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A key ecological parameter for planktonic copepod studies is their encounter rates within the same population as
well as with other species. The encounter rate is partly determined by copepod’s swimming behaviour and is
strongly influenced by turbulence of the surrounding environment. A distinctive feature of copepods’ motility is their
ability to perform quick displacements, often termed jumps, by means of powerful swimming strokes. Such a reac-
tion has been associated to an escape behaviour from flow disturbances due to predators or other external signals.
In the present study, we investigate the encounter rates of copepods of the same species in a developed turbulent
flow with intensities comparable to those encountered in their natural habitat. This is done by means of a
Lagrangian copepod (LC) model that mimics the jump escape reaction behaviour from localized high-deformation
rate fluctuations in the turbulent flows. Our analysis shows that the encounter rate for copepods of typical percep-
tion radius of η~ , where η is the dissipative scale of turbulence, can be increased by a factor up to ~102 compared
to that experienced by passively transported fluid tracers of the same size. Furthermore, we address the effect of a
minimal waiting time between consecutive jumps. It is shown that any encounter-rate enhancement is lost if such
time goes beyond the dissipative time-scale of turbulence, τη. Because typically in the ocean η ~ mm1 and τ ~η s1 ,
this provides stringent constraints on the turbulent-driven enhancement of contact-rate due to a purely mechanical
induced escape reaction. The implications of our results in the context of copepod ecology copepods are discussed.
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INTRODUCTION

Many biological processes are determined by individual-
interaction or contacts between organisms. This is an

essential aspect in plankton ecology, because the
encounter between individual organisms is vital for mat-
ing or for predation (Menden-Deuer, 2006; Kiørboe,
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2008; Hein and McKinley, 2013). Finding a suitable
habitat (colonization) for marine organisms is also
encounter dependent (Wosniack et al., 2014). Organism
size, morphology, motility and abundance can affect
encounter rates, i.e. the typical frequency at which indi-
viduals meet other organisms of the same or of different
species. Additionally, the encounter rate is influenced by
external environmental factors, such as hydrodynamic
turbulence or hydrography. It is thus of great ecological
importance to understand the combined biological and
physical factors that can affect the encounter rates in
oceanic flows. Here we review how the encounter rate
estimation of plankton species has been evaluated in the
past and explain why the proposed approaches lack cru-
cial aspects of plankton dynamics.
The encounter rate of plankton has been studied

extensively in the past (Gerritsen and Strickler, 1977;
Rothschild and Osborn, 1988; Evans, 1989; MacKenzie
et al., 1994; Kiørboe and Saiz, 1995; Visser and
MacKenzie, 1998). Gerritsen and Strickler (1977) first
introduced a model of plankton contact rate in a steady
uniform flow. Despite its influential role, this model
relied on an oversimplified description of the fluid flow
environment. Natural habitats of plankton are rarely
characterized by steady laminar flows, but are fre-
quently turbulent and experience time and space
dependent fluctuations. It is now commonly accepted
that turbulence must have an influence on the dispersal,
feeding and reproduction of plankton (Pecseli et al.,
2012). Furthermore, it is believed that both small and
large eddies of turbulence can affect the encounter pro-
cess (Visser and MacKenzie, 1998).
In the past some authors have regarded the small-

scale turbulent processes as a homogenizing factor, so
that their encounter rate models assumed the distribu-
tion of plankton to be homogeneous in space and time
(Sundby and Fossum, 1990; Davis et al., 1991;
MacKenzie and Leggett, 1991; Kiørboe and Saiz, 1995;
Caparroy and Carlotti, 1996; Dzierzbicka-Glowacka,
2006a, b). However, in the fluid dynamics context it is
now well known that turbulence can both increase spa-
tial heterogeneity at small-scales (preferential concentra-
tion) and produce persistent clusters over time (this
happens for instance for transported scalar fields such as
temperature and for material particles carried by a flow)
(Frisch, 1995; Toschi and Bodenschatz, 2009; Schmitt
and Huang, 2016). Non-homogeneous distribution of
particles has been studied comprehensively; heavy parti-
cles (particles denser than the fluid) concentrate in low
vorticity and high strain rate regions (Maxey, 1987;
Squires and Eaton, 1991; Wang and Maxey, 1993;
Fessler et al., 1994; Zaichik et al., 2006; Toschi and

Bodenschatz, 2009), light particles are trapped by vorti-
ces in the flow (Squires and Eaton, 1991; Zaichik et al.,
2006; Calzavarini et al., 2008a, 2008b; Toschi and
Bodenschatz, 2009), and particles without inertia (fluid
passive tracers) are passively advected by the flow. In
these cases the observed phenomenon of preferential
concentration is controlled by the particles’ Stokes num-
ber St (which is the ratio of the aerodynamic response
time of a particle over the turbulent characteristic time
scale, τη), and by the density contrast between the par-
ticle over the fluid density.

