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ABSTRACT

We study the three-dimensional turbulent Kolmogorov flow, i.e., the Navier–Stokes equations forced by a single-low-wave-number sinusoi-
dal force in a periodic domain, by means of direct numerical simulations. This classical model system is a realization of anisotropic and non-
homogeneous hydrodynamic turbulence. Boussinesq’s eddy viscosity linear relation is checked and found to be approximately valid over half
of the system volume. A more general quadratic Reynolds stress development is proposed, and its parameters are estimated at varying the
Taylor scale-based Reynolds number in the flow up to the value 200. The case of a forcing with a different shape, here chosen Gaussian, is
considered, and the differences with the sinusoidal forcing are emphasized.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0069688

I. INTRODUCTION

In the late 1950s, Kolmogorov proposed to study the stability
properties of an incompressible flow described by the Navier–Stokes
equation forced by a sinusoidal shear force in a periodic domain. An
answer was put forward soon after,1 indicating the existence of a criti-
cal Reynolds number R ¼

ffiffiffi
2
p

, confirmed also later in Ref. 2 (we will
provide below the definition of Reynolds number which was used in
these works). Such a model system, since then dubbed Kolmogorov
flow (KF), is not straightforward to be realized in experiments.
However, an important work published in the Russian literature3 and
discussed by Obukhov4 describes an experiment using a thin layer of
weakly conducting fluid placed under the influence of a magnetohy-
drodynamic drive resulting in an external force field capable to gener-
ate an analogous flow, for which the stability properties as well as the
transition to the turbulent state were studied. The results of this experi-
ment, supported by a previous theoretical work,5 have been taken as
evidence that there exists in the KF a succession of instabilities with
increasing Reynolds numbers, until reaching a fully turbulent state for
Reynolds numbers of the order of R¼ 1000.3,4 One the other hand,
since the advent of computers and, in particular, since the introduction
of the fast Fourier transform (FFT) algorithm the Kolmogorov flow
has become amenable to be explored via numerical simulations, even
in high-Reynolds number conditions.6 This makes the turbulent

Kolmogorov flow (TKF) possibly the simplest and most accessible
prototype of open flow, i.e., a flow without boundaries, which is at the
same time statistically stationary, anisotropic, and non-homogeneous
(along one direction).6–11 As discussed by Musacchio and Boffetta,11

the TKF can be considered, to some respect, as a turbulent channel
flow (i.e., a pressure-driven parallel flow) without boundaries. In
recent years, the TKF has been mainly studied theoretically and
numerically. The large-scale forcing was originally proposed as a sinu-
soidal force, which, however, is not a requirement, and rather consti-
tutes a convenient simplification for the theoretical analysis and for
numerical implementations (which are mostly based on FFT). Other
shapes for the large-scale forcing could be imagined as well, see, e.g.,
Ref. 12. There were also some studies that have used such forcing for
generating separated boundary conditions.13 Many numerical studies
devoted to KF and TKF have adopted a two-dimensional configura-
tion,14–18 because of its reduced computational cost. It is however
known that 2D turbulence differs from the 3D one due to the existence
of an inverse energy cascade. For this reason in this work, we prefer to
focus on the more realistic three-dimensional case, i.e., fully resolved
Navier–Stokes incompressible turbulence forced along the x direction
by a large-scale sinusoidal force depending solely on the z coordinate.
As observed by Borue and Orszag,6 such flow is a convenient test
ground for transport models. Such a consideration motivates the pre-
sent study.
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The structure of this article is as follows: After a section introduc-
ing the present notations and numerical implementation, the theoreti-
cal framework of linear and nonlinear closure equation for the
Reynolds stress tensor is presented and adapted to the TKF model sys-
tem. First, we consider the classical turbulence closure based on eddy-
viscosity Boussinesq’s approach, where the traceless stress tensor is
assumed to be proportional to the mean strain-rate tensor. Such
expression is at the basis of many turbulence models including k-�,
k-x and all eddy viscosity transport models.19 We show the range of
applicability and limitations of this assumption in the context of TKF.
Second, a nonlinear quadratic Reynolds stress development, that
makes use of tensor invariants, is directly tested on TKF. This is per-
formed along the lines of previous direct test done for channel
flows,20,21 and for various Reynolds numbers. We also compare the
different terms of the kinetic energy equation. In the following section,
a model flow system with a different forcing, non-sinusoidal shape, is
considered, and its differences with the original KF forcing are consid-
ered. The last section (section IV) is devoted to a discussion of the
main findings and conclusions.

