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Previous numerical studies have shown that the ‘ultimate regime of thermal convection’
can be attained in a Rayleigh–Bénard cell when the kinetic and thermal boundary
layers are eliminated by replacing both lateral and horizontal walls with periodic
boundary conditions (homogeneous Rayleigh–Bénard convection). Then, the heat
transfer scales like Nu ∼ Ra1/2 and turbulence intensity as Re ∼ Ra1/2, where the
Rayleigh number Ra indicates the strength of the driving force (for fixed values of
Pr , which is the ratio between kinematic viscosity and thermal diffusivity). However,
experiments never operate in unbounded domains and it is important to understand
how confinement might alter the approach to this ultimate regime. Here we consider
homogeneous Rayleigh–Bénard convection in a laterally confined geometry – a small-
aspect-ratio vertical cylindrical cell – and show evidence of the ultimate regime
as Ra is increased: in spite of the lateral confinement and the resulting kinetic
boundary layers, we still find Nu ∼ Re ∼ Ra1/2 at Pr = 1. Further, it is shown that
the system supports solutions composed of modes of exponentially growing vertical
velocity and temperature fields, with Ra as the critical parameter determining the
properties of these modes. Counter-intuitively, in the low-Ra regime, or for very
narrow cylinders, the numerical simulations are susceptible to these solutions, which
can dominate the dynamics and lead to very high and unsteady heat transfer. As
Ra is increased, interaction between modes stabilizes the system, evidenced by the
increasing homogeneity and reduced fluctuations in the root-mean-square velocity
and temperature fields. We also test that physical results become independent of
the periodicity length of the cylinder, a purely numerical parameter, as the aspect ratio
is increased.
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1. Introduction
There has been longstanding scientific interest in the heat transfer in

Rayleigh–Bénard convection (RBC) – when a fluid confined between two plates
undergoes thermal convection due to a temperature difference between the cold top
and hotter bottom plate (Siggia 1994; Kadanoff 2001; Ahlers, Grossmann & Lohse
2009; Lohse & Xia 2010). The dynamics of the system depends on the strength of
the driving temperature difference (given by the Rayleigh number, Ra) and the ratio
of the kinematic viscosity to the thermal diffusivity (given by the Prandtl number, Pr).
Recently, studies of unconfined thermal convection – starting with the numerical work
by Lohse & Toschi (2003) – were prompted by the relevance to natural convection
phenomena, as occurs in the Earth’s atmosphere (Celani et al. 2007) or in the core
of stars (Garaud et al. 2010; Simitev & Busse 2010), and as a way to test theoretical
predictions for the scaling of the heat transfer (given by the Nusselt number, Nu) and
turbulence intensity (given by the Reynolds number, Re).

In the limit of high Ra it was proposed that the dynamics would reach an ultimate
regime of thermal convection, which is dominated by the bulk flow rather than the
viscous and thermal boundary layers (Kraichnan 1962). Within the Grossmann–Lohse
theory of thermal convection, this regime where the dynamics does not depend on
thermal plumes is also predicted (Grossmann & Lohse 2000, 2001, 2002). Under these
conditions, the Reynolds and Nusselt numbers are predicted to scale like Re ∼ Ra1/2

and Nu ∼ Ra1/2, with different Pr scaling depending on the theory (Kraichnan 1962;
Spiegel 1971; Grossmann & Lohse 2000, 2001, 2002). The question of the existence
of this regime was addressed in simulations of homogeneous Rayleigh–Bénard
convection in a tri-periodic cell (i.e. without confinement), where evidence was found
supporting such a regime when all of the boundaries (and thus boundary layers)
were absent (Lohse & Toschi 2003) and confirming (Calzavarini et al. 2005) the
Prandtl number dependence, Nu ∼ Ra1/2Pr1/2 and Re ∼ Ra1/2Pr−1/2, as suggested by
Grossmann & Lohse (2000, 2001, 2002). The statistical properties of the turbulent
flow realized in such a system at high Ra numbers, with particular attention paid
to its anisotropic fluctuations, were addressed in Biferale et al. (2003). Exponentially
growing solutions at low Ra were analytically derived by Calzavarini et al. (2006)
and observed in the simulations, appearing as ‘elevator modes’ composed of strong
upward and downward jets, and coinciding with an increasing heat transfer until the
modes became unstable and disintegrated. The instability thresholds and growing rates
of the ‘elevator mode’ solutions turn out to be identical to those derived by Batchelor
& Nitsche (1991) for the stability of a stratified fluid in an unbounded domain.