The previous studies focused on non-living particles.
However, when dealing with living particles, a second
important aspect of the problem is that the encounter
rate of swimming organisms in a flow is also governed
by biologically driven processes (Kiørboe and Saiz,
1995; Seuront et al., 2001; Dzierzbicka-Glowacka,
2006b). Plankton, and in particular copepods, have spe-
cific swimming strategies which can be induced by exter-
nal mechanical stimuli. Some studies in the past have
assumed that physically driven (turbulent transport) and
biologically driven (swimming) processes could be
summed up linearly in the estimation of encounter rates
(Kiørboe and Saiz, 1995; Seuront et al., 2001;
Dzierzbicka-Glowacka, 2006b). This approach has been
questioned on the basis of experimental evidence show-
ing that the two contributions are entangled and most
probably depend on each other. In other words, turbu-
lence may induce changes in the behavioural swimming
responses of microorganisms (Durham and Stocker,
2012; Jennifer et al., 2012). Michalec et al. (2015a) pro-
vided experimental evidence of the interaction between
turbulence intensity and copepods swimming behaviour.
We assume here that the theoretical model for the esti-
mation of the collision-rate of material particles trans-
ported by a turbulent flow, developed by Sundaram and
Collins (1977), Wang et al. (1998), Reade and Collins
(2000) and Collins and Keswani (2004) can be used also
for encounter of microorganisms, until the perception
distance is reached. This formulation indeed allows us
to take into account both the contribution to encounter
rates associated with the spatial accumulation of organ-
isms, due to the carrying flow, as well as the contribu-
tion associated to their velocity, which is mostly
associated to their swimming behaviour. Despite many
studies which have been performed on the effect of pref-
erential concentration on coagulation of colloidal parti-
cles (Brunk et al., 1998; Wang et al., 2000; Falkovic et al.,
2002; Lian et al., 2013), and of inertial particles (Squires
and Eaton, 1991; Monchaux et al., 2010), only few stud-
ies (Squires and Yamazaki, 1995; Schmitt and Seuront,
2008) are available in the context of copepod ecology.
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The goal of this work is to offer an estimate of the
mutual encounter rate of copepods within the same spe-
cies (no predator or other species have been introduced
yet in the present model and all particles obey to the
same laws), which builds on a previously proposed
behavioural model of copepods in a flow referred to as
the Lagrangian copepod (LC) model (Ardeshiri et al.,
2016). The LC model was developed from an experi-
mental data analysis input, in order to explore cope-
pods’ dynamics in developed turbulent flows. It was
observed that jump escape reaction from spatiotemporal
events characterized by high strain-rate results in cope-
pods’ non-homogeneous spatial distribution in turbulent
flows. In Ardeshiri et al. (2016) only the description of
these spatiotemporal patterns of particles was presented.
The objective of this article is to estimate directly the
encounter rate of copepods. Our hypothesis is that the
encounter rate enhancement has some trend related to
optimal concentration.

In order to test this hypothesis, the LC model in tur-
bulence as in Ardeshiri et al. (2016) is presented in a sim-
pler mathematical form. As a further development of
the model, an additional parameter, the waiting time
between successive copepod jumps, is introduced and its
effects on their encounter rate are discussed. To the best
of our knowledge, this is the first numerical simulation
of copepod swimming behaviour in a realistic turbulent
flow which under some specific conditions results in spa-
tial clustering and enhanced encounter rates.

METHOD

In this section, we introduce the LC model which is
adopted in the present study to quantify copepods’
encounter rates in a turbulent flow. This model, which
has been first presented in Ardeshiri et al. (2016), has the
advantage of taking into account at the same time a
representation of behavioural (jump escape reaction
from intense turbulence) and hydrodynamical (flow
advection) effects. In the present work, we use the same
model and only consider a waiting time between succes-
sive copepod jumps in order to estimate their potential
effect on the encounter rate. Furthermore, the focus of
the present work is more ecologically oriented and espe-
cially encounter rates are estimated.

The LC model is based on a Eulerian–Lagrangian
modelling approach. This means that the fluid flow is
obtained by solving the incompressible Navier–Stokes
equations, by means of direct numerical simulation
(DNS), while the organism positions are treated in the

same fashion as Lagrangian point-particles drifting in
the flow.

Lagrangian copepod model

The Lagrangian model of copepod dynamics relies both
on biological and hydrodynamical assumptions. (i) A
first assumption is that copepods escape reactions are
triggered by a well defined mechanical signal, the strain
rate γ ,̇ and that a jump begins whenever this signal
exceeds a fixed threshold value, denoted with γṪ . The
rate of strain intensity is a quantity which depends on
the velocity gradients, it is defined as follows:

∑ ∑γ ̇ = (∂ + ∂ ) ( )
= =

u u
1
2

1
i j

i j j i

1

3

1

3
2

where, ui is the fluid velocity field in three dimensions
( = )i 1,2,3 (uj is the same quantity as ui , referring to
other components of the velocity field corresponding to
its index ( = )j 1,2,3 ). We note that the strain rate
includes both normal strain, ∂ ui i , and shear strain,
∂ ( ≠ )u i jj i . In turbulent flows, due to local isotropy, the
latter term is the dominant one (Hinze, 1975) for this
reason we will also refer to γ ̇ as to the shear rate. We
also note that the proposed first assumption makes sev-
eral simplifications. In particular it neglects any other
copepod swimming activity induced by light, food, or
chemistry (e.g. pheromones). Moreover, it neglects the
fact that copepods may want to avoid too calm regions
of the flow, in other words regions where γ ̇ could be
below a certain threshold (a behaviour that has also
been reported in the literature (Saiz and Kiørboe,
1995)).
(ii) A second assumption is that the copepod’s

