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a b s t r a c t

We study bymeans of an Eulerian–Lagrangianmodel the statistical properties of velocity and acceleration
of a neutrally-buoyant finite-sized particle in a turbulent flow statistically homogeneous and isotropic.
The particle equation of motion, besides added mass and steady Stokes drag, keeps into account the
unsteady Stokes drag force – known as Basset–Boussinesq history force – and the non-Stokesian drag
based on Schiller–Naumann parametrization, together with the finite-size Faxén corrections. We focus
on the case of flow at low Taylor–Reynolds number, Reλ ≃ 31, for which fully resolved numerical data
which can be taken as a reference are available [Homann H., Bec J. Finite-size effects in the dynamics
of neutrally buoyant particles in turbulent flow. J Fluid Mech 651 (2010) 81–91]. Remarkably, we show
that while drag forces have always minor effects on the acceleration statistics, their role is important on
the velocity behavior. We propose also that the scaling relations for the particle velocity variance as a
function of its size, which have been first detected in fully resolved simulations, does not originate from
inertial-scale properties of the background turbulent flow but it is likely to arise from the non-Stokesian
component of the drag produced by the wake behind the particle. Furthermore, by means of comparison
with fully resolved simulations, we show that the Faxén correction to the addedmass has a dominant role
in the particle acceleration statistics even for particles whose size attains the integral scale.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The exact dynamics of a material particle in an inhomogeneous
unsteady flow involves nonlinear equations that can be treated
analytically only in approximate form [1–4]. For this reason,
several simplified models for the hydrodynamic forces acting
on a particle have been proposed in the literature [5,6]. It is
still unclear however to what extent these models provide an
accurate description in turbulent flow conditions, even in an
averaged or statistical sense. A proper statistical description
of particle dynamics would be a first important step toward
building constitutive equations for the particulate phase carried
by turbulent fluids. It would also be of practical importance for
themany environmental phenomena and industrial applications in
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which particle suspensions in turbulence are involved. We intend
here to contribute to this goal by carrying out refined simulations
of particles in turbulent flow, and discriminate whether the
particle model employed leads to physically sound results, in
agreement with recent experiments and with fully resolved direct
numerical simulations.

In previous studies, we have addressed the dynamics of
small material particles with a description based on a minimal
Lagrangian model accounting for pressure gradient, added mass
term, and steady Stokes drag force [7,8]. While this system
produces several features of particle dynamics, like clustering and
segregation as well as single-/multi-time statistics of acceleration
and velocity, it fails to predict some statistical properties,
particularly when the size of the particle is progressively increased
above the dissipative scale of turbulence [9]. In order to better
understand these discrepancies we have focused on the case of
finite-sized and neutrally buoyant particles. We have proposed
that Faxén corrections are the essential ingredients to account
for the statistical properties of finite-sized particle acceleration in
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turbulence [10]. Numerical predictions of the particle acceleration
variance (and of its probability density function) based on the
Faxén argument were compared with experiments made in
wind-tunnel [11] and resulted in agreement with Von Karman
flow measurements [12]. In a more recent work, experimental
measurements support also other trends highlighted by the Faxén
model: the effect of decrease of acceleration flatness as a function
of the particle-size and the corresponding growthof the correlation
time of the acceleration [13].

Another series of numerical studies were recently conducted
by Homann and Bec [14] (HB in the following). These authors
employed a direct numerical approach. They tracked the motion
of a neutrally buoyant finite-sized particle in a turbulent flow by
enforcing the no-slip velocity at the particle surface via a penalty
method on the discretized Navier–Stokes equation. In such a way
they have been able to access the dynamics of a single finite-size
particle in the diameter range [2, 16]η in a moderately turbulent
flow at Reλ = 32. Both velocity and acceleration statistics were
investigated. Therefore, HB measurements provide a set of
reference data against which one can test particle Lagrangian
models, as attempted here. The scope of this work however goes
beyond the validation of a model equation. We also aim at having
a physical picture of the statistical dynamics of particles. We have
specific questions inmind:What is the statistical effect of the drag,
particularly the trailing wake drag, on the dynamics of a neutrally-
buoyant finite-size particle in turbulent flow? Does it modify the
acceleration statistics or rather the velocity one? Is the role of
Faxén correction still relevant for particles with size in the inertial
range? We will see how our study provides an answer to these
questions and a possible interpretation of the phenomenological
picture.