Later, experiments performed in long rectangular channels by Gibert et al.
(2006, 2009) and Tisserand et al. (2010) and in cylindrical pipes by Arakeri et al.
(2000) and Cholemari & Arakeri (2009) also found scaling laws consistent with those
expected for the ultimate regime, despite the presence of the sidewalls, which cause
an additional anisotropy and drag in the flow. They also observed a mean global
flow composed of hot upward- and cool downward-moving columns. Whereas in
standard RBC strong thermal gradients occur at the top and bottom plates, leaving the
temperature field within the bulk flow nearly uniform, in the experiments with long
cells, there exists a mean, linear temperature gradient throughout the bulk. It is this
underlying linear gradient that is used to drive the convection in homogeneous RBC,
and in the axially periodic convection cell considered here.

Instability of a stationary uniformly stratified fluid contained in a vertical circular
cylinder was possibly first investigated by Halesa (1937), who was interested in
the mechanism of geysers. Later on, Taylor (1954) investigated the same problem,
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estimated the critical Rayleigh number for the appearance of convection and validated
this result by means of experimental observations. Jones & Moore (1979) have studied
the case of stress-free conditions at the cylinder wall. Finally Batchelor & Nitsche
(1993) have taken into consideration the case in which the imposed initial stratification
function, T̄(z), also has a sinusoidal profile. We address the interested reader to this
latter work for a more detailed description of past analytical studies on this problem.

In the present work, we numerically and analytically investigate thermal convection
in a long vertical cylinder, in both the low-Ra and high-Ra limits. Though the top
and bottom boundary layers are absent, the sidewalls are still present as in the
experimental situations. The objective is to find out whether also in this confined
(and presumably more stabilizing) geometry exponentially growing solutions (so-
called elevator modes) exist, how the Nusselt and Reynolds number depend on Ra,
and how the results compare to recent experiments in confined flow geometries
(Arakeri et al. 2000; Perrier, Morat & LeMouel 2002; Gibert et al. 2006, 2009;
Cholemari & Arakeri 2009). We first derive exponentially growing mode solutions
of the governing Boussinesq equations with laterally confined boundary conditions,
and compare them with results from simulations. Then we increase Ra and find that
interaction between the modes stabilizes the system. This interaction prevents the
growth of the exponential modes, and allows us to define the global heat transfer and
the global Reynolds number of the system.

2. The axially homogeneous Rayleigh–Bénard system and a class of analytic
solutions

2.1. Definition of the system
The system under study is axially homogeneous thermal convection in a vertical
cylinder, i.e. in a domain with periodic boundary conditions in the axial direction, but
with lateral confinement. Standard Rayleigh–Bénard convection occurs in a cylinder
(or other geometry) with top and bottom plates kept at fixed temperatures, and
this temperature difference drives the flow. In the homogeneous or periodic case,
with no boundaries except the radial wall, we drive the flow using a temperature
gradient ∆′ = dT̄/dz, where T̄ is an underlying mean temperature profile (here
assumed to be linear in z) about which the Θ fluctuations occur in experiments
(Gibert et al. 2006, 2009). The diameter of the cylinder d is the only imposed
scale, and therefore we make the hypothesis that d is the relevant length scale for
the convection (aside from the additional smaller scales as turbulence develops). The
periodicity length L, which can be combined with the diameter to form the aspect ratio
Γ = d/L, is much less relevant because it does not change the forcing of the system.
We non-dimensionalize the governing Navier–Stokes equations under the Boussinesq
approximation using x̂= d for lengths, the free-fall speed û=√αg∆′ d2 for velocities,
and T̂ = ∆′ d for temperatures. The Prandtl number is Pr = ν/κ and the Rayleigh
number is

Ra= αg∆′ d4

νκ
. (2.1)

Here the material parameters are the coefficient of thermal expansion α, the kinematic
viscosity ν, and the thermal diffusivity κ; the gravitational acceleration is denoted
as g. Notice that the same definition of the Rayleigh number was chosen in the
experimental studies by Gibert et al. (2006, 2009) and Tisserand et al. (2010). The
more usual Rayleigh number based on the height of a closed Rayleigh–Bénard
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cell, RaL = αg1T L3 (νκ)−1, where 1T is the temperature difference between the
horizontal plates, is linked to the present one through the relation RaL = RaΓ 4.

In non-dimensional form, the Boussinesq equations read

Dū

Dt
=−∇̄P+

√
Pr

Ra
∇2ū+Θ ẑ, (2.2)

DΘ
Dt
= 1√

Pr Ra
∇2Θ + w, (2.3)

where ū = (u, v,w) is the velocity field with components in the r, θ and z directions,
respectively, P is the dimensionless pressure field, and the D/Dt symbol stands for the
material derivative operator.