response is always in the form of an escape reaction,
independent of the intensity of the external mechanical
disturbance. Experimental evidence suggests that the
velocity tracks of copepods performing jumps always
show a very sharp velocity increase, followed by an
approximately exponential decay in amplitude. This has
been highlighted in high-speed recordings for Eurytemora
affinis and Acartia tonsa in still water experiments
(Ardeshiri, 2016; Ardeshiri et al., 2016). Such a func-
tional dependence for the velocity can be associated to
the effect of an impulsive force due to a stroke (or a
burst of strokes) that is followed by a slowing down due
to the hydrodynamic drag force. Furthermore, experi-
ments show that copepods preferentially jump in their
onward direction (Buskey et al., 2002; Buskey and
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Hartline, 2003). This leads to the assumption that a gen-
eral template for the time evolution of velocity during a
jump can be adopted.
On the mechanical side, the following additional con-

jectures are made: (iii) We assume that copepods are
small enough that their centre of mass can be con-
sidered a perfect fluid tracer in a flow, except for the
time when a jump event takes place. In hydrodynamic
terms, this means that copepods are assumed to be rigid,
homogeneous, neutrally buoyant and with a size that is
of the order of the smallest scale of the flow. Neutral
buoyancy and mass homogeneity imply that gravity has
no role in producing additional acceleration or torque.
(iv) Finally, copepods are coupled to the fluid in a

one-way fashion, which means that they react and are
carried by the flow, but they do not modify it; copepod–
copepod interactions are also neglected.
Gathering all the above assumptions, the LC

equation of motion describing a copepod trajectory,
( )tx , and its body orientation, ( )tp , reads:

̇ ( ) = ( ( ) ) + ( ) ( )Jt t t tx u x , 2

ω̇ ( ) = ( ( ) ) ∧ ( ) ( )t t t tp x p
1
2

, 3

where, ( ( ) )t tu x , and ω( ( ) )t tx , are respectively the vel-
ocity and the vorticity of the carrying fluid flow at the
copepod position and ( )J t is an added velocity term
that describes the jump escape reaction of the copepod,
and where ∧ is the vectorial product. We note that
equation (3) is an accurate description for the rotation
rate only for the case of a spherical body, and it is here
adopted for simplicity. The generalized form of this
equation, valid for axisymmetric ellipsoidal bodies,
known as Jeffery equation ( Jeffery, 1922) can also be
used (see its effect on the LC model in Ardeshiri et al.
(2016)). The jump term, ( )J t , is a function of time but
also depends on a set of parameters, which we will intro-
duce and describe in the following. In our model cope-
pods normally drift with the carrier fluid, however,
when they find themselves in the alert regions, i.e.
regions with strain rate larger than the reference thresh-
old value γṪ , they perform a jump with exponentially
decaying velocity intensity over the time. Notice that a
jump has a duration τ = −t tw e i , with ti and te the initial
and final time for the jump, respectively. Such a time
interval can be chosen as the time after which the jump
velocity amplitude has declined to a very low value.
Note that in our model a new jump cannot occur if the
previous jump is not yet finished, this means that the

maximal jump rate is τ−
w

1 (Fig. 1). The jumping event
can thus be written as the following expression. When
copepods are in alert regions γ γ( ̇ ( ( ) ) > ̇ )t tx , :i i T

⎪

⎪

⎧
⎨
⎩

( ) = ( ) ≤
>

( )τ
−

J t t t u e t if t t

t t
p p, , , ,

0,
4i e

J

t i t

J
i e

e

where, uJ and τJ are the two parameters characterizing
the jump shape in terms of, respectively, its velocity
amplitude and duration (exponential decay time). The
subscript capital J refers to the jump related parameters.
Note also that, in the above expression, the jump orienta-
tion is identified by ( )tp i which is the copepod orientation
at the time of the jump activation ti . The evolution of this
orientation is given by equation (3).

According to the experimental measurements on E.

affinis and A. tonsa (Ardeshiri, 2016) a realistic choice for
the parameters in the model is ≈u cm s10 /J and
τ ≈ ms10J , respectively. On the contrary our experiments
did not allow estimation of the intensity of γṪ and if any

Fig. 1. (A) Cartoon of the functional behaviour of the velocity during
a single jump assuming the absence of the fluid velocity. (B) Same as
before for two successive jumps at varying the duration of the time
interval τw between them. Our reference value is here
τ τ= − =t t cw e i J with =c 4 6. . In the parametric study of section
“Effect of waiting time between successive jumps” we vary τw in the
range [2, 1000] τJ .
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minimal time-interval τw between the jumps exists. In the
literature we find that γṪ for A. tonsa can be around −s0.4 1

(Kiørboe et al., 1999), however there is a wide range of
variability for other species and values as low as
γ ̇ = −s0.025T

1 have been also reported for A. tonsa

(Woodson et al., 2005, 2007). We add here that, if one
assumes valid the exponential model for the jump (4), the
time needed to reduce the jump amplitude by a factor x

is τ τ= ( )xlnw J . Taking then x = 100 gives approximately
τ ≈ ms50w . To account for the uncertainties within the
parameter values, we conducted a sensitivity analysis by
independently varying parameters, γṪ and τw.