The paper is organized as follow. In Section 2 we describe
the approach adopted in this study, we introduce the Lagrangian
modeling of the particle dynamics, its numerical implementation,
and some expected trends for the particle velocity and acceleration
in the vanishing-size limit. In Section 3 we present the results
of the numerical study, starting from the particle Reynolds
number behavior, and addressing then acceleration and velocity
statistics as a function of the particle size. Comparison with direct
numerical simulation data is discussed in detail in Section 4. In the
conclusions we summarize the main results and give suggestions
for possible future experimental/numerical investigations.

2. Methods

2.1. Particle equation of motion

We consider a Lagrangian equation of motion one-way coupled
to a continuum flow u ≡ u(x, t). Such an equation takes into
account the pressure gradient and added mass term (∼Du/Dt),
the drag force and the volume and surface Faxén corrections. The
drag force is divided into three parts: the steady Stokes drag, the
unsteady Stokes drag force or History force, and the non-Stokesian
drag force. All together it reads as follow:

dv
dt

= β

[
Du
Dt

]
V

+
3νβ

r2p
([u]S − v) (1)

+
3β
rp

∫ t

t−th


ν

π(t − τ)

 1
2 d
dτ

([u]S − v) dτ (2)

+ cRep
3νβ

r2p
([u]S − v) (3)

where rp is the particle radius, ν the kinematic viscosity, β the
density coefficient β ≡ 3 ρf /(ρf + 2 ρp). Following [2] the Faxén
corrections are expressed as volume and surface average of the
continuum fields Du/Dt and u over a sphere of radius rp centered
at the particle position, respectively:[
Du
Dt

]
V

= (4/3πr3p )
−1

∫
V

Du
Dt

(x, t) d3x (4)

[u]S = (4πr2p )
−1

∫
S
u(x, t) d2x. (5)

The history force is based here on the Basset–Boussinesq diffusive
kernel, ∼(t − τ)−1/2, while th is the time over which the memory
effect is significant. The non-Stokesian drag coefficient cRep models
the effect of the drag induced by the presence of a wake behind
the particle. Of course in a Lagrangian model of particle dynamics,
which is only one-way coupled to the fluid flow, no wake can
be produced. Therefore, we resort to a model: the well known
Schiller–Naumann (SN) parametrization [15]. The cRep coefficient,
which is a function of the particle-Reynolds number based on
the diameter size dp ≡ 2rp and on an estimator of the slip
velocity, Rep ≡ |[u]S − v| dp/ν, is chosen to have the form cRep =

0.15 · Re0.687p considered to be a good approximation whenever
Rep < 1000 [16]. We note also that direct numerical simulations
of the flow around a solid particle maintained fixed in a turbulent
flow shows a good agreement between the real force acting on
the particle (as computed from strain tensor at the surface of
the particle) and the drag computed from the slip velocity with
Schiller–Naumann parametrization [17,18].

For simplicity in this study the lift force is neglected. This
may be regarded at first as a strong approximation, however for
the case of neutrally buoyant particles the lift has indeed only a
minor statistical effect. This is confirmed also by our numerical
simulations based on equations (1), (2) and (3) plus the lift force [6]
β

3 ([u]S − v) × [∇ × u]S (not reported in the present article).

2.2. Numerical implementation

We aim at studying the statistical signature of the different
forces acting on the particle. For this reason in our numerical
simulations we follow the trajectories of four species (or families)
of particles with slightly different evolution equations. The first
family is described by (1), it includes only the added-mass term
and the steady Stokes drag and their Faxén corrections. It will be
called Faxén model with Stokes drag. The second family is defined
by (1) + (2), hence it includes also the history force. The third is
based on (1) + (3), therefore the Schiller–Naumann correction is
here included but not the history force. Finally the fourth family
(1) + (2) + (3) keeps into account all the effects. See Table 1 for a
summary of the four particle families.

2.2.1. Faxén forces
The implementation of Faxén averages in our simulation is

based on the Gaussian approximation proposed in a previous
study [10]. The volume average of fluid acceleration at particle
position is replaced by a local interpolation at the particle position
of the continuum field after convolution by a three-dimensional
Gaussian envelope G(x), with unit volume and standard deviation
σ . Convolutions are efficiently computed in spectral space, the
volume averaged field hence reads:[
Du
Dt

(x, t)
]
V

≃

∫
L3
G(x′)

Du
Dt

(x − x′, t) d3x′ (6)

= DF T −1


G̃(k)

D̃u
Dt

(k, t)


(7)
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Table 1
The four particle families considered in the present study and their respective
equations of motion.

