and boundary
conditions, the constant gradient is about 1/(1 — 2§).

For the scalar fluctuation, figure 5(b) demonstrates that in the bulk region the scalar
r.m.s. is almost constant, similar to the homogeneous shear turbulence (Mellado, Wang
& Peters 2009). In most of the buffer layer, the scalar r.m.s. is negligibly small, because
the strong modulation effect from the source term s makes the scalar T roughly constant.
Specifically, the strength of such a modulation is determined by the control parameter
7. In this sense, the present flow can be effectively tailored by the control parameters t
and §.
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Figure 5. Numerical profiles of (a) the mean, and (b) the r.m.s. of 7" with different buffer layer thickness §.
The vertical dotted lines mark the interfaces between the buffer layers and the bulk region.

Further insights of the relation between the buffer and bulk regions can be gained by the
following analytical approach. First, the mixing length hypothesis is adopted to model the
Reynolds stress as

A(T)
(u;T) = —Dr——, 4.1)
0z
where Dr is the turbulent diffusivity and considered as constant (a hypothesis which will
be numerically validated later). The ensemble average ({-)) of (3.2d) then yields

0(T) = (Dr + D)A(T) + (s7). (4.2)

Because of symmetry, only half of the domain in the range of z € [0, 1/2] needs to be
studied. Under the statistical stationary condition, the temporal derivative term in (4.2)
vanishes. Let us denote Dr in the bulk region and buffer layer as Dr and Dr 2,
respectively. Combining the specific form of s7 (2.6) and neglecting the laminar diffusivity
D in (4.2), an ordinary differential equation about (T') is then found, i.e.

dX(ry 1
Drp——— =—({T)—1) when0 < z<3,
" dz2 T
) (4.3)
d¥(T)
Dr =0 when § < z < 1/2.
s dZ2

The numerical value of D, calculated according to (4.1), is shown in figure 6(a). From
the analytical point of view, we approximate D7 ; and D7 > as z-independent constants.
Similar to the r.m.s. profile of T, Dr is also negligibly small in most of the buffer
layer, following the same modulation mechanism as for the source sy. Specifically, the
controlling parameter t leads to a small value of Dr >, while physically Dr ; is determined
by the flow integral time 7;. Thus, we further assume that D7 >/Dr 1 = K(t/T;), where
the proportionality coefficient K (K = O(1)) needs to be determined numerically. As
stated in the last paragraph, K = 4 can give us a good fitting result.
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Figure 6. (a) Turbulent diffusivity calculated from (4.1). (b) Theoretical prediction of the mean of 7 (dashed
lines) compared with the DNS results (solid lines with the same colour). The vertical dotted lines mark the
interfaces between the buffer layers and the bulk region.

To solve this set of ordinary differential equations, four boundary conditions are needed,
including (T)(0) = 1, (T)(1/2) = 1/2, the continuity of (T) at z = § and the continuity
of the flux of (T') at z = §. Because of the different diffusivity in the buffer layer and the
bulk region, the continuity of the flux of (T') at z = § can be expressed as

D> sy = pp B sy, 44)
dz dz

Therefore, the analytical solution of (4.3) for (T') is obtained as

1
Cj sinh z)+1 whenO<z<3$,
M@= mer) (4.5)

Crz+ C3 when § <z < 1/2.

The analytical expression for the constant coefficients Ci, C2, C3 can be found in
Appendix A. Numerically, it is found that the model solution with D7 2/D7 1 = 4(z/T})
matches direct numerical simulation (DNS) results well, as shown in figure 6(b). In
summary, the difference between the buffer layer and the bulk region is mainly induced by
the different turbulent diffusivity, because of the strong modulation effect from the source
term st (and other s terms as well) in the buffer. In the following analyses, the buffer layer
thickness & is set constant 1/8, as listed in table 1.

4.2. Probability density functions

In this section we focus on the difference between the z-dependent statistical properties
of the reactive and non-reactive scalars, or the effects of the chemical reaction. It can be
seen from (3.2) and the corresponding boundary conditions (3.3) that R{(z) = R>(1 — 2)
statistically, i.e. R; and Ry are symmetric with respect to the middle of the domain with
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Figure 7. Dependence of p.d.f.s at z=1/2 on I" for (a) Ry and T, and (b) P. The insert panel in (b) plots the
peak of pp as a function of I".

z = 1/2. Therefore, for the sake of brevity, the results for R, will be omitted in the
remaining analyses.