Fluid flow model

At small-scales (<1 m) oceanic turbulence does not
depend on large-scale currents, and can be taken as stat-
istically homogeneous and isotropic. In such a condition
only one parameter suffices to characterize the intensity
of turbulence, namely the Taylor-Reynolds number
( λR ). λR in the ocean can vary in space and time, its
most frequent order of magnitude is ≈λR 100. Typical
reference values for the properties of such a turbulent
flow are given in Table I.

We adopt as governing equations of the flow the
Navier–Stokes equations for an incompressible flow in
three-dimensions, which we solve by means of a DNS
based on a pseudo-spectral method. The fluid domain is
a cubic periodic box. The forcing to sustain the flow
acts only at large scale leading to a statistically homoge-
neous and isotropic turbulence at ≈λR 80. The forth-
coming discussion on the model results is more
conveniently addressed in dimensionless units. The ref-
erence scales adopted here will be the dissipative (or
Kolmogorov) units: τη for time, η for space and η τ=η ηu /
for the velocity. The scales are linked by the relation

η υ =ηu / 1, and represent the smallest scales of the tur-
bulent flow, i.e. the scales below which the flow can be
considered as laminar and dominated by viscous forces
(Table I). The copepods’ jump intensity in our simula-
tion turns out to be ≈ηu u/ 100J while the copepods’

jump decay time is τ τ ≈η
−/ 10J

2. The threshold strain
rate thus becomes τ γ ̇η T . When the results are analysed
in such units, it is expected that the effect of varying λR

(increasing the turbulence intensity) will not significantly
change the observed phenomena. This is due to the fact
that the LC dynamics, its behavioural reaction, but also
its patchiness are linked to the dissipative scales of the
turbulent flow (Ardeshiri et al., 2016).
We remark that the above estimate also illustrates the

peculiarity of this swimming strategy of copepods. They
can impart a velocity that is even larger than the one of
the largest vortices in the flow, larger than ′u , and this
happens over a time which is much shorter than any
time scale of the flow. It is clearly an effective way to
escape from unwanted locations in the flow. The jump
parameter values, based on our estimates of λR , are

=ηu u/ 250J and τ τ =η
−/ 10J

2. These values remain
fixed throughout the study.

Encounter rate in case of preferential
concentration

We look at the single-copepod encounter rate, which is
the number of encounters per unit time experienced by
one copepod in a population of N individuals in a vol-
ume, V (number density, =n N V/ ). Under the condi-
tion of statistically homogeneous and isotropic
movement, the single-copepod encounter rate can be
written in the following form (Saffman and Turner,
1956; Sundaram and Collins, 1977; Wang et al., 1998;
Reade and Collins, 2000; Collins and Keswani, 2004;
Onishi and Vassilicos, 2014):

π δ( ) = ( ) < ( )> ( )E r n r g r v r2 5rad
2

where r is twice the organism’s encounter, or perceptive,
radius ( =r r2 p). Notice that here rp and similarly r can
vary from a very small value (η) to a very large value
depending on the organism’s size, giving us the possibil-
ity to evaluate the encounter rate at different distances.
In the end, we will quantify the copepod encounter rate
as a function of their perceptive radius. Here, ( )g r

represents the pair distribution function, which describes
the variation of the particles’ density from a reference
particle: ( ) =g r 1 for homogeneously distributed organ-
isms, while ( ) >g r 1 in the case of local accumulation.
Furthermore, for vanishing values of r , ( )g r is linked to
the fractal dimension of a set of points in space, i.e. the
correlation dimension D2 (Grassberger and Procaccia,
1983). The correlation dimension is a measure of the
dimensionality of the space occupied by a set of random
points. Such a dimension can be fractal, i.e. to have
non-integer value. For a set of aligned evenly spaced

Table I: Order of magnitude estimate for the
properties of ocean flow at the Taylor Reynolds
number, =λR 100

Variable Unit Value

Kinematic viscosity (υ) m2 s−1 −10 6

Mean velocity fluctuation ( ′)u ms−1 × −5 10 3

Turbulent energy dissipation rate (ε) m2 s−3 −10 6

Kolmogorov length scale (η) m −10 3

Kolmogorov time scale (τ )η s 1
Kolmogorov velocity scale ( )ηu ms−1 −10 3
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points D2 has value 1, a set of points evenly distributed
on a surface has correlation dimension 2, while an
ensemble of points homogenously filling a volume has
dimension 3. The pair distribution function has the fol-
lowing form:

∑ ∑
π

δ( ) = ( − | |) ( )
= ≠

rg r
r nN

r
1

4
6

i

N

j i

N

ij2
1

where | | = | − |r x xij j i is the Eulerian distance between
two particles in a pair (denoted with indexes i and j ).
The symbol δ denotes the Dirac generalized function,
with δ ( ) =0 1 and δ ( ) =x 0 for ≠x 0. Finally,

δ< ( )>v rrad is the mean radial velocity between two
organisms separated by the distance, r :

δ
δ

δ
< ( )> =

∑ ∑ ̇ · ( − | |)

∑ ∑ ( − | |)
( )