Particle type Eq.

Faxén model with Stokes drag (1)
+History force (1), (2)
+Non-Stokesian drag (1), (3)
+Non-Stokesiandrag + Historyforce (1), (2), (3)

In total we integrate simultaneously the dynamics of Np = 1.28 · 106 particles.
This ensemble is divided into 4 families, each family having 8 different sizes, in the
diameter range dp ∈ [0, 32]η. This amount to 3.2 · 104 particles per type.

Fig. 1. Real space one-dimensional projection, on the direction (x, 0, 0), of filter
functions. The volume Gaussian filter is G(x) = (1/(

√
2πσ))3 exp(−x2/(2σ 2)),

while the surface convolution kernel turns out to be S(x) = (x2/(2σ 2))G(x). The
optimal shape of volume and surface filter functions are also shown. The volume
filter function is a three dimensional spherical gate function with total volume
4/3, πr3p , while the surface one is a delta function over the surface of the sphere
but normalized in such a way that its volume integral is 4πr2p .

where DF T −1 denotes a discrete inverse Fourier transform on
a cubic grid with N3 nodes, while the over script ∼ indicates a
direct Fourier transform, G̃(k) = exp(−σ 2k2/2) being the Fourier
transform of G(x). We note that by setting the standard deviation
σ ≡ rp/

√
5, in the limit of small radii one gets G̃(k) ≃ 1 −

(r2p /10)k
2

+ O(r4p ) which leads to the correct first order Faxén
correction in real space, i.e., u + (r2p /10)∆u + O(r4p ). Analogously
the surface average reads:

[u(x, t)]S =
1
3r2p

d
drp


r3p [u(x, t)]V


(8)

= DF T −1


1 − σ 2k2/3

G̃(k)ũ(k, t)


. (9)

For clarity in Fig. 1 the shape of the two convolution kernels
(volume and surface) in real space are shown. The figure also
shows for comparison the so called optimal convolution kernels,
corresponding respectively to a three dimensional spherical gate
function of volume 4/3πr3p for volume average and to a delta
function over a spherical shell for surface average. Of course the
implementation of such optimal averages in real space would be
computationally more expensive. In Section 4 we will investigate
in detail the bias induced on the particle dynamics by the use of
such a Gaussian approximation for Faxén corrections instead of the
rigorous definition.

2.2.2. History force
The Basset–Boussinesq history force can be computationally

very expensive. This is due to the fact that the integral which
is involved should be performed at each time-step on the full
particle history. Furthermore the diffusive kernel, ∼ (t − τ)−1/2

has a very slow decay and require a long memory time –
virtually th = ∞ – to reach convergence. It is known however
that the diffusive kernel overestimates the history force for
particles characterized by finite Reynolds numbers Rep [19]. The
formation of a trailing wake either stationary, nonstationary or
even turbulent is always associated to history kernel which decay
faster than the Basset–Boussinesq [20]. Equivalently we can say
that in Rep ≫ 1 conditions the Basset–Boussinesq history force
should have a shorter memory time window th. This latter idea
has been exploited in the computational approach called window
method [21]. Recently a more accurate method based on the fit of
the diffusive kernel tail via a series of exponential functions has
also been proposed [22]. In this study we adopt a simple window
approximation: instead of setting th = ∞ we chose th ≃ 10τη

but keep the diffusive kernel functional form. This choice is based
on the observation that in the turbulent conditions considered
in our study after a time 10τη the Lagrangian signal d([u]S −

v)/dt is already completely uncorrelated. The short memory on
the history force is therefore not given by the specific kernel form
(which is indeed almost flat in our case) but from the relatively
short correlation time of the turbulent flow. With this choice, th
corresponds approximately to 103 time-steps of our simulations,
which are stored and used for the discrete estimation of the
history integral at each time-step. We note that our th satisfies
the criterion given in Ref. [21,6] for the window method and it
has a double extension in time steps respect to the time window
considered in the numerical validations considered in Ref. [22].
We have also performed a posteriori check in which the pre-
recorded d([u]S − v)/dt signal has been used to compute the
history force with different values of the window’s length. This
test has further confirmed the convergence and reliability of the
adopted implementation.