The velocity field satisfies the no-slip condition at the lateral walls located (in
non-dimensional units) at r = rext = 1/2, so that

ū|r=1/2 = 0. (2.4)

For the temperature T , we consider either a fixed condition at the lateral wall, which
in terms of the fluctuations Θ means

Θ|r=1/2 = 0, (2.5)

or adiabatic conditions at the wall, corresponding to

∂Θ/∂r|r=1/2 = 0. (2.6)

The system defined so far models the physical situation of a vertical pipe connected to
two infinite reservoirs of fluids at different temperatures. However, in real experiments,
homogeneous convective systems are produced by connecting a vertical conduit to two
closed and finite chambers filled with fluid at different temperatures (see e.g. Gibert
et al. 2006; Cholemari & Arakeri 2009). Therefore, in order to mimic such a system
in the following, it will be important to take into account the condition of no net
vertical mass flux, which corresponds here to a zero total vertical momentum over any
horizontal section (at any height z) in the system:∫ rext

0

∫ 2π

0
wr dr dθ = 0. (2.7)

Note that the definition of Θ already implies the condition
∫ rext

0

∫ 2π
0 Θr dr dθ = 0 at

any height z. The no net mass flux condition, however, does not prevent a bottom-up
convective heat flow. We indeed expect

∫ rext
0

∫ 2π
0 wΘr dr dθ > C, where C is positive,

independent of z, but it can be time-dependent.

2.2. Elevator mode solutions to governing equations
As in the tri-periodic case, we look for solutions that are translationally invariant in z
and have u = v = 0 (Calzavarini et al. 2006). The coupled equations for the vertical
velocity w(r, θ, t) and temperature Θ(r, θ, t) are then

∂w

∂t
=
√

Pr

Ra
∇2w+Θ, (2.8)

∂Θ

∂t
= 1√

Pr Ra
∇2Θ + w. (2.9)
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An adiabatic sidewall boundary condition (2.6) is relevant for experiments where tanks
or cells are insulated at the sides, and will be implemented throughout the remainder
of this paper. The Appendix gives the analytic result for the fixed-temperature sidewall
boundary condition (2.5). The mixed (i.e. adiabatic) boundary condition case is more
difficult to solve analytically, but solutions can still be written for the special case
Pr = 1. This case will be described in detail in the following.

Trying solutions with an exponential growth time dependence (eλt), (2.9) simplifies
and can be uncoupled by introducing two new fields X(r, θ) and Y(r, θ),

X(r, θ)= w(r, θ)−Θ(r, θ), (2.10)

Y(r, θ)= w(r, θ)+Θ(r, θ), (2.11)

that satisfy

√
Ra(λ+ 1)X = ∂

2X

∂r2
+ 1

r

∂X

∂r
+ 1

r2

∂2X

∂θ 2
, (2.12)

√
Ra(λ− 1)Y = ∂

2Y

∂r2
+ 1

r

∂Y

∂r
+ 1

r2

∂2Y

∂θ 2
. (2.13)

The azimuthal dependence can be expanded as a combination of sin(nθ) and cos(nθ)
and written in terms of the modes Xn and Yn, which satisfy the modified Bessel
equation:

r2 d2Xn

dr2
+ r

dXn

dr
− (√Ra(λmn + 1) r2 + n2)Xn = 0, (2.14)

r2 d2Yn

dr2
+ r

dYn

dr
− (√Ra(λmn − 1) r2 + n2)Yn = 0. (2.15)

The m label for the growth rate is necessary because again there are multiple solutions
for a given n, λmn, which satisfy the boundary conditions. The radial dependences of
the solutions to (2.15) are

Xn(r)= x0 In(
√
(λmn + 1)Ra1/4 r), (2.16)

Yn(r)= y0 In(
√
(λmn − 1)Ra1/4 r), (2.17)

where In is the modified Bessel function of the first kind. The modified Bessel
functions of the second kind, Kn, are also solutions to (2.13) but are not physically
acceptable because they diverge at r = 0.

The vertical velocity and temperature fields then have the form

wn(r, t)= a0 eλmnt [Yn(r)+ Xn(r)], (2.18)

Θn(r, t)= a0 eλmnt [Yn(r)− Xn(r)], (2.19)

where the prefactor a0 is unprescribed.
The growth rate of each mode λmn depends on Ra. After applying the boundary

conditions at the cylinder wall at r = rext = 1/2 ((2.4) and (2.6)), the solutions
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correspond to the roots of

−
√
λ− 1
λ+ 1

In

(
1
2

√
(λ+ 1)Ra1/4

)
In

(
1
2

√
(λ− 1)Ra1/4

)

=
In−1

(
1
2

√
(λ+ 1)Ra1/4

)
+ In+1

(
1
2

√
(λ+ 1)Ra1/4

)
In−1

(
1
2

√
(λ− 1)Ra1/4

)
+ In+1

(
1
2

√
(λ− 1)Ra1/4

) . (2.20)

Even though there are multiple solutions λ = λmn for each mode n, the maximum
growth rate – which always appears for the smallest m index – will dominate over the
others as time progresses. In conclusion, while the n index is related to the number of
oscillations (or nodes) of the solution along the azimuthal direction θ , the m mode is
connected to the number of nodes along the radial direction r.

