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We study the dynamics of neutrally buoyant particles with diameters varying in
the range [1, 45] in Kolmogorov scale units (η) and Reynolds numbers based on
Taylor scale (Reλ) between 590 and 1050. One component of the particle velocity
is measured using an extended laser Doppler velocimetry at the centre of a von
Kármán flow, and acceleration is derived by differentiation. We find that the
particle acceleration variance decreases with increasing diameter with scaling close to
(D/η)−2/3, in agreement with previous observations, and with a hint for an intermittent
correction as suggested by arguments based on scaling of pressure spatial increments.
The characteristic time of acceleration autocorrelation increases more strongly than
previously reported in other experiments, and possibly varying linearly with D/η.
Further analysis shows that the probability density functions of the acceleration have
smaller wings for larger particles; their flatness decreases as well, as expected from
the behaviour of pressure increments in turbulence when intermittency corrections
are taken into account. We contrast our measurements with previous observations in
wind-tunnel turbulent flows and numerical simulations.
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1. Introduction
Research in dynamics and transport phenomena in turbulence has recently benefited

from experimental tracking of flow tracers (see for instance Ott & Mann 2000;
La Porta et al. 2001; Mordant et al. 2001; Arneodo et al. 2008; Toschi & Bodenschatz
2009). Ideally, these tracers should have a size much smaller than the Kolmogorov
length (η) at which the velocity gradients are smooth and hence their motion follows
fluid streamlines, but experimental constraints have often led to the use of larger
particles – with some bias as discussed e.g. by Mei (1996) and Brown, Warhaft &
Voth (2009). On the other hand, the question of the dynamics of objects with a finite
size freely advected by turbulent motions remains. Indeed, while theories developed in
the small particle limit and vanishing particle Reynolds numbers Rep yield the widely
used Maxey–Riley–Gatignol equation, the equation of motion of a large particle
with high-Rep is largely unknown (see, however, Auton, Hunt & Prud’homme 1988;
Lovalenti & Brady 1993; Loth & Dorgan 2009). A recent systematic analysis has
been made in a wind tunnel (Reλ =160) using helium-inflated soap bubbles (Qureshi
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et al. 2007, 2008). Other studies were performed with neutrally buoyant polystyrene
particles in water in a turbulent von Kármán (VK) flow (Reλ ∈ [400, 815])(Voth et al.
2002; Brown et al. 2009). These studies have obtained several noteworthy results.
(i) The variance of acceleration decreases as D−2/3, consistent with the scaling of
pressure increments in Kolmogorov’s phenomenology of turbulence. The influence
of varying Reynolds numbers (Reλ ∈ [400, 815]) has also been studied in Brown
et al. (2009), showing that the variance of acceleration actually scales according to
ε3/2ν−1/2(D/η)−2/3. (ii) The probability distribution functions (PDFs) of acceleration
components do not depend on particle sizes in the range explored, D/η ∈ [12, 25]
(Qureshi et al. 2007) and D/η ∈ [0.4, 27] (Brown et al. 2009). Brown et al. (2009)
note that PDFs for large particle sizes may have slightly reduced wings as compared
to the fluid particle PDF. However, because of systematic uncertainties, they do not
draw any firm conclusion. A numerical study based on the Faxén model (Calzavarini
et al. 2009) suggests that the PDF flatness should decrease with increasing particle
size for Reλ = 75, 180. This finding is questioned by a more recent numerical study
(Homann & Bec 2010) based on a direct simulation approach using penalty methods,
which finds a collapse of the PDFs for D/η ∈ [2, 14] at Reλ =32. Following these
studies, we have collected new experimental data using an extended laser Doppler
velocimetry (LDV) technique in a VK flow (improved experiment from Volk et al.
2008b). We observe as follows. (i) There may be intermittent corrections to the
(D/η)−2/3 scaling of acceleration variance. (ii) The acceleration PDFs normalized
by their variance are not independent of the particle size. Our statistical analysis
shows that the wings of the distributions become less extended as D/η increases. (iii)
The response time of the particle, as computed from the acceleration autocorrelation
function, increases more strongly than that computed from wind-tunnel or DNS data
(reported by Calzavarini et al. 2009), and possibly linearly with D/η.