II. THE KOLMOGOROV FLOW MODEL SYSTEM
A. Equations of motion and numerical
implementations

The governing equations for velocity field uðx; tÞ are the incom-
pressible Navier–Stokes equations,

@u
@t
þ ðu � rÞu ¼ � 1

q
rpþ �Duþ f ; (1)

together withr:u ¼ 0, where p is the hydrodynamic pressure, q is the
fluid density, and � is the kinematic viscosity. This flow is sustained by
a constant in time and spatially dependent force f of the form,

f ¼ A sin 2p
z
H

� �
ex; (2)

where A is a constant, H is the length of the side of the cubic domain,
chosen here as the characteristic length scale. Such a force, directed
along the x direction and depending only on the z coordinate, makes
the turbulent flow statistically anisotropic and non-homogeneous
along the z direction (but statistically homogeneous in the x-y planes).
It is convenient to introduce the following reference scales for velocity
and time:

U0 ¼ AHð Þ1=2; (3)

T0 ¼
H
U0
¼ H

A

� �1=2

: (4)

From this, one can construct the Reynolds number as

Re ¼ U0H
�

; (5)

which thus becomes the only dimensionless control parameter in the
system. Let us mention that in stability analyses2,5 another Reynolds
number is used, here denoted with R, which aims to characterize the
importance of the external force, rather than the inertial force, with ref-
erence to the viscous force of the turbulent flow. In the present nota-
tion, it reads R ¼ AH3=ð�2ð2pÞ3Þ. It thus yields R ¼ Re2=ðð2pÞ3Þ,

where the 2p factor originates from a slightly different choice of the ref-
erence length: H as the characteristic length for a sine wave
sinð2pz=HÞ in the present case, L for a sine wave written sinðz=LÞ in
Ref. 5. The stability criterion R>

ffiffiffi
2
p

becomes Re>21=4ð2pÞ3=2’18:7.
In the following, we will also use the Reynolds number based on Taylor
microscale, Rek¼ku0=�, where k¼u0

ffiffiffiffiffiffiffiffiffiffiffiffi
15�=�

p
, � is the kinematic vis-

cosity, u0 ¼ 1
3

ffiffiffiffiffiffiffi
u02

p
is the global root-mean square of single component

velocity, �¼ �
2

P
i

P
j ð@iujþ@juiÞ

2 is the global energy dissipation rate,

and the overbar � � � denotes the global average (in time and all over the
spatial domain). The latter number is more convenient to quantify the
degree of turbulence realized in the system. In the rest of this article, all
the reported quantities are dimensionless with reference to the units
defined in (3) and (4).

The Kolmogorov flow model system is numerically simulated
in a cubic tri-periodic domain. The dynamical equations (1) are
solved numerically by means of a pseudo-spectral code using a
smooth dealiasing technique22 for the treatment of non-linear terms
in the equations (see Ref. 23 for a recent discussion on the accuracy
of pseudo-spectral methods for the simulation of developed turbu-
lent flows). The Poisson equation for the pressure is solved in the
spectral domain. Instead of the sudden cutoff used in the conven-
tional 2/3 rule approach, a filter of the high wave number modes
with a relatively smooth filtering function is performed for a smooth
dealiasing, which is capable of reducing high frequency numerical
instabilities. The spatial resolution is chosen such that the condition
j~kjmax � g > 1 is always satisfied, where g is the Kolmogorov scale
estimated with the global energy dissipation rate (which was checked
to be nearly independent of the z coordinate), and j~kjmax � 0:41N
(N is the grid size along each direction) is the maximum wave num-
ber amplitude kept by the dealiasing procedure.22 The time-
marching scheme adopts a third order Runge–Kutta method. The
global non-dimensional values of the key parameters for the simula-
tions are reported in Table I.

Two criteria have been proposed for the convergence of
Kolmogorov flow simulations:24 first the mean energy injection should
be equal (within numerically accuracy) to the total dissipation, and
second the left-hand-side and right-hand-side of Eq. (8) must be equal.
It has been checked here that these two criteria are satisfied in our sim-
ulations [the right-hand-side of Eq. (8) is shown in Fig. 2(b)]. The total
integration time is chosen in such a way to have comparable datasets
for each run and to ensure the statistical convergence of the measure-
ments (see Table I).

B. Reynolds decomposition and velocity moments

Let us consider a Reynolds decomposition of the velocity into
mean and fluctuating quantities u ¼ hui þ u0 (h�i denotes the average
over time and spatially along x and y directions) and indicate the three
Cartesian components of the velocity u ¼ ðu; v;wÞ. Because of the
homogeneity in x and y directions, the derivatives with respect to x
and y of mean quantities are 0. By taking the average h�i of the
Navier–Stokes equations, one obtains the following relations:

�@zs ¼
1
Re
@2z UðzÞ þ sin ð2pzÞ;

@zhw02i ¼ �@zhpi;
(6)
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where U ¼ hui ¼ hui and the shear stress is s ¼ �hu0w0i. Using the
first line of this relation, one can verify that for laminar flows when
s¼ 0, the mean velocity profile is sinusoidal while the pressure field is
constant.1

For turbulent flows, it is well known that the mean velocity pro-
file is also sinusoidal.6 However, this is a numerical result which has so
far, to our knowledge, no direct analytical explanation. We obtain the
following z-dependence for U:

UðzÞ ¼ j sin ð2pzÞ; (7)

where j is a coefficient whose numerical estimation, at varying the
Reynolds number, is plotted in Fig. 1. The maximum value of the

mean turbulent velocity is of the order of the characteristic velocity
built using the forcing values, since we obtain values of j between 1.01
and 1.12, increasing with the Reynolds number (Fig. 1 and Table II).
The values of j found here are compatible with the value of j ¼ 1:1
reported by Borue and Orszag6 (however, this work makes use of
hyperviscosity of the 8th order and the value of the Reynolds number
is not provided). In the work by Musacchio and Boffetta,11 the depen-
dence of the friction coefficient f (written as f ¼ AH

2pj2 in the present
notation) on the Reynolds number based on the forcing scale and
mean velocity (denoted here Re�, which writes Re� ¼ j

2pRe in our
notation) was investigated. Such dependence is also plotted in the inset
of Fig. 1: the friction coefficient values obtained in our simulations are
comparable with those reported by Musacchio and Boffetta11 in the
same range of Reynolds numbers.