Intuitively one might guess that the exponential growth cannot be maintained, and
would be arrested by friction on the sidewalls. However, the solutions to the above
system of equations have not ignored viscous drag on the walls. Even though the
velocity, and gradients at the walls, are growing exponentially, the frictional force does
not overtake the driving buoyancy force.

In the periodic RB cell, the global, time-averaged dimensionless heat transfer is
given as

Nu= 〈wΘ〉
κ∆′

+ 1, (2.21)

where the brackets indicate a volume (surface would be the same) and time average.
When |w| ∼ eλmnt and |Θ| ∼ eλmnt, the instantaneous heat transfer Nu(t) ∼ e2λmnt also
grows exponentially in time.

2.2.1. Axisymmetric, dipolar modes and critical Rayleigh number
The spatial form of solutions corresponding to the zero-mode case (n = 0) has an

axisymmetric profile (see (2.17)). Obviously these zero-mode axisymmetric solutions
have a non-zero mean vertical flow and non-zero mean temperature fluctuation, and so
they are in conflict with the condition (2.7). Although these solutions are non-physical
(they correspond to an unbounded infinite system), they will be useful in the following
to validate our simulations.

From the above considerations we deduce that the first unstable physical mode is
n = 1, which corresponds to a dipolar flow profile, moving upwards in half of the
cylinder and downwards in the other half. Such dipolar modes were also observed
in experiments in a cylindrical column (Cholemari & Arakeri 2009). The critical
Rayleigh number corresponding to each mode can be computed from (2.20) by
imposing λmn = 0, the value of n, and by looking at the mth zeros of the resulting
equation:

− i
In

(
1
2
Ra1/4

)
In

(
i
2
Ra1/4

) = In−1

(
1
2
Ra1/4

)
+ In+1

(
1
2
Ra1/4

)
In−1

(
i
2
Ra1/4

)
+ In+1

(
i
2
Ra1/4

) . (2.22)
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Ra λmn m= 1 2 3

7.66×103 n= 0 0.810 0.022 —
1 0.520 — —
2 0.140 — —

3.06×104 0 0.890 0.450 —
1 0.730 0.120 —
2 0.520 — —
3 0.260 — —

1.23× 105 0 0.940 0.700 0.2800
1 0.860 0.520 0.0041
2 0.740 0.310 —
3 0.600 0.080 —
4 0.440 — —
5 0.250 — —
6 0.040 — —

TABLE 1. Positive growth rates λmn corresponding to active modes, for Ra= 7.66× 103

(top), Ra= 3.06× 104 (middle) and Ra= 1.23× 105 (bottom) at Pr = 1.

For the dipolar flow with n= 1,m= 1, we find Rac = 1087.397. Note that the value of
Rac coincides with the one derived by Batchelor & Nitsche (1993) once one has taken
into account that these authors defined Ra based on the cylinder radius length rather
than on the diameter, as in the present study.

In table 1 we list the active modes at different Ra numbers above Rac. For the
specific case Ra = 7.66 × 103 and Pr = 1.0, the n = 0 maximum growth rate is
λ10 = 0.81. The first physical dipolar mode has growth rate λ11 = 0.52. The growth
rates and their spatial dependences are confirmed by our simulations and they will be
discussed in the following sections.

3. Numerical method
Numerical simulations in a cylindrical cell are performed using the code developed

by Verzicco & Orlandi (1996) and Verzicco & Camussi (2003), modified to satisfy the
periodic conditions at z = 0,L. Furthermore, to satisfy the condition (2.7), the vertical
flow and mean temperature fluctuation are subtracted at each time step. A similar
procedure was adopted in the earlier tri-periodic cell simulations by Lohse & Toschi
(2003) and Calzavarini et al. (2005, 2006). A finite difference scheme on a staggered
grid is used to directly solve the incompressible continuity, momentum equation and
energy equations under the Boussinesq approximation using a fractional step method
(Kim & Moin 1985; Verzicco & Orlandi 1996; Verzicco & Camussi 2003). The grid
is non-uniform in the radial direction, but is uniform in z owing to the periodicity,
allowing the pressure solver to take advantage of trigonometric expansions and making
the routine more efficient. In the simulations we must fix the axial periodicity length
L, which is here just a numerical parameter rather than a physical scale for the system
dynamics. We expect, and will find, that, as the aspect ratio Γ = d/L is reduced (by
increasing the periodicity length L), the system properties become independent of Γ .