2.2.3. Eulerian dynamics
A suitable turbulent flow is generated by integrating the

Navier–Stokes equation in a cubic box of size L = 2π with periodic
boundary conditions. The flow is forced on the largest shells in
spectral space, on the wave-vectors for which the condition k2

≤

22(2π/L)2 is satisfied. The force we adopt in this study keeps fixed
the amplitude of kinetic energy of the large scales. More details
concerning the values of relevant input andoutput quantities of the
numerical simulation of this turbulent flow are provided in Table 2.

2.3. Faxén corrections and small particle limit predictions

In the study of Homann and Bec [14] a derivation of the
functional behavior of the variance of particle velocity and
acceleration in the limit of vanishing particle diameters dp has been
proposed. The argument is based on a perturbative expansion of
the Faxén correction for the velocity. This reads as2:

v ≃ [u]S ≃ u +
d2p
24

∆u + O(d4p). (10)

Furthermore, the hypothesis of a spatially homogeneous particle
distribution in the limit dp → 0 is made. By squaring Eq. (10), re-
taining only quadratic terms in dp, and averaging over the particle
ensemble and in time, ⟨. . .⟩, one gets:

⟨v2⟩ ≃ ⟨u2
⟩ −

d2p
12

⟨u∆u⟩ = ⟨u2
⟩ −

d2p
12

ε

ν
= ⟨u2

⟩ −
5
3


dp
2λ

2

,

(11)

where ε ≡ (ν/2)⟨(∇u+(∇u)T )2⟩ = ν L−3

L3 u∆u d3x is themean

energy dissipation rate and λ ≡ (5ν⟨u2
⟩/ε)1/2 is the Taylor micro-

scale. If we instead (i) differentiate with respect to time Eq. (10),
(ii) make the assumption D/Dt ≃ d/dt , and then (iii) square and

2 Note that (10) corrects a typo contained in Ref. [14] on the numerical coefficient
in front of d2p∆u, which had affected all the predictions proposed in that study. Our
calculations for Eq. (11) provides a coefficient 5/3, instead of 1/100 given in [14].
Furthermore in Eq. (12) we find the coefficient 1/12, and not 1/20.
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Table 2
Parameters of the numerical simulation: N number of grid points per spatial direction; δx = 2π/N and δt are the spatial and temporal discretization; ν is the value
of kinematic viscosity; ε the mean value of the energy dissipation rate. η = (ν3/ε)1/4 and τη = (ν/ε)1/2 are the Kolmogorov dissipative spatial and temporal scales,

urms =

⟨uiui⟩V /3

1/2
the single-component root-mean-square velocity, λ = (15 ν u2

rms/ε)
1/2 the Taylor micro-scale, TE = (3/2)u2

rms/ε and LE = urms TE are the Eulerian
large-eddy-turnover temporal and spatial scales; Reλ = urms λ/ν the Taylor scale based Reynolds number. ttot is the total simulation time in statistically stationary conditions
and the total time-span of particle trajectories.

N3 δx δt ν ε η τη urms λ TE LE Reλ ttot

1283 4.9 · 10−2 3.2 · 10−3 4.4 · 10−2 7.5 · 10−1 1.0 · 10−1 2.4 · 10−1 1.2 1.1 2.9 3.5 31 192
average the result, we obtain an approximate prediction for the ac-
celeration variance

⟨a2⟩ ≃


Du
Dt

2
−

d2p
12

D(∇u)

Dt

2


. (12)

Wewill see in the following to which extent these approximations
can be considered appropriate to describe the particle behavior.
We note that in the simulations we have direct access to the values
⟨([u]S)2⟩ and ⟨([Du/Dt]V )2⟩ which can be used for comparison. Fi-
nally, it is also worth noting that the particle Reynolds number Rep
is proportional to |v − [u]S |, this means that in the small-particle
limit the leading order is O(d4p), hence one expects Rep ∼ d5p .

3. Results

3.1. Particle Reynolds number

We begin investigating the particle Reynolds number Rep as a
function of the particle diameter, with measurements reported in
Fig. 2. First we note that in the range dp ∈ [3.2, 32]η the mean
Reynolds number varies considerably, three order of magnitudes
from 10−1 to about 102. We can immediately observe that the
particle models which are making use only of Stokes drag forces
– that is to say based on the assumption Rep < 1 – cannot be
considered entirely consistent. Such models underestimate the
actual drag on the particle. This is clearly noticeable for the Faxén
model with Stokes drag in the large-dp range, when Rep attains
the maximal value urmsdp/ν, corresponding to a ballistic particle
velocity v not varying in time and not correlated to the local fluid
velocity [u]S . We note instead that for all the models in the small
particle limit we have a steeper scaling (slope 4.50 ± 0.05), close
to the expected d5p . Hence, in the small particle regime v and
[u]S are highly correlated, differing only by O(d4p) terms. We also
notice that, while the history force produces just a shift, the non-
Stokesian drag term changes the slope in the large particle regime.
This apparently minimal variations have, as we will see later on,
important consequences on the statistics of the particle velocity
variance.