2. Description of the experiment
2.1. Experimental set-up

The flow is of the von Kármán type and uses the same set-up as described by
Volk et al. (2008a). Water fills a cylindrical container of internal diameter 15 cm,
height H = 25 cm. It is driven by two counter-rotating disks of diameter 2R = 14 cm,
fitted with eight straight blades of height 0.5 cm in order to impose inertial steering
(figure 1a). The distance between the disks is 20 cm and the rotation rate Ω is
fixed at values up to 10 Hz, with two calibrated DC motors driven with a constant
voltage. The angular velocity of the disks, directly measured from the tachometers
of the motors, is adjusted so that they rotate at the same velocity but in opposite
directions. Their rotation rate remains constant in time with a precision of about
2 %. This inertial forcing generates a fully turbulent flow (Reλ > 400) in a compact
region of space. This is why the von Kármán counter-rotating flow has been used
in many studies of very-high-Reynolds-number turbulence, both for studies focusing
on Eulerian quantities (see, for example, Zocchi et al. 1994) and on Lagrangian
statistics (La Porta et al. 2001; Mordant et al. 2001; Voth et al. 2002). As opposed to
wind-tunnel (WT) flows, the von Kármán flow has a mean three-dimensional spatial
structure (figure 1b). As the disks rotate in opposite directions, the flow has a large
azimutal component with a strong gradient in the axial (z) direction. It is of the order
of 2πRΩ close to the disks, and zero in the midplane (z =0) of the cylinder. Because
we use blades to improve stirring, the disks also act as centrifugal pumps ejecting the
fluid radially at the top and bottom of the set-up, resulting in a large scale poloidal
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Ω urms arms τη η ε Reλ a0

(Hz) (m s−1) (m s−2) (ms) (µm) (Wkg−1) (–) (–)

4.1 0.57 144 0.53 24.8 4 590 2.8
6.4 0.85 375 0.33 19.6 10.2 815 4.6
7.2 0.99 496 0.28 18.2 13.9 950 5.1
8.5 1.17 706 0.19 16.2 21.8 1050 5.2

Table 1. Parameters of the flow. Ω , rotation rate of the disks; ε, dissipation rate, from
the power consumption of the motors. Note that urms and arms are computed using
the x-component of the velocity, and the Taylor-based Reynolds number is estimated as

Reλ =
√

15u4
rms/εν. a0 is derived from the Heisenberg–Yaglom relation a0 ≡ a2

rmsν
1/2ε−3/2.

recirculation with a stagnation point in the geometrical centre of the cylinder. The
flow proved to be locally homogeneous in the central region (Marié & Daviaud 2004),
but non-isotropic at both large and small scales (Voth et al. 2002), the small scales
approaching isotropy in the very-high-Reλ limit.

The dissipation rate ε is computed from the global power consumption of the
flow with the formula ε =2(Pwater − RI 2

water − Pair + RI 2
air )/M , where P is the power

consumption of one motor, R is the electrical resistance of the rotor, I is the electrical
current, M is the total mass of fluid, and the indices denote measurements with water
or air filling the vessel. This procedure removes the Joule and mechanical friction
contributions and yields an estimation of ε in agreement with Zocchi et al. (1994), who
have measured the local dissipation ε from hot-wire anemometry in flows with the
same geometry. For the measurements reported here, the flow temperature is regulated
at 15◦ C for all rotation rates. The Taylor-based Reynolds number, computed with the
formula Reλ =

√
15u4

rms/εν using the x-component of the velocity to scale the velocity
fluctuations, ranges from 590 to 1050, with a maximum dissipation rate ε equal to 22
Wkg−1 (table 1). The Eulerian measurement of pressure has been performed with a
Kistler 7031 pressure sensor mounted flush with the lateral wall, in the midplane of
the experiment (figure 1).