All the simulations have been started with a velocity field at rest and the
temperature field consisting only of a random perturbation of maximum amplitude
0.01∆′d.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ité

 d
e 

Li
lle

, o
n 

25
 Ja

n 
20

22
 a

t 1
0:

07
:4

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

44
0

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2011.440


Axially homogeneous Rayleigh–Bénard convection in a cylindrical cell 59

t
 0  

r
0  10  20  30

0.5

1.0

1.5

2.0104

100

10–4

10– 8

(a) (b)

 0.25  0.50  0.75 1.00

m
ax

(r
),

 (
r)

-Theory
-Simulation

-Simulation
w

-Theory

w

w
w

FIGURE 1. (a) Growth rate of vertical velocity field w for the n = 0 axisymmetric mode
as a function of non-dimensional time; the simulation with Γ = 1/2 (solid black line)
approaches the theoretical prediction of λ10 = 0.81 (dashed grey line). (b) Spatial forms of w
and temperature fluctuation field Θ for Ra= 7.66× 103; the simulation and theory coincide.
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FIGURE 2. (a) Growth rate of vertical velocity field w for the n = 1 dipolar mode as a
function of non-dimensional time; the simulation with Γ = 1/2 (solid black line) approaches
the theoretical prediction of λ10 = 0.52 (dashed grey line). (b) Spatial forms of w and
temperature fluctuation field Θ for Ra= 7.66× 103; the simulation and theory coincide.

The new code implementation with periodic conditions was first checked by
direct comparison of the predicted growth rates and radial forms of w and Θ

from the analysis in the previous section, both for cases where n = 0 and n = 1
modes dominated, along with the fixed-temperature sidewall boundary conditions (see
Appendix). For Ra = 7656, Pr = 1 and Γ = 1/2, the axisymmetric and dipolar modes
are isolated at early times and are shown in figures 1 and 2, comparing well with the
theoretical predictions. Here, because the velocity and temperature fields are observed
to be z-independent, we use the maximum vertical velocity field calculated at each
time step to represent a0 eλmnt from (2.19).

When only a few of the exponentially growing modes are active at low Ra (as for
the parameters in table 1), the velocity and temperature gradients at θn = 2π/n grow
exponentially and thus the resolution unavoidably becomes insufficient at some point.
However, this is only an issue for low-Ra cells because, as more modes are available,
their interaction prevents such a situation from occurring. We find that, though the
resolution can affect the maximum w and Θ (and thus the heat transfer) obtained
during the oscillations of the system, the growth rates are unaffected. For example, at
Ra = 7656, Pr = 1 and Γ = 1/4 where the λ11 mode strongly dominates the system,
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FIGURE 3. Exponential growth and stabilization of vertical velocity field w for Ra =
7.66 × 103, Pr = 1 and Γ = 1/4 as a function of non-dimensional time, for resolutions
65 × 33 × 129 (solid line) and 129 × 65 × 129 (dashed line). The predicted growth rate of
λ11 = 0.52 is shown as a dotted line.

Ra Γ Nθ × Nr × Nz Nu Re 〈w2〉/〈u2
h〉 εu(∇iuj)/εu(Nu) η/d

3.06× 104 1/4 129× 65× 257 197 205 3.12 1.020 2.06× 10−2

1.23× 105 1/2 129× 65× 129 384 428 2.50 0.970 1.29× 10−2

1.23× 105 1/4 129× 65× 257 271 377 2.23 0.970 1.36× 10−2

4.90× 105 1/2 257× 129× 257 678 880 — 1.000 7.95× 10−3

4.90× 105 1/4 257× 129× 513 409 716 1.84 1.000 8.54× 10−3

4.90× 105 1/8 257× 129× 1025 431 730 1.98 1.000 7.46× 10−3

7.84× 106 1/2 257× 129× 257 4544 4702 2.49 0.832 2.79× 10−3

7.84× 106 1/4 257× 129× 513 2349 3665 1.80 0.870 2.87× 10−3

7.84× 106 1/8 257× 129× 1025 2196 3664 1.70 0.890 2.85× 10−3

1.57× 107 1/4 257× 129× 513 2386 4747 1.59 0.830 2.4× 10−3

1.57× 107 1/8 257× 129× 1025 3248 5349 1.76 0.820 2.2× 10−3

3.14× 108 1/4 257× 129× 1025 12 191 22 909 1.43 0.550 8.5× 10−4

TABLE 2. Parameters and results from simulations. Columns contain Rayleigh number
Ra, aspect ratio Γ , grid resolution (number of nodes in θ , r and z directions), Nusselt
number Nu calculated by volume average of (2.21), Reynolds number Re calculated
from mean fluctuating velocity, ratio of the vertical to horizontal energies in fluctuating
fields, check of global relation of εu(∇iuj) calculated directly from velocity gradients
compared to εu(Nu) ≡ (ν3 NuRaPr−2 d−4), and finally the non-dimensional Kolmogorov
scale η calculated from the kinetic energy dissipation rate εu(∇iuj).

simulations with a resolution of 129 × 65 × 129 (in θ , r, z) reach a maximum vertical
velocity of wmax = 1000 before stabilizing, compared to wmax = 200 for a resolution
of 65 × 33 × 129 (shown in figure 3). Even though the early-time dynamics depends
on the resolution, the growth rate and steady state that is reached are unaffected. The
situation is analogous to what Calzavarini et al. (2006) found in the unconfined RB
system.