For large Reynolds numbers, using Eqs. (6) and (7) we find that
@zs is proportional to sin ð2pzÞ, obtaining finally

s ¼ 1
2p

1� ð2pÞ2 j
Re

� �
cos ð2pzÞ: (8)

The first and second moments of the velocity obtained after averaging
Navier–Stokes equations are shown in Figs. 2(a) and 2(b). We observe
that only one component of the mean velocity is non-zero; concerning
second moments, only the shear stress term hu0w0i is non-zero. The
turbulence is globally anisotropic since all normal stress components
of the stress tensor are different. Specifically, hu02i > hw02i > hv02i
(see Fig. 3). The diagonal terms have twice the spatial frequency of the
forcing. Since cos ð2hÞ ¼ 2 cos2h� 1, they can be written as

hu02i ¼ a1 þ b1 cos
2ð2pzÞ;

hv02i ¼ a2 þ b2 cos
2ð2pzÞ;

hw02i ¼ a3 þ b3 cos
2ð2pzÞ;

(9)

where ðai; biÞ are numerical coefficients expressing the common shape
of the three normal stresses, as visible in Fig. 3. The estimated
values of such coefficients for the different runs are listed in Table II,
which will be important for the quadratic closure done in Sec. III.
Consequently, we can write also the evolution of the mean kinetic
energy,

TABLE I. Global key parameters in each simulation [all provided in the dimensionless units defined in Eqs. (3) and (4)]. The columns from left to right report, respectively: the
run number; the Reynolds numbers Re ¼ HU0

� ; Rek ¼ ku0
� the Taylor-scale based number, Re� ¼ UH

2p� ¼
HjU0
2p� (same as in Ref. 11); the kinematic viscosity �;

� ¼ �
2

P
i

P
j ð@ i uj þ @ j uiÞ

2 is the global energy dissipation rate,�denotes the global average (in time and all over the spatial domain). N3 is the grid size; g ¼ ð�3=�Þ1=4 is
the Kolmogorov scale estimated with the global energy dissipation rate (�); j~k jmax � g is the spatial resolution condition, where j~k jmax � 0:41N is the maximum wave number
amplitude kept by the dealiasing procedure; Ttotal is the total simulation time and Tl is the large eddy turnover time,19 which thus implies that Ttotal=Tl denotes the number of
large eddy turnover time spanned by the simulation in statistically steady conditions; Dt is the numerical time step; �T is the turbulent viscosity calculated according to Eq. (14).

No. Re Rek Re� � � g N3 j~kjmax � g Ttotal=Tl Dt �T

1 787.5 38.7 126.24 0.0013 0.51 0.008 1283 2.64 462.5 0.0015 0.0239
2 984.4 43.5 160.37 0.001 0.52 0.0067 1283 2.22 445.0 0.0014 0.0237
3 1211.5 49.3 197.87 0.000 83 0.52 0.0058 1283 1.90 427.1 0.0014 0.0239
4 1575.0 57.4 261.36 0.000 63 0.52 0.0047 1283 1.56 403.5 0.0013 0.0236
5 2099.9 66.9 358.34 0.000 48 0.54 0.0038 1283 1.25 761.2 0.0013 0.0231
6 3149.9 83.9 565.77 0.000 32 0.57 0.0028 2563 1.82 259.4 0.000 58 0.0221
7 6299.8 123.4 1132.53 0.000 16 0.56 0.0016 2563 1.08 386.0 0.000 54 0.0223
8 15 749.6 198.3 2817.24 6.3 � 10�5 0.56 0.000 83 5123 1.09 70.2 0.000 25 0.0225

FIG. 1. Amplitude of mean velocity profile, j in Eq. (7), as a function of Rek. The
inset panel shows the dependence of the friction coefficient (f) on Re� (blue), in
comparison with the result obtained by Musacchio and Boffetta11 (red). The dashed
black line in the inset panel shows the curve of f ¼ 0:124þ 5:75=Re�, which fits
the red dots in the large Re� range Musacchio and Boffetta.11
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KðzÞ ¼ aþ b cos2ð2pzÞ: (10)

The mean kinetic energy profiles are presented in Fig. 4, from which
we can see that the increase in Reynolds number leads to the global
growth of the kinetic energy. The coefficients a and b as functions of
Rek are plotted in Fig. 5. The values found for the highest Reynolds
number values, plotted as red and green dotted lines in the same fig-
ure, are in good agreement with the values reported in Ref. 6
(a ¼ 0:391 and b ¼ 0:138) for simulations of TKF with hyper-
viscosity. In the same figure, the horizontal black dotted line represents
the global dissipation rate (expressed in the dimensionless form used
in this work) reported by Musacchio and Boffetta11 for Re� ¼ 2000.

