J. Fluid Mech., page 1 of 31  (© Cambridge University Press 2009 1
doi:10.1017/S0022112009008027

Flow organization in two-dimensional
non-Oberbeck—-Boussinesq Rayleigh—Bénard
convection in water

KAZUYASU SUGIYAMA'Y, ENRICO CALZAVARINI'{,
SIEGFRIED GROSSMANN?|AND DETLEF LOHSE'q
'Physics of Fluids Group, Department of Applied Physics, J. M. Burgers Centre for Fluid Dynamics,

and Impact-, MESA- and BMTI-Institutes, University of Twente, PO Box 217, 7500 AE Enschede,
The Netherlands

2Fachbereich Physik der Philipps-Universitaet, Renthof 6, D-35032 Marburg, Germany
(Received 19 December 2008; revised 5 May 2009; accepted 6 May 2009)

Non-Oberbeck—Boussinesq (NOB) effects on the flow organization in two-dimensional
Rayleigh-Bénard turbulence are numerically analysed. The working fluid is water.
We focus on the temperature profiles, the centre temperature, the Nusselt number
and on the analysis of the velocity field. Several velocity amplitudes (or Reynolds
numbers) and several kinetic profiles are introduced and studied; these together
describe the various features of the rather complex flow organization. The results
are presented both as functions of the Rayleigh number Ra (with Ra up to 10%)
for fixed temperature difference A between top and bottom plates and as functions
of A (‘non-Oberbeck—Boussinesqness’) for fixed Ra with A up to 60K. All results
are consistent with the available experimental NOB data for the centre temperature
T, and the Nusselt number ratio Nuyop/Nuopp (the label OB meaning that the
Oberbeck—Boussinesq conditions are valid). For the temperature profiles we find —
due to plume emission from the boundary layers — increasing deviations from the
extended Prandtl-Blasius boundary layer theory presented in Ahlers et al. (J. Fluid
Mech., vol. 569, 2006, p. 409) with increasing Ra, while the centre temperature itself
is surprisingly well predicted by that theory. For given non-Oberbeck—Boussinesqness
A, both the centre temperature 7. and the Nusselt number ratio Nuyop/Nugp only
weakly depend on Ra in the Ra range considered here.

Beyond Ra~ 10° the flow consists of a large diagonal centre convection roll and
two smaller rolls in the upper and lower corners, respectively (‘corner flows’). Also
in the NOB case the centre convection roll is still characterized by only one velocity
scale. In contrast, the top and bottom corner flows are then of different strengths, the
bottom one being a factor 1.3 faster (for A =40K) than the top one, due to the lower
viscosity in the hotter bottom boundary layer. Under NOB conditions the enhanced
lower corner flow as well as the enhanced centre roll lead to an enhancement of
the volume averaged energy based Reynolds number Re” = (iu?)'2L/v of about
4% to 5% for A=60K. Moreover, we find Rek,,/ReEy ~(B(T.)/B(T,,))"?, with B
the thermal expansion coefficient and 7,, the arithmetic mean temperature between
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top and bottom plate temperatures. This corresponds to the ratio of the free fall
velocities at the respective temperatures. By artificially switching off the temperature
dependence of B in the numerics, the NOB modifications of Ref is less than 1%
even at A =60K, revealing the temperature dependence of the thermal expansion
coefficient as the main origin of the NOB effects on the global Reynolds number in
water.

1. Introduction

Rayleigh-Bénard (RB) convection in the Oberbeck—Boussinesq (OB) approximation
(Oberbeck 1879; Boussinesq 1903) is rather a mathematical concept than physical
reality. On the one hand it is driven by a temperature difference A =T, — T, between
the bottom and top plates, whose distance in height is L; on the other hand, the
temperature dependences of the material properties such as the kinematic viscosity v,
the thermal diffusivity «, the heat conductivity A, the isobaric specific heat capacity
cp, and the isobaric thermal expansion coefficient g are all ignored in the OB
approximation apart from that of the density p, which is assumed to vary linearly
with T':

Here, T,,=(T, + T,)/2 is the arithmetic mean value of the warmer bottom plate
temperature 7, and the colder top plate temperature 7;, and p, and B, denote the
density and the thermal expansion coefficient at the mean temperature 7,,, respectively.
Fortunately, the OB approximation is rather good, if the material properties depend
on temperature only weakly or if the temperature difference A between the bottom
and top plates is kept small enough. However, if either the material properties are
strongly temperature dependent (as, for example, the viscosity of glycerol in some
temperature regimes) or if the temperature difference between bottom and top plates
is chosen to be large in order to achieve larger Rayleigh numbers, the deviations from
the OB approximation are expected to become relevant. The consequences of these
deviations are called non-Oberbeck—Boussinesq (NOB) effects (Ahlers et al. 2006;
Abhlers, Grossmann & Lohse 2009). To what extent they affect the Nusselt number
and whether they possibly could account for the differences between the Oregon and
the Grenoble data is an ongoing controversy (Chavanne et al. 1997; Ashkenazi &
Steinberg 1999; Niemela et al. 2000, 2001; Chavanne et al. 2001; Roche et al. 2001,
2002; Niemela & Sreenivasan 2003).