The consistency of the code was also verified using the relation between the Nusselt
number and the volume and time-averaged kinetic dissipation rate, εu = ν|∇u |2. For
the periodic cell, εu = ν3 NuRaPr−2 d−4, which is confirmed within a few per cent as
long as the spatial resolution of the simulation is adequate (see table 2). It should be
noted that for increasing Ra the previous identity is verified less satisfactorily since
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FIGURE 4. Instantaneous contour plots of the dimensionless vertical velocity w, through a
vertical cross-section of the cell, for Ra= 7.66× 103, Pr = 1 and Γ = 1/2. Times are chosen
as follows: just before stabilization of the growing dipolar mode at (a) t = 99.9; during
stabilization when horizontal velocity fluctuations are growing at (b) t = 99.96 and (c)t =
100.02; and later after decay at (d) t = 100.2. Note that the colour/grey scales are varied
according to the flow so that the structure can be seen at all times. A movie of the process is
provided in the supplementary material available at http://dx.doi.org/10.1017/jfm.2011.440.
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FIGURE 5. Aspect ratio dependence of mode growth and decay at Ra = 7.66 × 103 and
Pr = 1. Plotted are the r.m.s. vertical (solid line) and horizontal (uh, dashed line) velocity
components for Γ = 1/2 (black) and Γ = 1/4 (grey).

limitations of the computational resources prevented us from running cases on larger
grids.

4. Results
At low Ra we observe individual growing modes which, depending on Ra and Γ ,

dominate the system dynamics. Already shown in figures 1–3 is the exponential
growth at early times for simulations with Ra = 7.66 × 103, Pr = 1 and Γ = 1/2 and
1/4. After the initial growth at Γ = 1/2, figure 5 shows that the system temporarily
stabilizes as horizontal velocity field fluctuations increase, which destroys the axially
uniform modes of (2.9). This process continues periodically, with the horizontal field
growing and decaying. This is visualized in figure 4, which shows snapshots of the
dimensionless vertical velocity in a vertical cross-section through the axis of the
cell, just before, during and after the stabilization process has occurred. Analogous
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FIGURE 6. Plot of (1/2) d ln(Nu)/dt, along with the active mode growth rates from table 1
for Ra = 7.66 × 103 and Pr = 1, for Γ = 1/2. The axisymmetric mode with λ10 = 0.81 was
suppressed, so the system periodically sets in on the next fastest growing mode λ11 = 0.52.

dynamics was observed in the tri-periodic homogeneous RB system of Calzavarini
et al. (2006), and the process was found to depend sensitively on the numerical
resolution and time step size. Here, we have an additional parameter, the periodicity
length, which can affect this stabilization process. If the periodicity length is increased
so that Γ = 1/4, instead of observing the long-term periodic behaviour, the system
settles and stabilizes after the horizontal fluctuations become of the same order as the
vertical fluctuations (figure 5). This indicates that the origin of the physical process
that causes the destruction of the exponentially growing modes is related to the ability
of the fluctuations to extend along the z direction.

Plotting (1/2) d ln(Nu)/dt as a function of time, along with the active λmn, clearly
shows convergence of the system to the fastest growing mode for Ra= 7.66× 103 with
Γ = 1/2 in figure 6.

As Ra is increased, more modes are present and the growth rates become closer
together. This leads to interaction between the modes and stabilization of the system
by preventing individual modes from dominating the flow. Figure 7 shows the time
variation of the Nusselt number for Ra= 1.23× 105 for Γ = 1/2 and Γ = 1/4.

Though the observed maximum of growth rate jumps among the modes with lower
growth rates, there is no prolonged exponential growth as was seen at lower Ra. There
is again a difference between Γ = 1/2 and 1/4 – the simulations at lower aspect ratio
do not reach the same maximum growth rates, leading to a more stable system. For
reference and comparison to figure 4 with Γ = 1/2, figure 8 shows a snapshot of the
vertical velocity field in a Γ = 1/8 cell for Ra= 7.85× 106.