Figure 7 shows on the middle plane with z = 1/2 the p.d.f.s of the scalar quantities R
and P, together with that of the non-reactive scalar 7. Overall, the p.d.f. of T, denoted
as pr, is symmetric and has a central maximum at 7 = 0.5. Moreover, since the effect of
the buffer layers can be compared with the mixing process in the shear layer, two other
local peaks appear at the tails of pr at T =0 and T =1 (same for the other p.d.f.s)
(Mellado et al. 2009). Larger I” lead to a stronger skew of pg, toward the Ry = O side.
Such a skewness property is the consequence of chemical reactions, because faster forward
chemical reactions tend to deplete the reactants Ry and R, but enrich the product P,
enhancing pg, at the Ry = 0 end and extending the pp toward the larger P side.

At different z values the scalar concentration p.d.f.s are shown in figure 8(a) for R; and
figure 8(b) for T. We can see clearly the mirror symmetry between pr(z) and pr(1 — z),
which, however, breaks down for the R; case, because of the strong influence from the
chemical sources. In addition, the p.d.f. of T is of particular importance. In the modelling
analysis discussed in the following section, the moments of the reactive scalars can be
theoretically predicted based on p7 undergoing the same turbulent environment.

The dependence of the p.d.f. of the net reaction rate R, = DaiRiRy — DaxP =
Dai(R1Ry, — P/I'") on I is presented in figure 9 (at z = 1/2). Toward the fast chemical
limit with large I', the p.d.f. peaks higher at the R,,; = 0 end and meanwhile becomes
more extended toward the higher R,.; side. When Da; and Da, are comparable, the
p.d.f. peaks at some moderate value of Ry.. Since all the cases are under the control
of the identical turbulence velocity, such a difference must be caused by the chemical
mechanism, which can be more clearly viewed from the spatial distribution of the reaction
rates. From the comparison between figures 10(a) and 10(d), there is a clear difference
between the distribution of R, for I" = 100 and I" = 1. For large I" (and large Da;
as well), the large R,.; regions are highly concentrated in thin stripes, while for small
I', regions with high R,.; are much more broadly distributed, which explains the local
bump in the p.d.f. profile in figure 9. A more detailed understanding of such a property
can be clarified from the separated results of the forward and backward reaction rates.
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Figure 9. Probability density functions of the reaction rate (Da|R|Ry — DasP) under the conditions of
different I”, at the position of z = 1/2.

It can be seen that a similar difference appears between figures 10(b) and 10(e), while,
figures 10(c) and 10(f) are weakly influenced or even uninfluenced by I". Because the
forward reaction rate is determined by the correlation between R; and R», larger I" will
enhance the correlation (Wu er al. 2020) and meanwhile reduce in most of the flow field
their coexistence, which explains the stripe-like distribution in figure 10(a). Since for the
present chemical kinetics the backward reaction rate is solely determined by P, the effect
of I on the correlation between R; and R» is not relevant in determining the backward
reaction rate. Therefore, figures 10(c) and 10(f) are almost identical. In summary, under
different I the p.d.f. and spatial distribution of the net reaction rate will be mainly
determined by the forward part.
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Figure 10. The instantaneous two-dimensional snapshot of reaction rate at the position of z = 1/2. The upper
row (a—c) corresponds to I” = 100; the lower row (d—f) corresponds to I” = 1. The first column (a,d) shows
the net reaction rate (Da|R| R, — DayP); the second column (b,e) shows the forward reaction rate (Da ;R R»);
the third column (c, f) shows the backward reaction rate (DayP).

4.3. Moments of the reactive scalars

The reactive scalar 6 (e.g. R1, Ry or P) can be decomposed into the z-dependent mean
part and the fluctuating part as 0 (x, r) = (0)(z, 1) + 0 (x, t), whose numerical results are
shown in figure 11.