C. Kinetic energy balance equation

We next consider the kinetic energy balance equation, giving25

0 ¼ sU 0ðzÞ � �� 1
q
hp0w0i� d

2K
dz2
� d
dz
hw0u02i þ hw0v02i þ hw03i
� �

;

(11)

where the different terms represent, respectively, the production of
kinetic energy, the dissipation, the pressure work, the viscous trans-
port, and turbulent transport. These terms have been computed for
run 7 and are shown in Fig. 6. It is visible first that the viscous trans-
port and pressure works are negligible compared to other terms. There
is a balance between production and dissipation added to turbulent
transport. The production is close to 0 at two positions corresponding
to vanishing velocity shears. At these positions, the kinetic energy is
minimum (see Fig. 4), and also its transport is negative. The produc-
tion is larger for strong shear zones, where the mean velocity shear is
the larger. At these positions, the turbulent transport is also the larger.
The dissipation is almost constant, with a small modulation, as already
noticed in previous works.11 The reason could be the redistribution of
kinetic energy: in places where there is an important production, the
turbulent transport of kinetic energy is also large, and globally the dis-
sipation of kinetic energy has only light modulations compared to
other terms.

III. EXPRESSION OF THE REYNOLDS STRESS
ONTO A TENSOR BASIS

In this section, we aim at deriving a relation expressing the
Reynolds stress in terms of the gradients of the mean velocity flow.

Such a relation, also known as a turbulence closure equation, allows to
have a self-contained model for the description of the mean flow. To
this end, we introduce the Reynolds stress tensor defined as
T ¼ �hu0 � u0i (with � denoting the dyadic product). The aniso-
tropic stress tensor is R ¼ �Tþ 2

3KI, where K is the kinematic energy
and I is the identity tensor. The mean velocity gradient tensor,
A ¼ @huii=@xj, and the mean strain-rate S and rotation-rate W ten-
sors are also introduced as

S ¼ 1
2

@huii
@xj
þ @huji

@xi

 !
; (12)

W ¼ A� S: (13)

A closure for the turbulence equations corresponds to expressing the
Reynolds stress tensor using mean quantities, e.g., when the closure is
local, using the tensors S and W. Below we first consider the simplest
linear closure and estimate the eddy-viscosity, and later on we address
a nonlinear expression using a quadratic constitutive equation.

A. Boussinesq’s eddy-viscosity hypothesis
and its assessment

It is seen from Eqs. (7) and (8) that the only non-zero non-diagonal
term in the stress tensor has the same z-dependence as the mean gradient
term. By dividing Eq. (8) by the derivative of Eq. (7), this leads to an
eddy-viscosity of the form

�T ¼
s

U 0ðzÞ ¼
1

ð2pÞ2j
� 1
Re

� �
: (14)

The eddy-viscosity does not depend on z, but depends on the
Reynolds number and the coefficient j. The values of �T provided by
this equation are shown in Table I; these values are in agreement
with results at comparable Reynolds number11 and imply that
�T=� ¼ Oð102Þ. However, the estimation of an eddy-viscosity does
not validate the linear closure. The Boussinesq’s hypothesis, which is
at the basis of all eddy-viscosity turbulence models, corresponds to a
linear proportionality between tensors,26

R̂ ¼2�TS; (15)

where the notation R̂ is used for the modeled Reynolds stress. For
the flow considered here, there are some symmetries and the only

TABLE II. The numerical values of the coefficients in Eq. (9) for each run.

No. a1 b1 a2 b2 a3 b3 j

1 0:22476 0:0003 0:11216 0:0004 0:14836 0:0002 0:08376 0:0002 0:22796 0:0004 0:04986 0:0002 1:00846 0:0006
2 0:22916 0:0003 0:11556 0:0004 0:15456 0:0002 0:08856 0:0002 0:22716 0:0004 0:05046 0:0002 1:02536 0:0006
3 0:22826 0:0003 0:11526 0:0004 0:16226 0:0002 0:08866 0:0002 0:23786 0:0004 0:05536 0:0002 1:02736 0:0006
4 0:23276 0:0003 0:11416 0:0004 0:16656 0:0002 0:09206 0:0003 0:24836 0:0004 0:05876 0:0002 1:04386 0:0006
5 0:23856 0:0001 0:12236 0:0002 0:17046 0:0001 0:09516 0:0001 0:24896 0:0002 0:06436 0:0001 1:07346 0:0004
6 0:24226 0:0004 0:12916 0:0007 0:17496 0:0003 0:10346 0:0004 0:26746 0:0009 0:07726 0:0004 1:12886 0:0012
7 0:26056 0:0003 0:13946 0:0005 0:17496 0:0002 0:10926 0:0003 0:26786 0:0006 0:07446 0:0003 1:13256 0:0009
8 0:27666 0:0019 0:13646 0:0027 0:18116 0:0013 0:10926 0:0016 0:25906 0:0027 0:07146 0:0013 1:12426 0:0049
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non-zero mean derivative is U 0ðzÞ, so that the mean strain tensor can
be written as

S ¼ a
2

0 0 1

0 0 0

1 0 0

0
BB@

1
CCA (16)

and the anisotropic stress tensor writes

R ¼

2
3
K � r2

u 0 s

0
2
3
K � r2

v 0

s 0
2
3
K � r2

w

0
BBBBBB@

1
CCCCCCA
; (17)

where a ¼ U 0ðzÞ; r2
u ¼ hu02i and the same for r2

v and r2
w.