= ≠ | |

= ≠

r r

r
v r

r

r
7

r

r
rad

i

N

j i

N
ij ij

i

N

j i

N
ij

1

1

ij

ij

Note that ̇ = ̇ − ̇r x xij j i denotes here the organisms’
velocity difference. A detailed explanation of the appro-
priate choice of the velocity difference to be used in
equation (7) can be found in Wang et al. (1998). The
total encounter rate, which is the total number of
encounters in the population is given by ( )n E r .
For swimming microorganisms, such as small algae

(e.g. Chlamydomonas) which are neutrally buoyant, a pref-
erential concentration effect has been found resulting
from the gyrotactic motility (Durham et al., 2013; De
Lillo et al., 2014), a competition between the spatial gra-
dients in the fluid velocity, that contributes to the vorti-
city, and the stabilizing torque due to the displacement
of the centre of gravity from the centre of geometry.
Compared to phytoplankton, copepods show a differ-

ent type of complexity due to their reactive behaviour.
Contrary to the previously observed clustering, the
patchiness of copepods is tightly linked to their behav-
ioural strategy in turbulent flows; this is the central
result in our previous study of the LC model (Ardeshiri
et al., 2016).

RESULTS

We organize the analysis in two sections. The first
addresses the dependence of encounter rates on the
shear rate threshold γṪ (in dimensionless unit, on τ γ ̇η T )
at keeping constant the maximal inter-jump frequency
τ−
w

1. The second section instead fixes γṪ and allows τw to
vary.

EFFECT OF THE DEFORMATION
RATE THRESHOLD

The pair correlation function for the LC model, one of
the two main factors in the encounter rate equation (4), is
shown in Fig. 2A. The presence of local copepod concen-
tration is here evident from the fact that ( ) ≫g r 1 at small
values of r . Its trend however is non-monotonic with the
shear rate threshold parameter. It reaches a peak value
(here of ~30) for τ γ ̇ =η 0.5T , then it decreases. This reflects
what was previously observed (Ardeshiri et al., 2016) for
the correlation dimension D2 (see the inset of Fig. 2A).
Indeed it is known that the following relation applies:

( ) ~
→

−g r rlim
r

D

0

32

where, 3 stands for the dimension of the physical space.
The inset of Fig. 2A reports the τ γ( ̇ )ηD T2 dependence.
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Fig. 2. (A) Pair-radial-distribution function, ( )g r , for different
Lagrangian copepod families with different threshold values of the
dimensionless shear rate τ γ ̇η .T The inset represents the correlation
dimension of copepod distribution with jump intensity, =ηu u/ 250J and
τ τ =η

−/ 10J
2. (B) Variation of ( )g r at different distances as a function

of the threshold τ γ ̇η T .
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We note the value at minimum ~D 2.32 for τ γ ̇ =η 0.5T ,
which suggests that copepods may form almost bidimen-
sional, sheet-like structures, like non-planar layers
(Ardeshiri et al., 2016).

Figure 2B is another way to consider the same meas-
urement; it represents the intersection with vertical cuts
of Fig. 2A with value η =r/ 1, 5 and 10. For each curve
there is a maximum for τ γ ̇ =η 0.5T and this maximum is
much larger at η =r/ 1. It is here important to note that
the range of τ γ ̇η T values, in which the preferential con-
centration arises is very narrow. τ γ ̇η T outside the range
[ ]0.125, 2 leads to almost negligible clustering (Fig. 2B).
Furthermore, we see clearly that the larger the percep-
tion radius, the less effective is the preferential clustering
mechanism. We may observe that for η>r 10 , which
means perception radius larger than η5 we can take

( ) ≃g r 1 and hence there is no more clustering effect in
the encounter rate.

The mean radial velocity between two copepods at
varying τ γ ̇η T is shown in Fig. 3. For comparison the same
quantity for fluid tracers is also shown. We note that
when computed on fluid tracers the radial structure func-
tion is an Eulerian quantity which, under the hypothesis
of isotropic turbulence, can be related to the better known
second-order longitudinal Eulerian structure function via
the relation δ δ π< ( )> = < ( )>||v r v r2 /rad

2 (Zaichik et al.,
2006). If we adopt the empirical approximation given by
Borgas and Yeung (2004) for δ< ( )>||v r2 at finite λR , we
find a reasonable agreement with our numerical results.
In turbulence, the Eulerian mean radial velocity grows as

ζr with ζ = 1 for dissipative scales η( ≤ )r 10 and ζ = 1/3

at inertial-range scales (Frisch, 1995). From Fig. 3 we see
that the jump rate of copepods with threshold value of
τ γ ̇ ≥η 3.9T is so low that they behave almost like tracers.
They are thus passively advected by the flow and, for this
reason they go very close to the prediction just given for
tracers. By decreasing the shear rate threshold value,
copepods become more and more reactive, therefore the
jumping part in the mean radial velocity expression
becomes increasingly dominant. In the case where all
copepods are permanently in alert regions (τ γ ̇ =η 0T ) one
can expect a Brownian-like motion of copepods according
to the LC model. For this case, copepod relative velocity
tends to be constant over space and its amplitude is pro-
portional to the jump intensity (uJ ). If we assume that the
jumps for different copepods are uncorrelated both in
time and in space and that the additional fluid velocity is
negligible one can easily compute the level value of this
plateau (Fig. 3). By dimensional reasoning one can show
that in the latter case the effective diffusivity of the cope-
pods is proportional τuJ J