2.2. Extended laser Doppler velocimetry

The particles, which are tracked in a small volume located in the geometrical centre
of the cylinder, have a density of 1.06, with diameters D =30, 150, 250, 430, 750 µm.
Further changing the flow stirring will correspond to D/η ∈ [1, 45]. In order to
measure the velocity of the particles along their trajectories, we use the extended laser
Doppler velocimetry (eLDV) introduced by Volk et al. (2008a ,b). We use wide laser
beams intersecting in the centre of the flow to illuminate particles on a significant
fraction of their path (figure 1c). In the set-up, the axis of rotation is vertical and
the laser beams are horizontal, resulting in fringes perpendicular to the x-axis. When
a particle crosses the fringes, the scattered light is then modulated at a frequency
directly proportional to the x-component of the velocity (denoted ux). As the beams
are not collimated, the inter-fringe remains constant across the measurement volume,
whose size is about 5 × 5 × 10 mm3. In practice, we use a 2W continuous Argon laser
of wavelength 514 nm, with single longitudinal mode and stabilized power output,
to impose a 41 µm inter-fringe. The measurement volume is imaged on a low noise
Hamamatsu photomultiplier in the case of the smallest (fluorescent) particles, while
for larger particles, the detection is made using a PDA-36A photodiode from Thorlab.
In order to get the sign of the velocity, we use two acousto-optic modulators (AOM)



226 R. Volk, E. Calzavarini, E. Lévêque and J.-F. Pinton
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Figure 1. (Colour online) Experimental set-up. (a) Geometry of the turbulence generator. (b)
Schematics of the von Kármán flow in water. (c) Principle of the LDV using wide beams
(eLDV) – top view of the experiment. PM denotes location of the photomultiplier which
detects scattering light modulation as a particle crosses the interference pattern created at the
intersection of the laser beams. The eLDV measures, for one particle at a time, the evolution
of its velocity component ux(t) along the particle trajectory.

to impose a 100 kHz frequency shift between the beams so that the fringes are actually
travelling at a constant speed. The output is recorded using a National Instrument
PXI-NI5621 16-bit digitizer at rate 1 MHz. The velocity is computed from the light-
scattering signal using a demodulation algorithm described by Mordant, Michel &
Pinton (2002), with a time resolution adjustable in the range [5–30] µs. We adjust the
seeding density to be low enough so that we do not observe events with two particles
at the same time in the measurement volume, but high enough to observe at least
one trajectory per second. The output of the measurement is a collection of 15 000
trajectories (un

x(t))n of mean duration of 20 Kolmogorov times (τη), from which the
acceleration (an

x (t))n is computed by differentiation. Because of measurement noise,
the signal has to be filtered using a Gaussian smoothing kernel with window width w

as proposed by Mordant, Crawford & Bodenschatz (2004a). Moments of the statistics
of fluctuations of acceleration are computed for varying values of w and extrapolated
to zero filter width as in Volk et al. (2008a). Note that the argon laser used in this
study is stabilized both in power output and phase (with single longitudinal mode
in the cavity). This improvement leads to a better estimation of the acceleration
variance; therefore, the values of a0 reported in table 1 are 20 % smaller than those
in Volk et al. (2008a).

3. Results
3.1. Particle velocitiy

One expects that Eulerian and Lagrangian velocity statistics coincide under ergodicity
approximation, so that the tracer-particle velocities are expected to have Gaussian
statistics. Our observation is that the velocity distribution is markedly sub-Gaussian
as seen in figure 2(a) – flatness values are (2.56, 2.58, 2.62, 2.46) for the four Reynolds
number values explored in this work. Sub-Gaussian statistics for the velocity have
been observed in many experimental set-ups, however usually less pronounced than
in our case. Flatness values for velocities in WT flow are closer to three (M. Bourgoin
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Figure 2. (Colour online) (a) PDF of particle velocities. (b) Evolution of the r.m.s. velocity
of the particles normalized by the disk velocity 2πRΩ as a function of particle size for the
different Reynolds numbers studied.

private communication). Here the VK flow has a large-scale inhomogeneity and
anistropy (cf. Voth et al. 2002; Marié & Daviaud 2004; Volk, Odier & Pinton 2006),
which may enhance the sub-Gaussianity. In such a confined geometry, the VK flow
is known to have several possible configurations of its large-scale velocity profile
(Monchaux et al. 2006; de la Torre & Burguete 2007); each configuration may lead
to Gaussian velocity fluctuations about a locally different mean value with an overall
effect leading to a sub-Gaussian histogram. However, we have not observed any
change in the velocity statistics when the Reynolds number is increased or when the
size of the particle is changed by over an order of magnitude in D/η. In fact, for this
fully turbulent regime, the velocity variance is equal to 30 % of the impeller tip speed,
as can be seen in figure 2(b). As shown by Ravelet, Chiffaudel & Daviaud (2008),
this is a characteristic of the von Kármán driving impellers, and not a characteristic
of the inertial particle size. We note that this observation is in agreement with a
prediction following Faxén argument at the leading order, v2/u2

fluid = 1−(5/12)(D2/λ2)
(Homann & Bec 2010) – where λ is Taylor’s microscale, giving a correction smaller
than 1 % for the Taylor-based-Reynolds-number range considered here.