It is then clear, as also the case for turbulent channel flows,19,27,28

that such a linear relation between tensors can be realized only when
diagonal terms are zero, i.e., in an isotropic situation. However, the
Kolmogorov flow is anisotropic and as seen in Fig. 3, the three normal
stresses are all different, which means that a precise proportionality
does not exist. In such a framework, linear eddy-viscosity models will
only properly capture the shear stress component and cannot repre-
sent the normal stresses. The relative importance of these different
components is considered below by using an alignment indicator.
For this, we consider the inner product between tensors:
A : B ¼ fAtBg ¼ AijBij, where fXg is a notation for the trace of X.
The norm is then jjAjj2 ¼ A : A. As a direct test of Boussinesq’s
hypothesis, we first represent here the normalized inner product of R
and S tensors (which is similar to the cosine of an “angle” between
vectors, see Refs. 20 and 29)

qRS ¼
R : S
jjRjj jjSjj : (18)

The ratio qRS is thus a number between�1 and 1, which characterizes
the validity of Boussinesq’s hypothesis: it is 1 when this hypothesis is
valid, and when close to 0 it corresponds to the case of “orthogonal”
tensors. The behavior of this quantity is shown in Fig. 7. It is seen that
a plateau close to the value one appears in certain regions; in particu-
lar, the Boussinesq’s hypothesis is approximately valid when the mean
velocity gradient is large, whereas it fails dramatically for some range
of values around the positions where the mean velocity gradient
vanishes.

More quantitatively, from run 7, we find qRS ¼ 0:93 for z¼ 1/2
and by choosing a threshold value at qRS ¼ 0:9, we find that
0:9 � qRS � 1 for z 2 ½0; 0:13	 [ ½0:39; 0:59	 [ ½0:87; 1	. Hence for
about half of the volume (46%) the linear relation between strain and
stress tensor is approximately valid with qRS larger than 0.9, while for
the rest of the flow such a linear relation fails to a large extent.

Furthermore, by considering Fig. 6 providing the different energy
transport terms, we see that Boussinesq’s hypothesis is closest to valid-
ity at positions where the turbulent production is larger and is totally
failing at positions where there is almost no production and a negative
turbulent transport term, meaning that the local dissipation is the
result of a transport of kinetic energy.

B. A quadratic development for the Reynolds stress

We have seen above that the linear closure model cannot produce
an anisotropic Reynolds stress tensor for anisotropic flows such as the
Kolmogorov flow. Pope30 has proposed to use the invariant theory in
turbulence modeling, to represent the stress tensor as a development
into a tensor basis composed of symmetric and traceless tensors
expressed as polynomial based on the mean strain and rotation ten-
sors. Originally it was on the form R̂ ¼

P10
i¼1 aiTi with 10 basis ten-

sors. By considering a quadratic development, only three tensors are

FIG. 2. (a) The adimensional mean quantities of each component of the velocity of
run 8. The only non-zero term is hui, having a maximum value of j, where
j ¼ 1:12. The black dotted line shows the curve of j sin ð2pzÞ. The inset plot
shows the deviation of hui from j sin ð2pzÞ estimated by jhui�j sin ð2pzÞj

j . (b) The dif-
ferent adimensional shear stress terms of run 8. The only non-zero term is hu0w 0i,
whose z dependence is given by relation (8). The black dotted line shows the func-
tion ��T dhui

dz , where �T ¼ 0:023 is the turbulent viscosity [Eq. (14)] for the run 8.
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used, which is complete for two dimensional flows,30 and is also a
good approximation for fully three-dimensional flows.31 As it was
used for channel flows21,32 and for a tube bundle,33 we propose here to
use it also for the TKF.

In this framework, the anisotropic stress tensor can be written in
a three tensor basis. The two last tensors being non-linear expressions
of the mean strain and rotation tensors, this three-terms development
is also a nonlinear constitutive equation,

R̂ ¼a1T1 þ a2T2 þ a3T3; (19)

where the three tensors of the basis are all symmetric and traceless,30

T1 ¼ S; T2 ¼ SW�WS; T3 ¼ S2 � 1
3
g1I: (20)

The coefficients ai can be written using scalar invariants of the flow,
which correspond to scalar fields whose values are independent of the
system of reference. Invariants can be defined as the traces of different
tensor products.34 Some of the first invariants are the following:

g1 ¼ fS2g, g2 ¼ fW2g; g3 ¼ fS3g, g4 ¼ fSW2g; g5 ¼ fS2W2g,
l1 ¼ fR2g; l2 ¼ fRSg, l3 ¼ fRSWg, and l4 ¼ fRS2g. All these
invariants can be here estimated numerically. The coefficients a1, a2,
and a3 can be expressed using the above invariants by projecting the
constitutive equation [Eq. (19)] onto the tensor basis: successive inner
products of this equation with tensors Ti provide a system of scalar
equations involving the invariants.31 For two-dimensional mean flows
such as the KF, we have g3 ¼ 0 and g5 ¼ g1g2=2, and the system of
scalar equations is inverted to provide finally the quadratic constitutive
equation using invariants,