Different from the linear profile of the non-reactive scalar T, the profiles of (Rp)
are concave in the bulk region, because of chemical consumption of R; with R,. With
increasing I, (R1) decreases while (P) increases, because a stronger forward reaction
depletes more R; and produces more P. The scalar means tend to saturate at infinite
large I'. Interestingly, figure 11(c) shows that the normalized (P) by the corresponding
maximum overlaps for different I”, which suggests a kind of universality of (P).

Concerning the fluctuation of Ry, in the upper half of the domain, i.e. z > 1/2, larger
I" leads to a smaller fluctuation, while in the lower half with z < 1/2, larger I" leads to a
larger fluctuation. From the gradient hypothesis, in isotropic turbulence the r.m.s. of R; is
reasonably determined by its mean gradient, i.e. the larger means gradient leads to a larger
fluctuation, as shown in figure 11(a). Close to the middle plane where z is slightly greater
than 1/2, the gradient of (R;) is equal to that of (T'), resulting in equality of the r.m.s.
of Ry and the r.m.s. of 7. For the product P, its r.m.s. reaches a maximum at the edge
of the bulk region and a minimum in the middle (z = 1/2). Physically, the fluctuation
of P is jointly determined by the chemical kinetics, the fluctuations of R; and R», and the
turbulent mixing. At the edge of the bulk, the r.m.s. of Ry is large, but R, fluctuates weakly,
which can not lead to a high peak of the r.m.s. of P. Therefore, such a maximum must be
dominated by the turbulent mixing, or specifically, by the large gradient of (P) close to
the bulk edge (see the (P) results) due to the gradient hypothesis. In parallel, at z = 1/2
the gradient of (P) and the turbulent transport part vanish, leading to the minimum of the
rm.s.of Patz =1/2.
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Figure 11. The mean (solid lines) and r.m.s. (dashed lines) of (a) Ry compared with T; (b) P under the
conditions of different I" as functions of position (z). The main panel of (¢) shows the mean profile of P
normalized by its maximum, whose function as I” is plotted in the inset plot. There is a perfect superposition
for all I" values. In all the plots, the vertical dotted lines mark the interfaces between the buffer layers and the
bulk region.

It is also fundamentally interesting to investigate the scaling relation of the means
and fluctuations with I". As presented in figure 12, statistical results at different z do
not show any scaling behaviour. To have further understanding of the effects of the
chemical reaction on the scalar moments, the present reactive turbulent system needs to
be investigated theoretically. The following analyses will be based on the results of the
non-reactive species T, instead of directly from the governing equations of scalar moments,
because of the intractably complex higher-order terms involved.

Let us define X = R; — R». Subtracting (3.2a) from (3.2b) yields

X 4 (u- V)X = (ScRe) ' AX + 5g, — $r,» (4.6)
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Figure 12. Dependence of (a) the scalar means and (b) the scalar fluctuations on I". There is no scaling
behaviour in different flow regions.

with boundary conditions of

4.7

X=1 when z = 0,
X=-1 whenz=1.

Comparing the governing equation and boundary conditions of X with that of the
non-reactive scalar T (3.2d) and (3.3) yields

X=R; —Ry=2T— 1. (4.8)

Let us define px(x; z) as the p.d.f. of X at the position of z (similar definition for other
random quantities). Relation (4.8) gives

] _1 x+1' 49
PX(X,Z)—EPT (T,Z>- 4.9

First consider the case of infinitely large Da;. This implies that Ry and R, cannot coexist
because of the infinite chemical source Daj R (x, t)Ry(x, t), leading to Ry (x, t)R>(x, 1) =0.
Therefore, a positive X(x, 1) is equivalent to Ry (x, f) = X(x, ) and Ry(x, t) = 0, while
X(x,1) <0 implies that Ri(x,#) =0 and Ry(x,t) = —X(x,?). For the quantity P,
subtracting (3.2d) from (3.2a), together with the boundary conditions, we conclude that

Px,t) =T(x, 1) — Ri(x, 1). (4.10)

Therefore, a relation between P(x,t) and X(x,?) can be obtained directly. Here, the
infinitely large Da; leads to the following relations:

Ri(x,t) =2T(x,t) — 1, Ro(x,1) =0, P(x,t) =1 — T(x,t) whenT(x,1) > 1/2;
Ri(x,) =0,Ry(x,t) =1 —-2T(x,1), P(x,1) = T(x, 1) when T'(x, 1) < 1/2.
4.11)
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Figure 13. The scalar mean (a) (R;) and (b) (P) as functions of z obtained from theoretical analysis (dashed
lines) based on (4.15) and DNS (solid lines with the same colours). The grey dashed lines are from the
theoretical prediction at infinitely large Da; according to (4.12). We see that the prediction for I" = oo is
close to the curves for I" = 100 and also the predictions for large I" are close to the DNS results when I = 10,
30, 100. The vertical dotted lines mark the interfaces between the buffer layers and the bulk region.