3.2. Particle acceleration variance

With one component of velocity probed by the eLDV system and in a situation in
which the direction of motion is not prescribed, the first moment of the distribution
of acceleration is zero. One expects that the second moment (acceleration variance)
reduces with increasing particle size, because the pressure forces which mainly cause
the motion are averaged over a growing area. As shown in figure 3, this is indeed
observed. The evolution of the acceleration variance measured here is in qualitative
agreement with previous studies by Voth et al. (2002), Qureshi et al. (2007) and
Brown et al. (2009): when normalized by the acceleration variance of the smallest
particles (fluid tracers, denoted as 〈a2

T 〉), the quantity 〈a2
D〉/〈a2

T 〉 exhibits a decrease
consistent with the power-law (D/η)−2/3 for all Reynolds numbers and inertial range
particle sizes. Recall that this power-law behaviour is obtained when one assumes that
the particle acceleration scales like pressure increments over a length proportional
to the particle’s diameter. In the inertial range of scales, this argument yields the
scaling 〈a2

D〉 ∝ 〈(δDP/D)2〉 ∼ D4/3−2 = D−2/3, where 〈(δDP )n〉 ≡ Sn
p(D) is the pressure

nth-order spatial structure function. Later, we show that one may also include
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Figure 3. (Colour online) (a) Variance of one component of acceleration of the particles versus
particle size. (b) The same figure in log-log representation. In order to be able to compare flows
at varying Reynolds numbers Reλ, the particle acceleration variance is normalized by the one
measured with the smallest particles (tracers (T ), for which D/η � 2 at all Reλ), and diameters
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details in § 3.4).
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Figure 4. (Colour online) (a) Particle acceleration autocorrelation functions for Reλ = 950;
(b) evolution of particle response times. The wind-tunnel and Faxén data are extracted from
Calzavarini et al. (2009) (Reλ = 160 for wind-tunnel data and Reλ = 180 for Faxén model data).
For the eLDV data, the symbols correspond to increasing Reynolds numbers: �, Reλ = 590; �,
Reλ = 815; �, Reλ = 850; �, Reλ = 1050. (inset) Log–log of the particle response times (tri-
angles) together with a (D/η)2/3 power law (dashed line).

intermittency corrections to obtain the dashed line in figure 3, which yields an
improved fit of our experimental data.

3.3. Particle response time

A characteristic time for the evolution of a particle response to flow changes is
obtained from the acceleration autocorrelation functions. Their shape and evolution
with particle size are shown in figure 4(a), for Reλ = 950. In agreement with previous
observations for tracers, the autocorrelation for small particles vanishes in times of
the order of a few Kolmogorov times τη =

√
ν/ε. As expected, the response time τp ,

defined as the integral over time of the positive part of Caa(τ ), increases with size, at
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Figure 5. (Colour online) PDFs of particle acceleration at Reλ = 950, normalized by their
variance. The wind-tunnel data of Qureshi et al. (2007, 2008) correspond to Reλ = 160.

any given Reynolds number. Our observation is that for a given Reynolds number,
τp increases linearly with the particle diameter D for sizes larger than about 10η. In
addition, as shown in figure 4(b)(red/triangle symbols), measurements performed at
various Reλ all line-up on the same curve when τp is normalized by the response time
of the smallest particles (tracers, T ) for which τT = (1.07 ± 0.16)τη. This confirms that
the evolution is indeed given by the relevant dimensionless variables, τp/τη = f (D/η),
i.e. when the response time is counted in units of the Kolmogorov time τη =