R̂ ¼ l2

g1
S� l3

g1g2
T2 þ 6

l4

g21
T3: (21)

These invariants have a simplified expression for the TKF and can be
written as

g1 ¼
a2

2
; g2 ¼ �

a2

2
; l2 ¼ as; (22)

FIG. 3. The different normal stresses with
hu02i > hw 02i > hv02i. The z-dependence
is given by the fits of Eq. (9). From (a) to (d):
different Taylor-based Reynolds numbers
from 38.7 to 123.4, corresponding to runs 1,
3, 5, and 7, respectively.
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l3 ¼
a2

4
r2
u � r2

w

� �
; (23)

l4 ¼
a2

4
r2

v �
2
3
K

� �
: (24)

The two remaining tensors of the tensor basis are

T2 ¼
a2

2

�1 0 0
0 0 0
0 0 1

0
@

1
A (25)

and

T3 ¼
a2

12

1 0 0
0 �2 0
0 0 1

0
@

1
A: (26)

The quadratic constitutive equation finally writes, replacing invariants
in Eq. (21)

R̂ ¼ 2s
a
Sþ r2

u � r2
w

� � 1
a2

T2 þ 6r2
v � 4K

� � 1
a2

T3: (27)

Equation (27) is a quadratic constitutive equation which expresses a
nonlinear closure of the turbulent Kolmogorov flow; the first constant
coefficient is twice the eddy-viscosity (s=a ¼ �T ), whereas the other
coefficients are space-dependent. Such expression belongs to
nonlinear-eddy viscosity models (NEVM);27,28,30 it is also related to
another well-known family of models called explicit algebraic
Reynolds-stress models (EARSM), which are based on slightly differ-
ent assumptions.35–38

Equation (27) can also be seen as a mathematically simple rela-
tion, obtained from a projection onto a three tensor basis; however,
even if mathematically simple, it provides new and interesting infor-
mation on the relative importance of the different terms of this tenso-
rial development according to the position considered. In NEVM and
EARSM, the coefficients of such nonlinear development are expressed
using other quantities such as, e.g., K and �, which are computed in
the domain considered using transport equations.39 Here, we are not
building such a model but the assessment of the relative importance of
each term in the development will be useful for modeling studies.

Similarly with the indicator qRS built in Eq. (18) to quantify the
alignment of R with T1 ¼ S, two new indicators can be introduced,
each one built through a projection of R onto the other terms in the
tensor development. They write

FIG. 4. The mean kinetic energy profile KðzÞ ¼ 1
2 huiuii for different Reynolds

numbers.

FIG. 5. The global dissipation rate (��) and the coefficients obtained by fitting the
profiles of kinetic energy, a and b in Eq. (10), as a function of Rek. The horizontal
dotted lines represent values reported in the literature.6,11

FIG. 6. The amplitudes of the terms of the kinetic energy transport equation (11) for
run 7. The mean velocity profile is also shown as a dotted line, for reference.
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qRT2
¼ R : T2

jjRjj jjT2jj
; qRT3

¼ R : T3

jjRjj jjT3jj
: (28)

These indicators quantify the alignment of R with nonlinear tensors of
the basis. Figure 8 represents these indicators for run 7. It is visible that
when the mean velocity gradient is vanishing, qRS is also vanishing and
R is mainly in the direction of the third tensor T3. Furthermore, when
a ¼ U 0ðzÞ ’ 0, for z ’ 1=4 and z ’ 3=4; cos ð2pzÞ ¼ 0 and all
S; T2, and T3 vanish, but in the three-term development of R, the sec-
ond term and the third are non-zero constants, since the coefficients
diverge (the a2 terms cancel). In those positions, we see that R is a diag-
onal tensor which is not vanishing: Fig. 9 shows that the second term is
also very small and that the third term is dominant. This means that in
those positions, the Boussinesq’s linear eddy-viscosity approximation is
no longer appropriate and the anisotropic stress tensor is a constant per-
pendicular to the linear term and approximately proportional to
T3 ¼ S2 � 1

3 g1I. We have also noted above that at those positions, the
production of kinetic energy is very small and the kinetic energy dissipa-
tion at those positions is produced elsewhere and transported.

IV. PERIODIC FLOW WITH NON-SINUSOIDAL FORCING

As we have seen, the Kolmogorov flow, in its original definition,
is sustained by a monochromatic sinusoidal forcing. The resulting

FIG. 7. Simulation results for the test of
the validity of Boussinesq’s hypothesis,
representing the alignment qRS between
R and S. The mean velocity profile is
superposed in a dotted line for reference.
From (a) to (d): different Taylor-based
Reynolds numbers from 38.7 to 123.4,
corresponding to runs 1, 3, 5, and 7,
respectively.