Consequently, given that the non-reactive scalar field 7" is known, the mean and r.m.s.
of Ry (at infinite I") can be respectively determined as

! I x+1
(R1)(2) =/ xpx (x; z)dx=/ Expr( ;z)dx
0 0

2

1

1
= 2<T|T > —> (z) — / pr(t; z) dt, 4.12)
2 12

and

(RH(2) = (R (2) — (R1)*(2)

2
1 1
1, x+1 1 x+1
= — 1z ) dx — — ; dx| . 4.13
/Ozxpr< > z) /Ozxpr< > z) (4.13)

A similar derivation can be done for P. The predictions are shown in figure 13 and 14.
We note that an interesting analogy for a reactive flow at the diffusion limit leading to an
expression for the p.d.f.s of reactive species obtained in terms of the p.d.f.s of non-reactive
ones was proposed by Lin & O’Brien (1974).

For the finite but large I", R (x, ) and R, (x, t) can locally coexist, i.e. RiRy > 0. Since
the overall forward reaction is still strong (if 1" is sufficiently larger than unity), we assume
here that there exits an upper limit for R (x, H)Ra(x, 1), i.e.

C
Ri(x,)Ry(x, 1) < Nk (4.14)

where C is a constant to be determined. Moreover, for any given X(x,1) € [—1, 1],
another constraint is Ry (x, H)Ro(x, 1) < 1 — [X(x, 1)| (Appendix B). Putting these together,
it gives RiRy € [0, min(C/I", 1 — |X(x, t)])] = [0, Bmax]. For a given X(x,t) = « and
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Figure 14. The scalar fluctuations (a) (R/12>1/ 2 and (b) (P)1/% as functions of z obtained from theoretical
analysis (dashed lines) and DNS (solid lines with the same colours). The grey dashed lines are from the
theoretical prediction at infinitely large Da; according to (4.13). We see that the prediction for I" = oo is
close to the curves for I” = 100 and also the predictions for large I" are close to the DNS results when I = 10,
30, 100. The vertical dotted lines mark the interfaces between the buffer layers and the bulk region.

Ri(x, )Ry (x, 1) = B, Ry = (a + /a? + 4B)/2. If the conditional p.d.f. of R{R; on X, i.e.
PRiRy1x (Blet; 2), is known, (R;) as a function of z can be determined as

1 Bmax 244
(R1>(Z)=/1PX(06;Z)/O atvar+ab W

PRiRx (Bl 2) df da. (4.15)

A hypothesis assumed here is that with given X(x,?), Ri(x, f)Ra(x,t) is uniformly
distributed in [0, Byar(e)]. Together with the numerical results of the p.d.f. of the
non-reactive scalar 7', the mean (R;)(z) and variance (R/lz)(z) = (R%)(z) — (R1)%(2) can
then be calculated (similar analyses for R, and P). As shown in figures 13 and 14, when
I > 10, the modelling and numerical results can satisfactorily match if the constant C
in (4.14) is set as 0.7. When I" < 10, these predictions do not hold.

4.4. Correlation coefficients

For scalars 61 and 6> under consideration, the correlation coefficients are defined (based
on the fluctuating parts) as

(0105)

01 0)Q = i g

(4.16)

The scalar correlations are jointly determined by the chemical reaction and the
turbulent mixing. Wu et al. (2020) found that a competition exists between the chemical
reaction and turbulent mixing. Specifically, the chemical reaction tends to dampen
reactant concentration fluctuations and enhance their correlation intensity, while turbulent
mixing increases fluctuations and removes relative correlations. Analytical results for the
correlation coefficients have also been obtained thanks to the linear decomposition of
each scalar concentration in terms of a large mean term and a small local fluctuation.
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Figure 15. Direct numerical simulations of the correlation coefficients between (a) Ry and R»; (b) R; and P
as functions of z, for different I" cases. The vertical dotted lines mark the interfaces between the buffer layers
and the bulk region.