2 . For other cases (intermediate
shear rate threshold values τ γ ̇η T ) the behaviour is more
complicated and difficult to capture by analytical or
dimensional arguments. We observe that in the limit of

→r 0 the mean radial velocity function, δ< ( )>v rrad , goes
to zero for fluid tracers but it has non-zero value for dif-
ferent families of copepods and is more pronounced by
decreasing the shear rate threshold value. This pattern is
caused by singularities in the copepods dynamics which
implies that copepods at distance r may have a different
behaviour, hence, a different velocity. In the field of par-
ticle laden flows this discontinuity in the particle velocity
field is often referred to as a caustic singularity (Crisanti
et al., 1992; Gustavsson et al., 2012). This is better illu-
strated in the visualization of Fig. 4 where pairs of very
close copepods may have very large velocity differences.
Finally, we remark that differently from the trend

observed for ( )g r the behaviour of δ< ( )>v rrad is
inversely proportional and monotonic with τ γ ̇η T : at
increasing the shear rate threshold the mean radial vel-
ocity difference goes down from the plateau level to the
fluid tracer level. The scaling exponents ζ , of

δ< ( )>v rrad for different copepod families at varying τ γ ̇η T

obtained via power law fits are shown in Fig. 5. This is
to see how copepods’ dynamics change compared to the
fluid tracers, as a function of the threshold strain rate.
The change of the power law scaling exponent in the iner-
tial range is smooth, but at the dissipative scale it shows a
non-monotonic behaviour for the fractal dimension as a
function of the strain rate threshold values, as already
reported for the pair correlation function in Fig. 2.
Having the pair correlation function ( )g r , and the

mean radial velocity δ ( )v rrad , one can estimate the
encounter rate kernel ( )E r . There is of course no

0.01

0.1

1

10

100

0.1 1 10 100

<
 δ

v r
ad

(r
) 

>
/u

η 

r/η

τη γT = 0

τη γT = 0.2

τη γT = 0.35

τη γT = 0.5

τη γT = 0.9
τη γT = 1.75

τη γT = 3.9

Tracer

˙
˙

˙

˙
˙

˙

˙

Fig. 3. Dimensionless mean radial velocity, δ< ( )> ηv r u/rad between
couples of Lagrangian copepods separated by a distance ηr/ for differ-
ent values of the dimensionless threshold strain rate intensity τ γ ̇η T .
The continuous line is the prediction for fluid tracers based on the
empirical approximation on the second-order longitudinal Eulerian
structure function proposed by Borgas and Yeung (2004). The dashed
line plateau indicates the prediction derived from a random field of
spatially and temporally uncorrelated jumps.
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contact between fluid tracers, because they are size-less
by definition and are passively advected by an incom-
pressible flow, where the fluid streamlines do not cross
each other. However, when a virtual radial size R is
assigned to a tracer, their virtual contact rate is propor-
tional to the mean radial velocity evaluated at =r R2 .
Copepods differ from tracers in two aspects, first they
are not simply passively transported by the flow and sec-
ondly their virtual contact rate, called radius of

perception, has a specific biological meaning. It is
known that copepods–copepods or copepods–prey/food
interactions occur before the possible body-to-body
physical contact: copepods can grab their prey or
become aware of an incoming mate before it hits them
(Schmitt and Seuront, 2008). This is why R should be
understood as the radius of perception of the organisms
rather than their geometrical size.

Figure 6 reports the encounter kernel as a function of
r for different copepod families. Here the encounter rate
of tracers is depicted as for comparison with the differ-
ent copepod families. It appears that by increasing the
strain rate threshold value (τ γ ̇η T ) the encounter rate of
copepods decreases monotonically, although the growth
of the shear rate τ γ ̇η T has non-uniform impact on the
pair correlation dimension (Fig. 2). This implies that the
dominant term in interspecies encounter rate of the
copepods is the amplitude of their mean radial velocity.
The encounter rate is dominated by caustics.

The vertical line in the Figure shows the radius of
perception for LC particles, here supposed to be five
times greater than the Kolmogorov length scale of the
carrier fluid. The ratio of the radius of perception to the
copepods’ body size is reported to be in the range 1–3
(Lenz and Yen, 1993; Doall et al., 1998; Bagoien and
Kiørboe, 2005). In terms of η this means that the radius
of perception of copepods is of the order of ∼1. In order
to see how effective the deformation rate threshold value
is on the encounter rate of LCs at different perception
radius, one can estimate the ratio between the encoun-
ter rates experienced by copepod families and tracers.
This is shown in Fig. 7 where it is realistic to have larger
encounter rates at small distances. This figure suggests
that at optimum clustering, corresponding to the shear
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rate threshold value of τ γ ̇ =η 0.5T , the encounter rate
can be of the order of ∼10 with respect to the tracers at
distance η=r 5 . The LC model shows no contact rate
enhancement at shear rate values larger than 2.75. This
means that when γ τ̇ > η2.75/ then there is any increase
of contact rate between copepods due to their swimming
behaviour. Therefore, dimensionally the LC model do
not give any significant advantage at γ ̇ > −s2.75 1. When
the shear rate γ ̇ is lowered, the contact rate reaches up
to 100 times the value of fluid tracers. Notice however
that copepod–copepod interaction has been neglected in
the LC model, and this may have led to large overesti-
mation of contact rates.

