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1 The problem

Much effort has been expended in recent decades in addressing the prob-
lem of heat transfer in Rayleigh-Bénard (RB) thermal convection cells. There
is increasing agreement that in general there are no clean scaling laws for
Nu(Ra, Pr) and Re(Ra, Pr), apart from asymptotic cases. One of these
asymptotic cases has been doped the ultimate state of thermal convection,
i.e. Ra → ∞, where the heat flux becomes independent of the kinematic vis-
cosity ν and the thermal diffusivity κ. The physics of this regime is that the
thermal and kinetic boundary layers have broken down or do not play a role
any more for the heat flux and the flow is bulk dominated. Scaling laws for
this regime were first suggested by Kraichnan [1], and later by Spiegel [2].
The recent Grossmann-Lohse (GL) theory [3] also gives such an asymptotic
regime which is bulk dominated and where the plumes do not play a role ,
namely

Nu ∼ Ra1/2Pr1/2, (1)

Re ∼ Ra1/2Pr−1/2. (2)

While current experimental data for high Rayleigh numbers are controversial,
see [3] for an overview, numerical simulations have not been very effective in
studying this regime because of difficulties in dealing with the huge number of
degrees of freedom and scale separation engendered when Rayleigh numbers
reach the order of at least 1012.
In order to bridge such difficulties, we study a tri-periodic convective cell,
or homogeneous Rayleigh-Bénard (HRB) system, to investigate the proper-
ties of the convective cell once the effect of boundary layers has been elimi-
nated. A model system such as this was first introduced by Borue and Orszag
[4], and studied by means of a spectral DNS (with built-in hyper-viscosity).
While these authors focused especially on turbulent spectra and correlation
functions behavior, in the present context we address mainly the scaling of
integral quantities, such as heat flux and mean velocity fluctuations, respect
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to the parameters Ra and Pr.
The physical relevance of the HRB model, in particular the expected sim-
ilarities and differences with respect to real experiments of fully developed
turbulent convection, will be shortly discussed at the end.

2 The model

The system to be studied is described in terms of the following partial differ-
ential equations

ut + u · ∇u + ∇p = ν∆u + ẑ αgθ , (3)

θt + u · ∇θ = κ∆θ +
∆T

L
uz , (4)

where u = (ux, uy, uz) is an incompressible velocity field, ∇ · u = 0, ν and
κ and αg are respectively the kinematic viscosity, thermal diffusivity and the
thermal expansion coefficient times the acceleration due to gravity. These
equations are used to describe the evolution of the velocity field in a triply-
periodic cubic volume [0, L]3 in the presence of a temperature field T (x, t) =
T (x) + θ(x, t). The temperature is expressed as a fluctuation θ with respect
to a mean profile T (x) that is imposed to be equal to the mean conductive
temperature profile in such a Rayleigh-Bénard cell; i.e. linear and of the form
T (x) = −z∆T/L + ∆T/2.
We performed a high-resolution DNS of the above set of equations, see [6]
for details on the implementation, at changing both the Ra and Pr number.
Statistical analysis were then performed on the database of flow configurations
that were collected, in statistically stationary conditions, over a time interval
of order 102 large eddy turnover times.

3 Results

In the HRB system the Nusselt number is defined as the dimensionless heat
flux

Nu =
〈uzθ〉

κ∆T L−1
+ 1 (5)

where the average 〈...〉 is over volume and over time, in statistically stationary
conditions. From eqs. (3)-(4) one can derive two exact relations for the volume
averaged thermal dissipation rate ǫθ = κ

〈

(∂iθ)
2
〉

and the volume averaged

kinetic dissipation rate ǫu = ν
〈

(∂iuj)
2
〉

, namely

ǫu =
ν3

L4
NuRaPr−2 (6)

ǫθ = κ
∆T 2

L2
Nu. (7)

One can therefore numerically compute Nu in three different ways: (i) from
its direct definition (5), (ii) from the volume averaged kinetic dissipation rate
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Fig. 1. (a) Nu(Ra) for Pr = 1, computed in three different ways: (•) using Eq.(5),
(2) using Eq.(6), and (◦) from Eq.(7). The power law fits, performed on the mean
value of the three different estimates and for Ra > 105, gives a slope 0.50 ± 0.05.
(b) Nu(Pr) for Ra = 1.4 · 107, fit performed as before, with a resulting slope of
0.43 ± 0.07.