FIG. 8. The different indicators qRS, qRT2 , and qRT3 , plotted for run 7. The mean
velocity profile is also represented as a dotted line, for reference. When the mean
velocity is vanishing, R is mainly in the direction of the third tensor T3. There is no
perfect alignment with T2.
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mean flow profile is also sinusoidal with the same shape of the force
term, both in laminar and in turbulent flow conditions. This peculiar
property is of great help in the analysis of the turbulent flow and, as
we have seen, it simplifies the formulation of a closure relation. It is

therefore of interest to ask what happens when the shape of the force
is changed to other periodic or quasi-periodic shapes.40 Here, we
investigate a forcing having a Gaussian shape. Although this function
is non-periodic and has an unbounded support, one can adjust its

FIG. 9. The amplitudes of the terms at the
right hand side of Eq. (27) as a function of
z. The mean velocity profile is also repre-
sented as a dotted line, for reference. The
horizontal red dotted lines mark the 0
value for the amplitudes. From (a) to (d):
different Taylor-based Reynolds numbers
from 38.7 to 123.4, corresponding to runs
1, 3, 5, and 7, respectively.

FIG. 10. (a) The normal stresses. (b) The
shear stresses and the function of
��T dhui

dz (black dotted line), where �T is
the turbulent viscosity [Eq. (14)] and
numerically found as 0.016 here, for the
case with Gaussian forcing (same param-
eters with run 4).
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width in such a way that its value and its derivative becomes suffi-
ciently small at the borders. Furthermore, the Gaussian has the advan-
tage to be easily implemented in spectral space. Here, we test only one
given Reynolds number, as this is sufficient to contrast the qualitative
differences with the sinusoidal forcing case. The dimensionless viscos-
ity for this case are 0.000 63, the same as the run 4 with sinusoidal forc-
ing, while the Taylor based Reynolds number is 44.1.

The Gaussian-type forcing is of the form of

f ¼ ðA exp �ðz � 0:5Þ2

2‘2

� �
þ CÞex; (29)

where A is the forcing parameter, C is a constant to make �f ¼ 0 in Eq.
(1) and ‘ ¼ 0:1 (inH units), which is equivalent to the standard devia-
tion, and controls the width of the Gaussian shape.

Figure 10 shows the Reynolds stress components: the shear stress
and normal stresses. The normal stresses have a shape that cannot be
fitted with known functions and only the numerical result is shown
here. It is visible that normal stresses are again anisotropic, with
r2
u > r2

w > r2
v at all positions. The shear stress s ¼ �hu0w0i is as in

the TKF the only non-zero shear stress, and is proportional to U 0ðzÞ,
with a coefficient �T ¼ 0:016 [it was found of the same order, 0.0236,
in run 4 with sinusoidal forcing according to Eq. (14)].

This shows that here also the eddy-viscosity is a constant, as was
found for the sinusoidal forcing. From Eq. (6), introducing this
numerical result s ¼ �TU 0ðzÞ we obtain

U 00ðzÞ ¼ � Re
�T=� þ 1

f : (30)

This shows that the mean velocity profile is proportional to twice
the integral of the forcing. The primitive of the Gaussian is non-
analytical and involves the error function; it can be estimated
numerically, as shown in Fig. 11. An excellent superposition is
found. The shape of the mean velocity is still Gaussian-like, but its

precise analytical expression is given by the function whose second
derivative is a Gaussian.

The alignment between the tensors of R and S [as defined in Eq.
(18)] is also examined for the case with Gaussian forcing, as shown in
Fig. 12. We observe also in this case the plateaus obtained at the posi-
tion where the mean velocity gradient is large. Qualitatively, we find
that 0:9 � qRS � 1 for z 2 ½0:12; 0:4	 [ ½0:6; 0:88	, corresponding
totally to about 56% of the considered domain.

Next, the quadratic development given by Eq. (27) is tested and
shown in Fig. 13. It is seen that the linear term is dominant in part of
the domain and vanishes at the central position, where the mean
velocity is null; in this position, the two nonlinear terms do not vanish.

FIG. 11. Comparison of the mean profile (hui, blue solid line) and the double inte-
gral of the forcing (black dotted line) for the case with Gaussian forcing (same
parameters with run 4). The coefficient of Re

�T=�þ1 is numerically found as 61.27. The
black dashed line represents the Gaussian profile forcing (29). The profiles of hvi
and hwi are very close to zero and almost superposed.

FIG. 12. Estimation of the alignment qRS between R and S, for the case with
Gaussian forcing (same parameters with run 4). The mean velocity profile is super-
posed in a dotted line for reference.

FIG. 13. The amplitudes of the terms at the right hand side of Eq. (27) as function
of z for the case with Gaussian forcing (same parameters with run 4). The mean
velocity profile is also represented as a dotted line, for reference. The horizontal
red dotted lines mark the 0 value for the amplitudes.
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Globally all three terms are needed to achieve the closure of the stress
tensor.