In the present flow configuration the large local deviation from the chemical equilibrium
invalidates the same linear decomposition approach. Numerical results of the z-dependent
correlation coefficients are shown in figure 15.

In figure 15(a), r(R1, R>) can be understood as follows. For the present non-equilibrium
configuration, considering the limiting non-reactive case with Daj 2 = 0, the sum of R;
and R, becomes constant and, consequently, 7(Rj, R») = —1, i.e. R| and R, are perfectly
negatively correlated. At non-zero I, the influence of a chemical reaction in the buffer
layers remains weak, since either Ry or R; is negligibly small. Therefore, r(R1, Ry) in the
buffer layers is still close to —1. Differently, the chemical reaction in the bulk region is
strong, especially at larger I". Such a strong chemical reaction will destroy the perfect
correlation condition, i.e. constant Ry + Ry, which then leads to more deviation (toward to
the positive side) of (R, R2) from —1.

For r(Ry, P), since R{ and P function as the mutual sources rather than sinks, the result
is different from r(Rj, R»). Overall, (R, P) increases from —1.0 at z = 0.0 to 1.0 at
z=1.0. At z =0 the reaction rate of P is mainly determined by R, since R; remains
close to constant at 1.0. Because of the stoichiometric relation, the defect of R; from
1.0 is determined by either R, or P. Therefore, r(R1, P) ~ —1.0. In a similar manner, at
z = 1 the reaction rate or the generation rate of P is mainly determined by R; and, thus,
r(Ry, P) ~ 1.0. For the non-reactive case, at the middle plane with z = 0.5, (R;) and (R»>)
are exactly equal. Thus, the concentration of P is not influencing either R; or R;, yielding
r(Ry, P) ~ 0. With increasing I", Ry will be more consumed and P will be more produced.
As shown in figure 7, larger I" leads to the p.d.f. of R; more skewed toward the R} = 0
side, while the p.d.f. of P skews differently toward the large P side. Therefore, r(R1, P)
will unanimously decrease and shift downwards with increasing I”, as demonstrated in
figure 15(b).
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Figure 16. The ratio of the energy spectra of (a) Ry at z = %; (b)Ry atz = %; (c)Ryatz = %; (dyPatz = %;
(e)Patz = %; (f)Patz = % to the energy spectrum of 7 at the same z.

4.5. Scalar energy spectra

The z-dependent scalar energy spectra is also investigated. At a specific z, the energy
spectra corresponding to a two-dimensional scalar field is defined as

Ey(k, ) = 2nk> (0 (k)0*(k))k, O =Ry, Ro,PorT, (4.17a,b)

where k is the two-dimensional wavenumber and k = | k|, (-); denotes the average in time,

6 (k) are the Fourier coefficients of the mode of k, 6* (k) is the corresponding complex
conjugate.

In the work by Wu et al. (2020), it was shown that the scalar energy spectra at the
quasi-equilibrium state with different chemical sources are almost identical, because of
the negligibly small reaction rates. For the present non-equilibrium reactive turbulence
cases, the chemical source plays important roles in determining the structure and statistics
of the scalar quantities. Considering the R; case for instance in figure 16(a—c), higher I
makes more scalar energy shift from the small wavenumber range to the large wavenumber
range, indicating that stronger chemical reactions tend to lump the local scalar quantity and
strengthen the scalar intermittency. A similar tendency appears for the scalar P, as shown
in figure 16(d—f). Such I" effect becomes stronger at z = 1/2 (more difference between
the curves in figure 16¢), since (P) reaches a maximum at z = 1/2. These energy spectra
are consistent with the observation from figure 10, that large I” results in thinner reaction
zones and, consequently, more scalar energy at large wavenumbers.