We have already seen that the aspect ratio of the cell, determined by the chosen
numerical periodicity length, can affect the stabilization of the system by the
breakdown of the exponentially growing modes (figures 5 and 7). Because we are
interested in understanding the heat transfer and development of turbulence in a long
pipe, when going to higher Ra one would hope that the results are unaffected by the
choice of the periodicity length. Table 2 shows simulation results at Ra = O(104–108)

at aspect ratios Γ = 1/8, 1/4 and 1/2. The aspect ratio was changed by doubling the
periodicity length, and keeping the resolution in z the same. It appears that the global
system properties indeed start to converge once Γ = 1/4–1/8 for Ra = O(105–106).
For higher Ra, there is still aspect ratio dependence, but numerical limitations prevent
us from increasing the periodicity length further. Since the Γ = 1/4 simulations
require half the number of grid points with respect to longer cells with Γ = 1/8,
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FIGURE 7. Plot of (1/2) d ln(Nu)/dt for Ra = 1.23 × 105 and Pr = 1, for (a) Γ = 1/2 and
(b) Γ = 1/4. The active mode growth rates reached by the system are shown by the horizontal
lines at λ= 0.60, 0.52, 0.44, 0.31, 0.28, 0.25, 0.080, 0.04, 0.0041 from table 1.
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FIGURE 8. Instantaneous contour plot of the dimensionless vertical velocity w, through a
vertical cross-section of the cell, for a typical state at Ra= 7.84× 106, Pr = 1 and Γ = 1/8.

higher-Ra simulations that already require a finer resolution are done with the
intermediate aspect ratio Γ = 1/4.

The spatial variation of the root-mean-square (r.m.s.) velocity components plotted in
figure 9 for various Ra shows the horizontal velocity uh,rms peaks at the axis, and goes
to zero at the walls. The vertical velocity fluctuations peak closer to the walls, with a
local minimum along the axis, falling to zero at the walls owing to friction. At lower
Ra, the horizontal fluctuations do not reach the same size as the vertical fluctuations
at the axis. As Ra is increased, uh,rms increases relative to wrms at the axis, eventually
overtaking wrms. The horizontal fluctuations also become more uniform across the cell.
The peaks in wrms become sharper and move towards the outside.

Similar behaviour was observed in the measured profiles in the buoyancy-driven
pipe turbulence experiments of Cholemari & Arakeri (2009). In their experiments with
Ra ≈ 108 and Pr = 670, the profiles resembled those of figure 9(a) for the lower
Ra= 3.06× 104 and Pr = 1, but the horizontal fluctuations reached only about 60 % of
the magnitude of the vertical fluctuations at the axis. The reason for the resemblance
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FIGURE 9. Spatial variations of r.m.s. horizontal (uh,rms, solid line) and vertical (wrms, dashed
line) velocities, and of the turbulent shear stress (〈uhw〉, dotted line) for Γ = 1/4 and Pr = 1
at (a) Ra= 3.06× 104, (b) Ra= 1.23× 105 and (c) Ra= 1.57× 107.

to the lower-Ra result here is almost certainly the high value of Pr . To check, we also
calculated that the turbulent shear stress 〈uhw〉 was absent across the cell. For all cases,
〈uhw〉 is close to zero compared to the r.m.s. components. As in the experiments, the
system remains anisotropic, evidenced by the fact that 〈w2〉/〈u2

h〉 6= 1/2, especially near
the walls, where the horizontal fluctuations fall to zero much more rapidly than the
vertical fluctuations.

Counter-intuitively, the heat transfer at low Ra = O(104) and smaller is very large
owing to single exponential modes dominating the system in this regime. For these
systems, it is inappropriate to define an average Nu or Re because we have seen
that the maximum peaks (as in figure 5) depend on the grid resolution. As Ra is
increased, the system stabilizes as a result of mode interaction and the scaling appears
consistent with Nu ∼ Ra1/2 for Ra = O(105–108), as shown in figure 10. The values
used to determine the scaling law come from the runs at aspect ratio 1/4 (given in
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FIGURE 10. Scaling of (a) Nusselt number Nu and (b) Reynolds number Re with Ra for
Γ = 1/4 data. Dashed lines have slope 1/2 for comparison. The power-law fits (solid lines)
have slopes of 0.50± 0.06 for Nu and 0.51± 0.05 for Re.

table 2). Errors are estimated by the percentage difference between the two methods
to calculate the Nusselt number (one being the volume average in (2.21), the other
being via the global relation with the kinetic energy dissipation rate). The highest
Ra runs appear under-resolved but nevertheless the prediction confirms the scaling
laws. The mean Reynolds number is calculated as Re = 〈u2〉1/2V,t d/ν (where u is the
total dimensional velocity), and also appears consistent with the 1/2 power law from
figure 10. In Cholemari & Arakeri (2005) a mixing length model for the amplitude
of Nu and Rez ≡ 〈w2〉1/2V,t d/ν versus Ra and Pr was proposed. This model uses as
input the fits to the experimental data (at Pr = 670) and is therefore able to provide
not only the scaling exponents but also the prefactors. Cholemari & Arakeri (2005)
provide, in the limit of Γ →∞, the following scaling laws: Nu = Cm Ra1/2 Pr1/2 and
Rez = K Ra1/2 Pr−1/2 with Cm = 0.88 and K ' 1. The power-law fit, aRab, to our
numerical results (all at Pr = 1) gives here Cm = 0.7± 0.3 and K = 0.9± 0.1, in close
agreement with the mixing length model.