3.2. Acceleration statistics

Weexamine now some statistical properties of the acceleration.
In Fig. 3 we show the behavior of the single-component particle
acceleration variance ⟨a2i ⟩ normalized by the fluid acceleration
variance ⟨(Dtui)

2
⟩ as a function of the particle size in dp/η units. It is

remarkable to note that all the particlemodels leads to very similar
results. The History force or the Non-Stokesian drag have no effect,
at least for this observable. The overall trend of the acceleration
variance is dominated by the Faxén Volume correction, ⟨a2i ⟩ ≃

⟨[Dui/Dt]2V ⟩with [Dui/Dt]V sampled homogeneously in space over
the field (see Fig. 3). Eq. (12) based on the first order approximation,
although qualitatively correct, fails to predict quantitatively the
measurements for dp > 4η. In Fig. 3 we have plotted the data
points from HB [14]. The agreement with our data is excellent up
to dp ≃ 4η, while the Lagrangian model shows a less pronounced
Fig. 2. Mean particle Reynolds number, ⟨Rep⟩, versus the diameter in Kolmogorov
scale units, dp/η, form the four differentmodels. A power-law fit to the Faxénmodel
with Stokes drag on the smallest particle sizes is shown, we get a 4.5 slope. For
the same model, the maximal Reynolds number urmsdp/ν is reached by the largest
particles.

Fig. 3. Normalized single-component particle acceleration variance for particles
of different sizes: ⟨(ai)2⟩/⟨(Dtui)

2
⟩ vs. dp/η. Here ⟨(Dtui)

2
⟩ is the fluid tracer

acceleration variance or equivalently the Eulerian acceleration averaged over time
and space. The behavior of the four different models adopted is reported. The
dash-dotted line represent the behavior of particle acceleration variance expected
to originate from Faxén corrections in the small particle limit (see Eq. (12)). The
dotted line represents the ratio of the variance of the volume filtered Eulerian field
[Du/Dt]V to the fluid acceleration variance.

decrease (approximately by a factor of two) for larger diameters.
Wewill analyze the possible origin of these difference in Section 4.

In Fig. 4 we show the measurements of the acceleration
flatness F(ai) = ⟨a4i ⟩/(⟨a

2
i ⟩)

2 normalized by the fluid acceleration
flatness F(Dui/Dt) versus particle size. As already noticed in [10],
and experimentally verified in [13] the flatness decreases with
increasing the particle size. Here the different Lagrangian models
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Fig. 4. Single-component particle acceleration flatness, F(ai), normalized by the
fluid tracer acceleration flatness, F(Dtui), as a function of the particle diameter in
η units. The dotted line represents the ratio of the flatness of the volume filtered
Eulerian field [Du/Dt]V to the fluid acceleration flatness.

lead only to small shifts in the flatness value, hence the picture
remains the same as for the variance. Although, HB direct
numerical simulations may suffers of lack convergence the case of
flatness, the measurements are in qualitative agreement with our
simulations. Finally we look at the correlation time of the particle
acceleration. As done before [10], we define the acceleration
correlation time as the integral of the correlation function from
time zero till its first change of sign:

Ta,p =

∫ τ0

0
Cai(τ ) dτ ; Cai(τ ) ≡

⟨ai(t + τ)ai(t)⟩
⟨(ai(t))2⟩

(13)

where Cai(τ0) = 0. We observe that, as soon as the particle size
grows, the acceleration correlation time Ta,p deviates from the
tracer value Ta,f (≃1.2 τη), Fig. 5. This growth, is a result of
the Faxén averaging (in fact it is absent when averaging is not
included, see the discussion in [10]) and comes from the fact that
in finite-sized particles Stokes drag becomes negligible, leading to
dv/dt ≃ [Du/Dt]V .Wenote however that there is also a significant
difference between the basic Faxén Stokes drag model, for which
the mechanism explained before is at work, and the model with
non-Stokesian drag, the latter oneproducingmore correlation. This
feature is rather surprising and has a different origin. One may
think that including non-Stokesian drag, the effective response
time of the particle, i.e., 1/τeff = (1 + CRep)3νβ/r2p is reduced,
therefore the acceleration should be correlated on a shorter time
scale ∼τeff . As we will see later in Section 3.3 when non-Stokesian
drag is active, the drag is never negligible and v ≃ [u]S , hence for
the acceleration dv/dt ≃ d [u]S /dt . It is clear that d [u]S /dt =

∂t [u]S + [u]S · ∂ [u]S does not have the sub-grid (sub particle-size)
correlations included in [Du/Dt]V = ∂t [u]v + [u · ∂ u]V , which are
correlated on shorter timescales.