We may qualitatively compare here the turbulent flows sustained
by the sinusoidal forcing (TKF) and the Gaussian forcing. In both
cases, the eddy-viscosity is found to be constant. We observe that the
relation stating that U 00 is proportional to the forcing (30), is in fact
also valid for the TKF case. Such constant eddy-viscosity found here
for two very different types of forcing is not to be taken as a coinci-
dence: we hypothesize here that this is a general property of such
boundary free periodic flows. We shall note here that for such flows
the classical expression of the eddy-viscosity �T ¼ Clk2=� does not
hold, as demonstrated in Fig. 14 plotting �T �

K2 for run 7 and Gaussian
forcing cases, showing that Cl is not a constant for both flows. There
are however, two main differences between the two forcing cases. The
first lies in the shape of the mean velocity profile. For the TKF, since
the second integral of the forcing is proportional to the forcing, Eq.
(30) directly gives the mean velocity profile, as being proportional to
the forcing. In the Gaussian forcing case, the mean velocity is a non-
analytical function, obtained as the second integral of the Gaussian.
The second difference is in the shape of normal stresses, whose expres-
sion could be fitted using cos2 terms for the TKF, while no known
analytical fit for the Gaussian forcing is available.

V. CONCLUSION

We have considered here the closure relation for the Reynolds
stress in a numerically simulated turbulent Kolmogorov flow. As the
simplest realization of turbulence with a spatially dependent mean
flow, such a model system is a convenient test ground for turbulent
transport models. With a forcing of the form sin ð2pzÞ, it was found
that the mean velocity profile has the same form, with a damping of a
factor j with respect to the mean velocity value calculated from forc-
ing terms. The value of j was found to increase with the Reynolds
number, and of the order of 1.01–1.12 for the range of Reynolds num-
bers considered here. The only non-zero shear stress term is propor-
tional to cos ð2pzÞ as expected, and the normal stress components all
involve a square cosine expression of the form aþ b cos2ð2pz=HÞ,
where the parameters a and b are numerically estimated and found to
saturate for the largest Reynolds numbers considered here. The nor-
mal stresses, i.e., hu02i; hw02i; hv02i, are all different in amplitude, show-
ing that the turbulence is anisotropic.

It was also shown that a quadratic nonlinear constitutive equa-
tion can be proposed for this flow. Specifically, a linear term and
two nonlinear terms in the form of traceless and symmetric tensors
SW�WS and S2 � 1

3 S2f gI are involved and their coefficients are
here numerically estimated. For about half of the flow domain, the lin-
ear term is dominating, whereas for the vanishing mean velocity
regions a constant term is the only one remaining. Hence, an effective
viscosity coefficient can indeed be estimated for the Kolmogorov flow,
but contrary to what has been indicated previously12 this type of tur-
bulence without boundaries does not generate an effective diffusion of
momentum, since nonlinear terms are needed: globally all linear and
nonlinear terms are needed for the complete Reynolds stress closure.

The values obtained here are in agreement with previous
works.6,11 Using eight different runs with different grid sizes from 1283

to 5123, and with Reynolds numbers from Rek ¼ 39 to 198, the
Reynolds number dependence of involved parameters has been
checked with expected convergence toward the largest Reynolds num-
ber considered.

Finally, a periodic flow with non-sinusoidal forcing has been con-
sidered, with the choice of a Gaussian shape. It was found that the
shear stress term s is proportional to the mean velocity derivative,
indicating that for such forcing also the eddy-viscosity does not
depend on z. With such a numerical result, we obtain that the mean
velocity profile is twice the integral of the forcing. The shape of the
normal stresses in this case is non-trivial and cannot be precisely fitted.
A quadratic development of the constitutive equation can also be pro-
posed for this flow.

It is also worth mentioning that the linear or non-linear eddy-
viscosity modeling that was considered in this work relies on a local
expression of the velocity, through derivatives of the mean velocity
field. Such local expression is known to be incomplete19,41,42 and non-
local models have been proposed, based on space and time integra-
tions of velocity gradients,43,44 as reviewed and discussed in a recent
book.45

As a perspective let us mention the recent work46 describing a
flow behind a grid in a wind tunnel as having locally, close to the grid,
sinusoidal variations. This could provide ideas to perform measure-
ments of a TKF and to check experimentally the closure proposed in
the present study. The role of pressure in such flow is also a topic
worth of further investigations. A more systematic numerical study of

FIG. 14. The adimensional mean quanti-
ties of �T �K2 of (a) run 7 and (b) the case
with Gaussian forcing.
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non-sinusoidal forcing in future work may also help to provide a gen-
eral expression for normal stresses, which would be valid for all kind
of forcing. It remains also to be understood from analytical arguments
why the eddy-viscosity does not depend on z for such periodic flow,
contrary to what is found in similar bounded flow such as the channel
flow21 or the boundary-layer flow.

ACKNOWLEDGMENTS

The comments of five reviewers that helped to improve this
paper are acknowledged. This work is under the joint support of
Shanghai Jiao Tong University and the French Region “Hauts-de-
France” in the framework of a cotutella Ph.D. programme. We
thank Dr. Michael Gauding [CORIA (CNRS UMR 6614), Rouen,
France] for providing a numerical code that was adapted for our
specific present topic. We acknowledge the computing resources
including the High Performance Computing Center (HPCC) at
Universit�e de Lille, CALCULCO of Universit�e du Littoral Côte
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