√
ν/ε and

the particle size is counted in units of the dissipative scale η = (ν3/ε)1/4.
The behaviour observed is quite different from the prediction of point-particle (PP)

models, for which the Stokes drag term becomes rapidly negligible when the particle
size increases, so that the response time remains that of fluid tracers (Volk et al.
2008a). A first refinement of the PP model is to account for size effects by averaging
the flow fields over the area of the particle (for the estimation of drag) and over
its volume (for added mass effects); this is the essence of the Faxén-corrected model
introduced by Calzavarini et al. (2009). Using this model, the authors have observed
a variation of the particle response time with size: it increases by almost a factor
of 2 when the size of the particle increases from D =2η to up to D = 32η. This
finding was in general agreement with experimental measurement in a wind tunnel
by Qureshi et al. (2008). As shown in figure 4(a), our measurements in a von Kármán
flow show a much steeper increase: the response time of the particles is about four
times that of the tracers when the diameter has grown to 32η, and the variation is
roughly linear when plotted in linear coordinates. However, as shown in figure 4(b),
the scaling τp/τη = (D/η)2/3 cannot be excluded; it is obtained by assuming that the
response time of the particle scales as the eddy turnover time of flow motions at a
scale equal to the particle diameter.

3.4. Particle acceleration probability density function

The estimation of higher even moments of particle accelerations requires specific data
processing, as we show in the following. We first discuss the raw distributions of the
accelerations. In figure 5, they are shown for Reλ = 950; the particle accelerations
have been normalized by their variance (whose behaviour has been discussed in § 3.2).
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To leading order, the distribution functions are very similar, as observed in the wind-
tunnel measurements by Qureshi et al. (2007, 2008). There is no reduction to Gaussian
statistics as the particle size grows well into the inertial range (see also Gasteuil 2009
for measurements with particles with integral range sizes). In figure 5, the PDF for
the smallest particles is identical to that measured for tracers by Voth et al. (2002)
in another VK flow, and in numerical simulations by Yeung (2002) and Mordant,
Lévêque & Pinton (2004b). It is different from the PDFs reported by Qureshi et al.
(2007, 2008) from wind-tunnel measurements at Reλ = 160. These differences are more
pronounced than what could be expected from Reynolds-number variations alone
between the experiments. The first explanation could be that the acceleration PDFs
are not universal but flow-dependent. This hypothesis is supported by the results of
Voth et al. (2002), who showed that the Lagrangian small-scale dynamics still reflects
the anisotropy of the large scales. The second possibility is that the acceleration PDFs
measured by Qureshi et al. are not the PDFs one would measure for tracers in a WT
flow. This explanation is supported by the work of Ayyalasomayajula, Warhaft &
Collins (2008), who showed that water droplets (which behave as tracers in wind-
tunnel turbulence at Reλ =180) have an acceleration PDF with more extended tails
than those reported by Qureshi et al. (2007). This would mean that the acceleration
PDFs of material particles do change significantly with increasing size.

Investigating the possibility of changes in the statistics of acceleration with size or
Reynolds number can be done by studying higher-order moments, starting with the
distribution flatness. It requires a converged measurement of the PDFs and, as shown
for tracer particles by Mordant et al. (2004a), this implies extremely large data sets.
As a first attempt, we fit the acceleration PDF with a model functional form which we
then use to estimate the flatness of the distribution. The procedure is as follows. We
assume that the statistics is described by a functional form Fθ (x = a/arms); {θ} is a set
of adjustable parameters which are determined by minimizing the distance x2PDF(x)−
x2Fθ (x), where PDF(x) is the measured distribution. Two trial distributions have been
tested:

FLN
s (x) =

e3s2/2

4
√

3

(
1 − erf

(
ln|x/

√
3| + 2s2

s
√

2

))
, (3.1)

which stems from the assumption that the acceleration amplitude has a lognormal
distribution (s being the only adjustable parameter), and a stretched exponential
functional form

FSE
s (x) = A exp

⎛
⎜⎜⎝ −x2

2σ 2

(
1 +

∣∣∣∣xβσ
∣∣∣∣
γ )

⎞
⎟⎟⎠, (3.2)

(A being a normalization constant) which has three adjustable parameters (σ, β, γ ),
and allows us for a finer adjustment of the distribution in the tails. Note that with
distributions having such extended wings, a ‘brute force’ measurement of the flatness
factor within a 5 % accuracy would mean a resolution of the distribution up to about
100 standard deviations, and events with probability below 10−11 – clearly outside of
direct experimental reach.