Any Lagrangian model equation seems however to underesti-
mate the real Ta,p resulting form the HB direct numerical simu-
lations. This fact has been also noticed, in a comparison of Faxén
Lagrangian model with experimental data [13].

3.3. Velocity statistics

Contrary to the acceleration’s case the velocity particle statistics
is deeply affected by the formof the particle dynamical equation. In
Fig. 6 we show as a function of the particle size the measurements
of the deviation of normalized single-component particle velocity
variance with respect to the velocity variance of the turbulent
flow: (⟨u2

i ⟩ − ⟨v2i ⟩)/⟨u
2
i ⟩. The first model – based simply on Faxén

terms and Stokes drag – predicts for this quantity a non-monoton-
ous behavior, leading for the bigger particle sizes to a velocity
Fig. 5. Correlation time of acceleration Ta,p , in τη units, as a function of the
normalized particle diameter dp/η.

Fig. 6. Deviation of the particle velocity variance from the fluid value, as a function
of the dimensionless particle diameter dp/η. The behavior of the four different
models adopted is reported. The dash-dotted line represent the deviation from the
fluid root-mean-square (r.m.s.) velocity that is expected to originate from Faxén
corrections in the small particle limit (see Eq. (11)). The dashed line represents
the deviation of the variance of the surface filtered Eulerian field [u]S from the
unfiltered velocity variance.

variance even larger than the fluid one. This results is rather
unphysical (as it is not possible for a particle to be on averagemore
energetic then the flow by which it is driven and transported) and
clearly it represents a limitation of the basic Faxén model with
Stokes drag. This limitation is readily cured whenever an extra
drag force is added. Among History and non-Stokesian drag it is
definitely the latter one bringing the most significant changes.
The non-Stokesian drag reduces the kinetic energy of the particle
as compared to the one of a fluid tracer, this energy decreases
monotonically with the particle size. For comparison, in Fig. 6 we
have also reported the prediction in the limit of small-particles,
Eq. (11). As for the acceleration, this analytical prediction seems
to be a good approximation to the measurements up to dp ≃ 4η.
We also report in Fig. 6 the value of the variance of the Eulerian
filtered field [u]S . One can note that by adding more drag to the
basic Stokes term, the particle velocity approaches the filtered fluid
velocity variance, i.e. v → [u]S . We note that the prediction of
the Lagrangian models keeping into account all the considered
effects Eqs. (1)–(3), agree well with the HB data. Apart from
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the parabolic (∼d2p) behavior for vanishing particle sizes no clear
scaling of the normalized velocity variance can be detected form
ourmeasurement. In HB itwas proposed that a scaling regimewith
slope d2/3p would appear out of the Faxén dominated regime. This
was attributed to the effect of the background turbulent flow, via
the assumption ⟨v2

i ⟩ ∼ ⟨(δudp)
2
⟩ ∼ d2/3p where the Kolmogorov

scaling relation for the second order Eulerian structure function
⟨(δur)

2
⟩ ≡ ⟨(u(x + r) − u(x)) · r̂2⟩ ∼ r2/3 is implied. Here we

would like to advance another explanation, the different scaling in
that intermediate regime seems to be an effect of the drag term
and in particular of the non-Stokesian drag (see again Fig. 6). We
note that non-Stokesiandrag term included in ourmodel equations
based on SN parametrization accounts rather for the effect of
a stationary wake behind the particle than for wake generated
turbulent fluctuations. Given the good agreement of our data with
HB measurements, our guess is that the background turbulent
fluctuations plays only a minor role in determining the particle
velocity statistics.