In addition, the coherency spectrum between two scalars 81 and 6, is defined as

(101 (k)02 () )

Cop, 6,(k) = ——= — ———
\/(91 (k)01 (k)i (02(k)02 (k)i

, (4.18)
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Figure 17. Two-dimensional coherency spectra between Ry and R» at the positions of (a) z = 1/4,
(b)z=1/2and (c) z=3/4.

which describes the dependence of the correlation on the scale. The plots of Cog, g, (k)
with different I” are shown in figure 17. In the previous work for the near equilibrium
case (Wu et al. 2020), it was reported that the reactive scalar coherency spectra are almost
wavenumber independent, in particular, constant in the inertial range, since the chemical
source is negligibly small and the random scalar source strongly reduces the intensity of
correlations. Both for the near equilibrium and the non-equilibrium cases, on average the
absolute value of Cog, g, (k) increases as Da increases, because fast chemical reactions
build up correlations. However, in the present non-equilibrium state the coherency spectra
of reactive scalars are strongly wavenumber dependent, especially when the reaction is
strong. In figure 17 the spectrum peaks toward the high wavenumber end, indicating
that the correlation between R; and R, is mainly from the small-scale contribution, in
consistence with the stripe-like structures visible in figure 10.

5. Conclusions

We have studied the statistical properties of scalar fields undergoing reversible chemical
reactions in a turbulent environment. To produce strong chemical fluctuations in a large
central portion of the simulation domain, an original flow configuration has been proposed,
where the species are supplied from buffer boundaries with adjustable thickness while the
flow is developed homogeneous and isotropic turbulence in a periodic cubic domain. This
allows us to go beyond our previous exploration of reactive scalar fields in homogeneous
turbulence, where only a moderate out of equilibrium state could be attained, and their
results could be explained in term of a linearization approach of the reaction rates (Wu
et al. 2020).

Here, a theoretical modelization that take as an input the p.d.f. of a non-reactive
scalar field can satisfactorily predict the local mean and fluctuation of reactants for
I > 10. The correlation coefficient between the scalar quantities are determined by two
counteracting effects, the turbulent mixing and the chemical kinetics. For larger I', the
spatial distribution of the forward reaction and net reaction takes a stripe-like structure,
making the scalar field more intermittent.

In comparison with the existing results of the isotropic turbulence case, we conclude that
the scalar correlation is jointly determined by the chemical source and physical conditions,
e.g. flow configuration and boundary set-up. Under the non-equilibrium condition with
strong chemical sources, the chemical reaction also plays important roles in determining
the scalar energy spectra. Consistently, large I" will shift both the scalar energy and
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coherency spectra from the small wavenumber range to the large wavenumber range, which
is in sharp contrast with the near equilibrium case.

In the present work, the theoretical predictions for the mean profiles and fluctuations
of the reactive scalars match the numerical tests well for the cases with dominant
forward reaction, based on the known p.d.f.s of the non-reactive scalar undergoing the
same advection and diffusion processes. In future works, an important focus can be the
improvement of the modelling analysis in a broader parameter range, for instance, the
weak forward reaction case and chemical sources of different forms. Finally, we mention
that the configuration proposed in this study is also potentially meaningful for deeper and
broader exploration beyond the analysis carried out here, for instance, biogeochemical
reactions at the microscale in turbulent ocean, which allows us to have strong fluctuations
of the reactants with respect to their average values.
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Appendix A. Solution of (4.3)

For the model equation of (T, the analytical solution is given by (4.5). The involved
coefficients C1, C> and C3 are expressed as

—1
G = 5 B(5 —05)\’
( Dr )
oo B (A
Dr
B 1 C
3 = 5 - 7,

with A = sinh(y/1/7Dr»8) and B = cosh(,/1/tDr 28),/Dr /7.

Appendix B. About the constraint on Ry (x, £)R, (x, ?)

The species concentrations Ry (x, f) and R»(x, t) need to be confined in the range of [0, 1].
For a given value of X(x, t) = Ri(x, 1) — Ra(x, 1), if R1(x,1) > Ra(x, 1), i.e. X(x,1) > 0,
we have

Ri(x,)Ry(x, 1) < Ra(x, 1) = Ri(x, 1) — X(x, 1) <1 —X(x,1). (B1l)
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Similarly,
Ri(x,HDRy(x, 1) < Ri(x,t) = Ra(x, 1) + X(x, 1) < 1+ X(x,1), (B2)
in the case of X(x, #) < 0. In summary, Ry (x, H)Ro(x, 1) < 1 — |X(x, 1)].
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