5. Conclusions
We have presented theoretical results and simulations of thermal convection in a

laterally confined cylindrical pipe in the limit of small aspect ratios. At low Ra we find
exponentially growing modes consisting of upward- and downward-flowing columns,
analogous to those found in homogeneous RBC with no boundaries and simulations in
tri-periodic cells (Calzavarini et al. 2005, 2006), along with experimental observations
(Gibert et al. 2006, 2009; Cholemari & Arakeri 2009). The breakdown of these modes
is found to depend on the numerical aspect ratio of the cell (or periodicity length),
implying that their destruction is related to the ability of disturbances in the cross-axial
direction to grow. At higher Ra, the scaling of the heat transfer and turbulence are
consistent with the predicted (Grossmann & Lohse 2000, 2001, 2002) Nu ∼ √Ra
and Re ∼ √Ra scaling of the ultimate, bulk-dominated regime of thermal convection,
just as in the case of the tri-periodic boundary conditions (Lohse & Toschi 2003;
Calzavarini et al. 2005). Furthermore, the measured amplitudes for Nu and Re are in
agreement with the mixing length model by Cholemari & Arakeri (2005).

It is remarkable that the sidewall boundary conditions and the resulting kinematic
boundary layers do not lead to different scaling behaviours with a less steep
increase of Nu with Ra, as common for the lower-Ra regimes, say Ra 6 1012,
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in the unifying theory of Grossmann & Lohse (2000, 2001, 2002). The reason
must be that these kinetic boundary layers only form at the sidewalls, and not at
the top and bottom walls, which do not exist in our setup. We therefore do not
expect a less steep increase of Nu with Ra beyond the onset of turbulence in the
lateral kinetic boundary layers, which is expected to occur beyond a critical shear
Reynolds number Re∗s ≈ 0.5

√
Re≈ 420 (Landau & Lifshitz 1987; Grossmann & Lohse

2000, 2002, 2011). We note that here we are still considerably below this transition, as
even for our largest Ra we only have Res ≈ 75� Re∗s . It would be worth while to push
the numerical simulations in this laterally confined geometry to Ra numbers beyond
the onset of the shear instability, in order to confirm that also then Nu ∼ Re ∼ Ra1/2,
without any logarithmic corrections, which seem to be typical for ultimate RB flow
(and analogous ultimate Taylor–Couette flow) in fully confined (i.e. with boundaries
and boundary layers also towards the top and bottom) geometries (Chavanne et al.
1997, 2001; Dubrulle 2001; van Gils et al. 2011; Grossmann & Lohse 2011).
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Appendix. Zero temperature fluctuations at sidewall solution
Though this boundary condition is not currently relevant for the experiments, it has

a simple solution, which was used to check the numerical results. Zero temperature
fluctuations at the sidewall means that physically the absolute temperature follows the
imposed linear profile at the walls. Equation (2.9) is exactly satisfied by solutions of
the form

wmn(r, θ, t)= w0 eλmnt cos(nθ) Jn(kmnr), (A 1)
Θmn(r, θ, t)=Θ0 eλmnt cos(nθ) Jn(kmnr), (A 2)

where Jn is the nth Bessel function of the first kind (sin(nθ) dependence is also
acceptable). The growth rates λmn and wavenumbers kmn are determined via the
boundary conditions (2.4) and (2.5). Here with w(r = 1/2) = Θ(r = 1/2) = 0, km,n

is related to the ρmn (the m th root of Jn) by

kmn = ρmn

rext
= ρmn

1/2
. (A 3)

The dispersion relation determining the growth rate for each mode is given by

2
√
Pr Ra λmn =−kmn

2 (1+ Pr)+
√

kmn
4(1+ Pr)2 + 4Pr

(
Ra− kmn

4
)
, (A 4)

which has the same form as the tri-periodic case (up to a constant factor, owing
to the different choices for non-dimensionalization), but the allowed values of kmn

differ because of the geometry. Relation (A 4) is valid for any Pr value. The
critical Rayleigh number for the Pr = 1 case, i.e. for λ1,1(Rac,Pr = 1) = 0, is
Rac = k11

4 = 3448.964.
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