The non-Stokesian term has also important consequences on
the velocity correlation time. Such a time can be defined as the time
integral of the correlation function:

Tp =

∫
+∞

0
Cvi(τ ) dτ ; Cvi(τ ) ≡

⟨vi(t + τ)vi(t)⟩
⟨(vi(t))2⟩

. (14)

As we have already mentioned, the Stokes drag force alone is
not effective in slowing down the velocity especially for large
particles. This produces quasi-ballistic trajectories, governed by
v(t) ≃

 t
0


Dtu(t ′)


V dt ′, that tend to have very large correlation

time. The non-Stokesian (or wake) drag provides instead a way to
reduce particle speed, v(t) ≃ [u]S and its correlation time. This
is evident from Fig. 7 where the correlation functions for different
terms for a large Stokesian and a large non-Stokesian particle are
compared.

On Fig. 8 the trend of the velocity correlation time as a function
of the particle size is shown. Non-Stokesian drag produces a
reduction of Tp of more than 100% as compared to the purely
Stokesian case.

4. Discussion

In previous sections we have shown that the agreement of the
Lagrangian model, even in its complete form Eqs. (1), (2), (3), with
the measurements from HB direct numerical simulations is rather
satisfactory for the variance of the velocity as a function of the
particle size. However, we observe systematic deviations when
acceleration is concerned. Herewewould like to discuss the causes
of these discrepanciesmore in detail.We can advance the following
hypothesis:
(i) The differences originate from a limitation of the model
which takes into account volume and surface averages only in
the approximate form of a Gaussian convolution. Although this
approximation is well tuned for the first order Faxén correction, it
might be less accurate for larger particles, when roughly dp > 4η.
(ii) The model neglects the effect of particle interaction with its
own wake. This effect, while negligible in a flow with a large
mean component, might become relevant in the isotropic flow
conditions considered here (and in HB work) where a particle can
cross a region previously perturbed by its own wake.
(iii) The observed discrepancies may come from differences in the
simulated turbulent flows—in fact differences in the forcing at such
small Reynolds number Reλ ∼ 32may have consequences even on
the small scale statistics. The point (i) can be investigated carefully.
In order to see if there is any bias induced by Gaussian averaging
as compared to the mean over a sphere, we have averaged the
field Du(x, t)/Dt over a large number of spheres of diameters
Fig. 7. Correlation function of particle velocity v, of the filtered fluid velocity
along the particle trajectory [u]S , and of the time integral of fluid acceleration t
0


Dtu(t ′)


V dt ′ for particle size dp = 32η. Faxén model with Stokes drag (top),

with non-Stokesian drag (bottom).

dp, uniformly distributed over random locations in space. This
procedure is repeated over 250 Eulerian Du/Dt snapshots, equally
spaced in time over an interval of 20 TE . Although this method is
not precise for small sphere diameters when only few points of the
discretized Du/Dt field enter into the average, for large diameters
the average converges rapidly to the correct (continuum-limit)
values. In Fig. 9 we report the results of these measurements for
the variance and the flatness of [Du/Dt]V (sphere), as a function
of dp and we compare it with the Gaussian averages [Du/Dt]V
(Gauss), and with the measurements on the Lagrangian models
and DNS data. The result shows that the sphere average is sensibly
different from the Gaussian convolution. For small particles the
discretization bias fails to match the analytical prediction (11),
which is instead well captured by the Gaussian distribution. For
larger particle sizes the sphere average shows a stronger decrease
of the variance as compared to the Gaussian case. Remarkably in
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Fig. 8. Integral correlation time of particle velocity Tp as a function of the diameter
dp . Tp ismadedimensionless by the integral velocity correlation timeof a Lagrangian
tracer TL , while the diameter is normalized by the dissipative scale η.

Fig. 9. Comparison between acceleration variance (top panel) and flatness (bottom
panel) We show data coming from Gaussian convolutions, same as in Fig. 3, of the
fluid acceleration field Du/Dt (dotted line), the quantity has been computed run-
time therefore statistical errors are in this case of the order of the line thickness.
Averages over spherical volumes (dashed line) are affected by a larger statistical
uncertainty (yellow shaded region) which comes from the differences in the
measurements between the three cartesian components. Measurements from the
Lagrangian model based on Eq. (1) and Eqs. (1)–(3) are reported, together with HB
data. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
this region the average over spheres agrees with the HB results.
A similar scenario appears for the flatness Fig. 9 (bottom). This
finding is important at least for two reasons. First it shows that
the Faxén correction to the fluid acceleration plays a central role
in the particle acceleration statistics not only for a particle in
the upper dissipative range dp < 4η but also for a particle with
a much larger size, dp ≤ 32η. Second, it shows that, although
the Gaussian convolution approximation is an efficient method
to solve particle dynamics, it has limitations which becomes
important approximately when dp > 4η. The above observations
have also an impact on the time-statistics: since a reduction
of the variance of the filtered acceleration is associated to a
slower fluctuations in time, we expect the correlation time of
acceleration to increase for finite-sized particles. Hence the picture
in Fig. 5 would change, solving the observed mismatch toward HB
simulations and experiments [13]. However, this latter point may
find a confirmations only in further studies.