(6), (iii) from the volume averaged thermal dissipation rate (7).
The results are shown in Figure 1(a) as a function of Ra for Pr = 1. There

is very good agreement of Nu obtained from the three different methods for
all Ra. Fitting all data points beyond Ra = 105 with an effective power law,
we obtain Nu ∼ Ra0.50±0.05, consistent with the asymptotically expected law
(1). In Figure 1(b) we display Nu as function of Pr for fixed Ra = 1.4 · 107.
For the cases with Pr 6= 1 the convergence of the three different methods
to calculate Nu is not perfect. This may be due to numerical errors in the
resolution of the small scale differences, especially when ν and κ are consid-
erably different. However, one can clearly notice a strong increase of Nu with
Pr. A fit with an effective power law gives Nu ∼ Pr0.43±0.07, which is again
consistent with the asymptotic power law Nu ∼ Pr1/2 suggested by the GL
theory.
Similar conclusions follow from Figure 2, in which we show the Reynolds num-
ber, Re = u′L

ν , scaling versus Ra (a) and as function of Pr for fixed Ra (b).
We want to stress here that this is the fluctuation Reynolds number, defined

by the rms velocity fluctuation u′ =
〈

u
2
〉1/2

: in homogeneous RB no large
scale wind exists. Re(Pr) displays an effective scaling law Re ∼ Pr−0.55±0.01,
consistent with the prediction for the ultimate regime (if one identifies the
wind Reynolds number in GL with the fluctuation Reynolds number here).
In conclusion, we confirme that both the Ra- and the Pr-scaling of Nu and

Re in homogeneous Rayleigh-Benard convection are consistent with the sug-
gested scaling laws for the bulk-dominated regime.
Although apparently physically unrealizable, because of the boundary con-
ditions, the measures from the highly turbulent HRB model may be tested
against a recent series of experimental results obtained from an RB setup
especially designed to reduce the influence of top and bottom plates on the
physical core of thermal convection [7]. In these experiments the temperature
gradient in the bulk of the cell is not imposed but rather, as in fixed flux con-
vection, measured as a dependent parameter. Interestingly these experiments
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Fig. 2. (a) Re(Ra) for Pr = 1, with a fitted slope 0.50 ± 0.02. (b) Re(Pr) for
Ra = 1.4 · 107, with a fitted slope −0.55 ± 0.01.

show, that the Nu and Re versus Ra scalings observed are consistent with
our bulk simulations.
On the other hand, a peculiar properties of the HRB model, that becomes par-
ticularly relevant to its dynamics in the low Rayleigh number regime, is the
formation of accelerating antiparallel vertical jets in the system. These flow
patterns, that where already observed in the former [4], can be associated to
the existence of a particular class of unstable solution for the full non-linear
sets of differential equations that we want to introduce in the following [8].
Due to the periodic boundary conditions, the coupled system of equations (3)-
(4) admits the particular solution θ = θ0e

κλt sin(k · x), uz = u0e
κλt sin(k · x)

and ux = uy = 0, which is independent from the vertical coordinate z (here
k = (kx, ky)) and with:

λ = − 1

2
(Pr + 1)k2 + 1

2

√

(Pr + 1)2k4 + 4Pr (Ra L−4 − k4) (8)

From equation (8) one finds that the first unstable mode appears for Ra ≥
Rac = (2π)4 ∼ 1558.54, corresponding to the instability of the smallest pos-
sible wavenumber in the system, i.e., k = 2π

L (1, 0).
These solutions are clearly manifest in direct numerical simulations at Rayleigh
numbers slightly above the critical value (Ra >

∼ Rac) [8] and in general for

Ra <
∼ 105 were only few unstable modes are active [6]. Despite the presence of

these exact exploding modes, the system clearly shows that these solutions do
not survive indefinitely due to some yet to be explored secondary instability
mechanism, resulting always in a statistically stationary behavior. Is the in-
terplay between the active exploding modes and the destabilization that sets
the value of the Nusselt number, i.e., the heat transfer through the cell in the
low-Ra regime.
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