Figure 6 shows a comparison of the acceleration PDF for the smallest particles
at Reλ = 815 and the corresponding fits that minimize the distance to the quantity
x2PDF(x) in the range x = a/arms ∈ [−25, 25]. As one can see, both functional forms
fit correctly the experimental data up to a/arms ∼ 20, the stretched exponential form
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Figure 6. (Colour online) (a): PDF of particle acceleration with D/η = 1.5 at Reλ = 815 and
the corresponding lognormal (dashed line) and stretched exponential (exp., solid line) fits. The
data have been processed using a Gaussian smoothing with width w = 20. (b) Linear plot of
the second-order moment x2PDF(x) with corresponding fits. (c) Linear plot of x4PDF(x) with
the lognormal and stretched exponential fits. (d ) Evolution of the flatness F (w) = 〈a4〉/〈a2〉2

as a function of the width of the Gaussian window (w) for the lognormal estimator (�) and
the stretched exponential estimator (�). For both curves, the dashed line is the linear fit of
F (w) in the region w ∈ [50, 100], leading to an extrapolated flatness FL =94 for the lognormal
estimator and FS =57 for the stretched exponential estimator. (e) Relative evolution of the
flatness F estimated with the two estimators. (�), experimental data; dashed line, linear fit
FD = 1.83 FS − 14.8.

showing a better agreement with the second-order moment. As reported in previous
studies, the moments of the acceleration PDFs strongly depend on the width w of the
smoothing kernel used to extract the velocity data from the modulated optical signal
(cf. § 2). We thus estimate the flatness by fitting the different PDFs for decreasing
w and then by interpolating to zero width. The result of this procedure is shown in
figure 6(d ) for the two trial functional forms. As can be seen, the flatness derived from
the lognormal estimator is roughly 1.6 higher than that computed from the stretched
exponential estimator. As the two trial distributions model the wings of the PDFs
in a different way, we find that the flatness estimated from the two functions is not
strictly proportional to each other, but is related by a linear relationship as shown in
figure 6(e). The values of the flatness reported have to be taken as estimates, the true
values strongly depending on the real shape of the acceleration PDF in the far tails.
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different sizes and different Reynolds numbers. (a) Stretched exponential (exp.) estimator and
(b) lognormal estimator.

We propose however that the variations detected here yield a first-order estimation of
the evolution of acceleration statistics with particle size.

The results are shown in figure 7(a, b). For both estimators, one observes a reduction
in the flatness with increasing particle sizes. This can be understood if one takes into
account the intermittency of the pressure increments for inertial range separations.
Following the approach developed by Voth et al. (2002), Qureshi et al. (2007) and
Brown et al. (2009), one estimates the acceleration flatness F (D) by assuming that
the force acting on the particles is dominated by the pressure gradient over a length
scale proportional to D. All moments of the acceleration (〈an

D〉) should then scale
as Sn

P (D)/Dn, with a behaviour dictated by pressure structure functions. Now, in
order to estimate the pressure structure functions, one can either use the ansatz that
pressure increments scale as the square of velocity increments, 〈δDP 〉 ∝ 〈(δDv)2〉, or
one can measure directly the scaling of pressure in the experiment. In the first case,
one obtains Sn

P (D) ∝ D2ζn , ζn being the structure function exponents of the Eulerian
velocity increments. One then obtains F (D) ∝ Dζ8−2ζ4 ∼ D−0.42, if one assumes a
lognormal scaling for the Eulerian velocity structure functions as in Chevillard et al.
(2006), independent of the Reynolds number.