Effect of waiting time between successive
jumps

Up to now we assumed that a copepod’s jump was ter-
minated after a prescribed time interval τw from the
jump inception, defined it as when the jump velocity
amplitude reaches one percent of the copepods’ initial
jump intensity. In reality copepods can behave differ-
ently. For instance, they can be less reactive than what
has been modeled so far since they have some finite
energy amount available for swimming and after
repeated jumps they may need some time in order to
recover their lost energy (Visser and Thygesen, 2003).
The probability density function of time between succes-
sive jumps for E. Affinis and A.Tonsa (not shown here)
indicates the presence of memory on the previous jumps
of copepods (see also Dur et al. (2010)) but there is a lack
of quantitative elements in order to have enough infor-
mation to model this feature in the LC model.

We now vary the duration of the waiting time, taking
as a reference the family for which τ τ = c/w J with

=c 4.6 (a family with τ τ= =η η
−u u/ 250, / 10J J

2 and
τ γ ̇ =η 0.5T , where a complete jump lasts for 46 ms) as
shown in blue in Fig. 8. We now have LC families with

=ηu u/ 250,J τ τ τ γ= ̇ =η η
−/ 10 , 0.5J T

2 and τ τ/w J

which varies in range [ ]c c0.5 , 200 .
Figure 8 interestingly shows that by making copepods

progressively less reactive, the small-scale clustering,
characterized by D2, fades away and only prompt cope-
pod reactions may lead to non-homogenous spatial dis-
tribution. Moreover, when the waiting time, τw , is larger
than the Kolmogorov time scale of the flow, τη, cope-
pods’ spatial distribution becomes nearly homogenous.
It is now interesting to see how these changes in spatial
distribution can affect the encounter rate. In Fig. 9 the
encounter rate per unit particle density as a function of
r is shown for different LC families that we observed in
Fig. 8. One can normalize the encounter rate experi-
enced by copepod families by the one of tracers at a spe-
cific perception radius in order to clearly see the effect
of waiting time between successive jumps. This is shown
in Fig. 10, where it is seen that the increase of the wait-
ing time decreases the copepods’ encounter rates. For
τ τ≈ η2w the encounter rate enhancement as compared
to tracers is just a factor ∼8 for η=r and decrease to
nearly a factor ~2 for η=r 5 .

DISCUSSION

The enhancement of the encounter rate between indivi-
duals from the same species was achieved here by using
the proposed LC model in turbulence. It was observed
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that this enhancement does not occur necessarily at
copepods’ optimum preferential concentration. This
increase has its origin in two distinct mechanisms: the
preferential concentration, quantified by ( )g r , and the
mean radial velocity, measured by δ ( )v rrad . The para-
metric analysis at varying τ γ ̇η T reveals that the lower the
threshold, the higher the encounter rate is. A similar
result is found for the investigation at γ τ̇ = η

−0.5T
1 and

at varying inter-jump minimal time τw : the shorter the
inter-jump time, the more frequent the encounters are,
implying δ ( )v rrad to be the dominant term in encounter
rate formulation. These results are easy to understand.
A very reactive organism will explore much more space

than a nearly passive one and will enhance its chances
of meeting similar organisms. However, one may want
to ask if, despite its relative simplicity, the LC model can
also provide a non-trivial insight into the possible
dynamics of copepods in a turbulent flow.

A first significant observation is that the dissipative
scale, τη is the relevant control scale for the encounter
rate enhancement. It defines respectively both the refer-
ence frequency and the reference time gap for γṪ and
τw . In other words the present mechanisms of enhance-
ment of encounters is effective only if copepods have a
shear rate sensitivity that is finer than the shear rate pro-
duced at the Kolmogorov scale τ~ η

−1 and if their jumps
occur at a rate higher than this very same frequency. In
dimensional terms this corresponds to τ ≈η

− −s11 1, how-
ever, due to the different turbulent conditions found in
the ocean, it is known it might have more than one
order of magnitude of variability (from 0.1 to −s10 1 as
from Jimenez (1997)). The fact that the shear rate
threshold value to trigger a jump in copepods has been
reported to vary from γ ̇ = −s0.025T

1 (Woodson et al.,
2005, 2007) to γ ̇ = −s0.4T

1 (Kiørboe et al., 1999), seems
to support the validity of the model findings.

A second observation is that the enhancement of con-
tact rate by the present mechanism is much less effective
when the perception radius is wider. We note the large
gap existing between the estimated encounter rates at

η=r and η=r 10 . This has a biological relevance, for
larger copepods or copepods simply with a larger per-
ception range, the preferential concentration mechan-
isms and the mean radial velocity have less effect on the
contact rate. This also sets a quantitative limit, if

η≥ ≈r cm10 1 , the effect of encounter rate enhance-
ment by turbulence is negligible. The fact that the
radius of perception for copepods is in the mm range
(Lenz and Yen, 1993; Doall et al., 1998; Bagoien and
Kiørboe, 2005) suggests that the proposed mechanisms
may be effective at least for small copepod species. A
complementary interpretation of this result is that for a
copepod family of a given perception radius, the turbu-
lence induced enhancement of encounter rates is less
and less effective as the turbulent intensity is increased,
and is more effective at moderate levels of turbulence.