Evaluating the impact of point (ii) is unfortunately not possible
in the framework of the present model. One would need to
introduce a coupling (so called two-way coupling) between
the particle and the fluid enforcing conservation of the total
momentum.

Finally on point (iii), for completeness we shall note that there
are some differences between the turbulent flows simulated by
Homann & Bec and the one used here. While we adopt a forc-
ing which keeps constant the energy on the largest Fourier modes
(amplitude-driving), HB also uses a random forcing of the phase
in Fourier space (phase-driving). While these differences have no
effect in fully developed turbulent flows, at the small Reynolds
number considered here, Reλ ≃ 32, they might have an impact.
We see indeed that, already for the case of fluid tracers, while we
find ⟨a2i ⟩ε

−3/2ν1/2
= 1.1 and F(ai) = 5.7, Homann & Bec report

⟨a2i ⟩ε
−3/2ν1/2

= 1.3 and F(ai) = 8.4, hence a flow slightlymore in-
termittent at small-scales. This prevents us – for instance – from a
direct comparison on the shape of the probability density functions
of acceleration and velocity. Furthermore, since the wave-length
of the forcing in our simulation measures about 63η, the statistical
properties observed for the acceleration of the largest particle size
(dp = 32η) might be affected by sub-leading non-universal con-
tributions coming from this large-scale force. This is a point which
certainly deserve further studies.

5. Conclusions

In this study we have focused on the statistical properties of
acceleration and velocity of finite-sized neutrally-buoyant parti-
cles driven in a moderately turbulent homogeneous and isotropic
flow.Wehave adopted a Lagrangianmodel particle equationwhich
keeps into account inertia effect, size effects, and the drag forces
resulting both from a Stokes flow around the particle and form
an asymmetric trailing wake state via Schiller–Naumann model-
ing.We have studied the contribution of these forces separately, in
particular the drag force has been divided into three components:
Stokes, History, and non-Stokesian force.

We find that the drag forces have minor effect on the statistical
properties of acceleration. Acceleration statistics seems to be
dominated by inertia effect and by the Faxén corrections, whose
influences extends also over particles with sizes attaining the
integral scale of turbulence.

On the contrary drag forces have important effects on the time
integral of the acceleration, that is to say on the velocity statistics.
This is particularly evident when considering the trend of the
second order statistical moment (the variance) as a function of the
particle size. For the case of neutrally buoyant particle analyzed
here, the variance of the particle velocity from the different
Lagrangian models start to separate at dp > 8η, corresponding to
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a particle Reynolds number Rep ∼ O(10). Above this threshold
History and non-Stokesian drag have a dominant role. This lead
us to propose that the trend observed for the particle velocity
variance as a function of its size does not originate from inertial-
scale properties of the background turbulent flow but arise from
the non-Stokesian component of the drag produced by the wake
behind the particle.

The effects detected in the velocity statistics are relevant for
studies of particle dispersion in turbulence. For instance a simple
finite-size particle model based on Stokes drag or history force
only, would overestimate the average particle dispersion from a
fixed source in space, and similarly for pair separation. Therefore,
this study suggests that in order to validate Lagrangianmodels one
should look not only into the small scale acceleration statistics –
as done up to now in many studies – but also into velocity and
possibly dispersion and pair separation statistics.

On the numerical side, we have shown that the Gaussian con-
volution approximation, despite its computational efficiency is not
accurate when particles much larger than 4η are involved. On the
other hand spherical averages in real space, as the oneperformed in
our test, would be computationally very expensive and not enough
accurate for small size particles (in particular it is not possible to
capture the Laplacian correction (10)when only fewgrid points are
used). Future numerical studies should find a trade off between ef-
ficient computations and accuracy. A possibleway, which however
needs careful scrutiny and tuning, is to consider the implementa-
tion of convolution kernel functions with sharper boundaries. Fur-
thermore, the effect of two-way coupling in this type of homoge-
neous and isotropic turbulent flow deserve to be studied.
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