In order to have an experimental measurement of pressure structure functions, we
have recorded the pressure using a transducer mounted flush in the lateral wall, in
the midplane of the flow. This measurement, although not performed in the bulk of
the flow, yields S2

P ∝ D1.2±0.1 and S4
P /(S2

P )2 ∝ D−0.38±0.03, power laws which are both
in agreement with wind-tunnel data of Pearson & Antonia (2001) and Eulerian DNS
data at Reλ = 180 (from the same DNS described by Calzavarini et al. 2009). In the
case of the stretched exponential estimator, these predictions for the scaling exponent
are consistent with the value α ∼ −0.4 obtained by fitting the data with a power-
law Fs(D) = A(D/η)α , with D/η in the range [10, 40]. In the case of the lognormal
estimator, one finds a scaling law Fl(D) ∝ (D/η)−0.6. Here we stress that FLN

s (a) and
FSE

s (a) are intrinsically different distributions; therefore, it is in principle impossible
to fit both curves with the same scaling exponent. The true value of the exponent
(if it exists) should depend on the real shape of the PDFs. However, the consistency
between the estimation using the stretched exponential estimator and the Eulerian
measurements of pressure suggests that this functional form is a good estimation of
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the acceleration PDFs in the case of large acceleration flatness (F > 20). This was
confirmed by comparing the quality of the two different estimators with numerical
data obtained at Reλ = 180 (F 
 27.5, Calzavarini et al. 2009). Using a truncated
data set as a test, the stretched exponential estimator proved to yield a better fit than
the lognormal estimator, and was able to give an estimate of the flatness only 15 %
lower than the converged value computed using the whole data set.

Finally, we note that following the same approach, one can use the second-order
pressure structure function to get a new estimation of the decrease of the acceleration
variance 〈a2

D〉. Assuming a lognormal scaling for the velocity increments, one then finds
〈a2

D〉 ∝ 〈(δDP/D)2〉 ∼ Dζ4−2 = D−0.78±0.02 very close to the experimental measurements,
which yields 〈a2

D〉 ∼ D−0.8±0.1. These two values are in a very good agreement with
the best fit shown by a dashed line in figure 3, which yields 〈a2

D〉/〈a2
T 〉 ∝ (D/η)−0.81.

In our opinion, this is an indirect proof that intermittency plays a role and that our
results concerning the acceleration flatness, although preliminary, are consistent.

4. Concluding remarks
We have described here new eLDV measurements in an extended range of particle

sizes. With an improved set-up and analysis techniques, we have obtained the
evolution of the statistics of one component of the acceleration of the particles,
and a measurement of a characteristic time of their response to flow changes.
The response time is found to increase more steeply in our von Kármán flow
than previously reported for wind-tunnel or DNS data. Concerning the statistics
of acceleration fluctuations, we have investigated the behaviour of the second and
fourth moments. The variance is well converged, and we have observed that in the
study of its evolution with particle size, two normalization factors are important in
order to collapse our observation on a single curve: the diameter should be scaled
by the Kolmogorov dissipation length and the acceleration should be compared to
that of tracer particles, which are more efficient at removing bias and Reynolds
number effects than the Heisenberg–Yaglom scaling because a0 = 〈a2〉ε−3/2ν1/2 is a
function of Reλ. The change of the flatness is estimated using model distributions.
We have observed a steep evolution with particle size, particularly for D < 10η.
Together with Reynolds number evolutions, this observation is consistent with the
values reported for wind-tunnel turbulence (from F ∼ 25–30, as measured for tracers
by Ayyalasomayajula et al. 2008, to F ∼ 8, as measured by Qureshi et al. 2007 for
slightly larger particles). When looking for scaling properties of the variance or
flatness of the acceleration, we have found that the variations are in agreement with
the behaviour of pressure fluctuations; i.e. their evolution with scale is well predicted
by the scaling of pressure increments over a separation proportional to the particle
diameter. In fact, the best agreement between pressure increments and fluctuations
of acceleration is obtained when intermittency corrections are added to mean field
Kolmogorov arguments. Intermittency is natural in turbulence and well documented
in VK flows. It may not be so surprising that it influences the statistics of motion
of neutrally buoyant particles. Several points, however, deserve further studies in the
future: the influence of the flow anisotropy must be quantified. To this end, we have
recently devised a more symmetric version of VK flows driven by the rotation of
12 propellers, which has adjustable isotropy in the large scales (Zimmermann et al.
2010). Another point is the evolution when D ∼ L, i.e. for particles approaching the
integral scale. Power-law scaling may not be extended to this limit, and preliminary
studies (Gasteuil 2009) in VK flows with comparable Reynolds numbers have
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shown that the PDF of the accelerations of large particles (D ∼ L/5) still has wide
wings.

The authors thank Mickael Bourgoin for many useful discussions. This work was
supported by grant ANR-BLAN-07-1-192604.
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