We now discuss possible limitations of the model and
potential features that we neglected and that may
change the scenario described so far. One shortcoming
of the model is the fact that we do not take into account
the energetics of copepods. It is unlikely that these
organisms may jump indefinitely at a maximum rate
τ−
w

1, even if such a rate is not sustained. It is more likely
that periods of high activity will be followed by a resting
time. A realistic energetic model for copepods could
lead to slightly different quantitative estimates for the
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encounter rate kernel ( )E r , however, it will not modify
the observation that τη is a characteristic scale of the
problem. Another limitation concerns the absence of a
post-encounter dynamics in our model. The LCs we
simulate can have trajectories that cross each other and
do not bounce or react differently when they encounter
each other (we talk in this case of virtual encounters). In
reality we expect different behaviour in the moments fol-
lowing an encounter. This may lead to substantially differ-
ent conclusions and we think it will be interesting to
include this feature as a refinement of the present model.

The definition or the estimation of the encounter rate
between planktonic organisms is a fundamental concept
from the ecological point of view. In fact, many crucial
processes occurring at small scales (i.e. mating, preda-
tor–prey interactions, etc.) and having important impli-
cations for plankton dynamics are dependent on the
encounter rate concept. For copepods, it is not easy to
extrapolate empirical expressions of encounter rates
obtained in still conditions (Michalec et al., 2015b) to
realistic situations with well-developed turbulence. Our
model can be considered as a first step towards a better
quantification of the encounter rates of copepods under
realistic fluid motion. Our results confirmed that the
interaction between turbulence and copepod jumping is
not trivial and should be deeply explored from the
experimental point of view. In fact, only a few studies
have focused on the jumping behaviour in turbulent
conditions. The recent study by Michalec et al. (2015b)
suggested that the increase in swimming effort (i.e.
acceleration) when turbulence increases is a kind of
compensatory response to the increase in flow velocity.
The same authors suggested that the capacity of jumps
in copepods, and mainly those inhabiting turbulent
areas (i.e. estuarine and coastal environments), is a cru-
cial trait to better understand their ecology. It appears
from the same experimental study that a threshold value
of turbulence can modulate copepod behaviour. In
other words, copepods can use their capacity of jumping
only when it is useful and certainly not under high tur-
bulent conditions. Our results suggest that the threshold
turbulence value could be a species-specific property
that should be better estimated in the future using
adequate experimental designs. Moreover, our simula-
tions suggests that the copepods’ optimum preferential
concentration is an important property that should be
studied experimentally.

CONCLUSION

This article addresses the problem of the quantification
of intraspecies contact rate in copepods under realistic

conditions. The copepods inhabit flows characterized by
large-scale currents and turbulence of variable inten-
sities. The copepods’ encounter rate is certainly influ-
enced by this turbulent environment, but on the other
hand copepods are also known to be capable of rapid
displacement when locally subjected to mechanical dis-
turbances. The way in which environment and this sin-
gle, specific, behavioural condition combine is complex.
In this article we couple the exact dynamics of homoge-
neous and isotropic turbulent flows, by using DNS, with
a simplistic model of behaviour where copepod jumps
are triggered by localized high strain events. The main
result of this investigation lies in the enhanced intraspe-
cies contact rate with respect to the case where cope-
pods are considered as fluid tracer particles. This
enhancement comes from two terms in the contact rate
expression; one is the variation of the pair correlation
function ( )g r which accounts for the spatial preferential
concentration (patchiness of copepods) and the other
one is the variation of the mean radial velocity

δ< ( )>v rrad , which comes from the fact that copepods
can have an independent swimming velocity. Our ana-
lysis shows that the encounter rate for copepods of typ-
ical perception radius of η~ , where η is the dissipative
scale of turbulence, can be increased by a factor up to
∼102 compared to the one experienced by passively
transported fluid tracers, a very large value, which can
be ecologically important. Such an effect may show that
jumping behaviour of copepods is ecologically justified
not only to avoid predators, but also to keep individuals
within patches (i.e. locally high concentration of indivi-
duals) and increasing the encounter rate between conge-
ners that can enhance mating rates. Furthermore, the
study of a minimal pause interval between consecutive
jumps shows that any encounter rate enhancement is
lost if such a time goes beyond the dissipative time scale
of turbulence τη. This provides relevant constraints on
the turbulent-driven enhancement of contact rate due to
a purely mechanically induced escape reaction.
We conclude by remarking that the large enhancement

of the contact rate highlighted in this article, while rele-
vant for mating behaviour of copepods it is less relevant
for prey capture estimates. As a perspective it would be
interesting to see the consequence of our LC model for
feeding behaviour by using the Lagrangian model of
copepods on one side and larger bodies drifting in the
flow which can model the presence of large predators.
Finally, it is important to stress that, in addition to

swimming behaviour induced by changes in external
flow conditions, other mechanisms can also play a role
in encounter rates for copepods, e.g. chemoreception
and mechanoreception (Buskey, 1984; Weissburg et al.,
1998), prey movement detection (Visser, 2001; Jiang
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et al., 2002) and feeding currents (Marrase et al., 1990).
All these potentially relevant effects are outside the
scope of the present study; we deliberately targeted the
interactions between copepod jumping and turbulence,
which has received less attention in previous ecological
and/or modeling studies.
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