The signatures of NOB effects studied in this article are (i) a deviation of the
centre (or bulk) temperature 7. from the arithmetic mean temperature 7,,, (ii) a
modified z profile of the area averaged temperature, which develops a bottom—top
asymmetry, (iii) different thermal boundary layer thicknesses A, # A, at the bottom
and top together with different temperature drops A, # A, across these boundary
layers (BLs), (iv) a modification of the Nusselt number, best expressed by the ratio
Nupnop/Nugp and (v) a bottom—top symmetry broken flow structure, in particular
possibly different amplitudes U, # U, of the plate-parallel winds near the bottom and
top plates meaning different Reynolds numbers Re;,, = U,,/(vL™}).

Some of the NOB deviations will turn out to be tiny, as the NOB effects from
the top and from the bottom BLs partly compensate each other. Nevertheless, they
are important to understand, in order to judge on the validity and quality of the



Flow organization in Rayleigh—Bénard convection 3

OB approximation in various high-Rayleigh-number experiments. Moreover, it is
interesting from a fundamental point of view, in order to understand how NOB
effects break the top—bottom symmetry of the purely OB-RB convection.

The deviation T, — T,, of the centre temperature from the arithmetic mean
temperature and the corresponding differences between the temperature drops A,
and A, over the thermal BLs presumably is the experimentally most explored NOB
effect, namely for water by Wu & Libchaber (1991) and by Ahlers et al. (2006, 2007,
2008); Ahlers, Grossmann & Lohse (2009). While for water even for A =50K (leading
to roughly a factor two variation of the viscosity of the bottom and top liquid layers)
the deviation T, — T,, is only at most 2 K, for glycerol this deviation can be as large
as 8 K (Zhang, Childress & Libchaber 1997; Sugiyama et al. 2007)

To theoretically account for these deviations, in Ahlers et al. (2006) the Prandtl-
Blasius boundary layer (BL) theory was extended to the NOB case, giving surprisingly
good agreement with the experimental centre temperatures 7, for water. Also for
ethane gas, which is compressible, the BL theory — extended to compressible fluid
flow — can describe the measured centre temperature data rather satisfactorily, as
presented in Ahlers et al. (2007). But as was shown in Ahlers et al. (2008), the T-
dependence of the buoyancy caused by thermal expansion g = 8(T) is the dominant
cause of the observed NOB effects, in particular the characteristic differences between
the more gas-like and the more liquid-like ethane on the two sides of the critical
isochore.

The success of the Prandtl-Blasius BL theory in the context of NOB convection
is remarkable for at least two reasons: first, the boundary layer theory deals with
semi-infinite plates, while experiments are done in finite aspect ratio containers,
mainly for I'=1; second, and more importantly, the Prandtl-Blasius BL theory
completely ignores the plume separations and the corresponding time dependence of
the boundary layer flow. Although the shear Reynolds numbers in the BLs are not yet
very large in RB flow (for Pr =1 the transitional shear Reynolds number Re’ ~ 420,
which indicates the range of turbulence transition, is only reached near Ra~ 10",
see Grossmann & Lohse 2002), the plumes (and thus the time dependence of the BL
flow) play a significant role in the heat transfer (Ciliberto, Cioni & Laroche 1996;
Ciliberto & Laroche 1999) and perhaps also for the bulk temperature 7,. Plumes
are not included in the classical BL theory because that does not take notice of
the buoyant forcing in the Prandtl approximation of the hydrodynamic equations
of motion. Neither the thermal expansion coefficient g itself is addressed nor is its
temperature dependence taken into account, which in reality is considerable. For water
at 7, =40°C and A =40K there is nearly a factor of 2 between the respective values
B, and B, at the top and bottom plates. Technically speaking, the BL theory misses
B since buoyancy shows up in the equation of the vertical velocity field u,; and this
equation enters into the Prandtl approximation only to derive the height independence
of the pressure, which in RB anyhow does not play a role. The numerical simulations
presented in this paper will quantitatively show that buoyancy and plumes indeed
affect the temperature BL profiles.

There are two further assumptions of the extended BL theory developed in Ahlers
et al. (2006) which need to be tested: first, the extended BL theory assumes that the
large scale wind velocity is the same close to the top and the bottom plate, i.e. U, =U,
or Re; = Re, = Renop. We will show in this paper that there are several relevant
velocity amplitudes, most of which break the top—bottom symmetry. Only the main
central roll has the same amplitude near the bottom as well as the top boundary layers.
Second, within the BL theory the ratios Nuyop/Nuop and Renop/Reop cannot be
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FiGure 1. Notations and sketch of the time and surface averaged temperature profiles versus
height z in the OB and NOB cases, respectively. The height of the cell is L (not shown). The
temperatures at the top (z=L) and the bottom (z=0) plates are 7; and T}, their arithmetic
mean is 7,, = (T, + T,)/2. The thermal BL thicknesses based on the temperature slopes at the
plates are called Zj’b. The respective temperature drops are A, and A,. The time averaged

temperature in the bulk (or centre) is 7.. For water as the working fluid, this centre temperature
T, is larger than 7,,. While iff =/1f1 in the OB case, under NOB conditions the bottom BL is

thinner than the top one, 4/ < 5. The fluid properties such as v, k and 8 carry the same index
as the temperature at which they are considered, e.g. v, =v(T;) for the kinematic viscosity at
the top plate, and so on.

calculated at all, in contrast to 7,. These quantities can only be obtained by additional
input from experiment, namely by employing the experimental information on the
ratio F; :=2%5 /(4" + A3). Here A" and 43! are the top and bottom thermal BL
thicknesses, defined via the temperature slopes at the plates in (4.1) and sketched in
figure 1. In Ahlers et al. (2006) we have calculated F, from the measured Nusselt
number and the calculated centre temperature. Its value 7, determines the ratio
Fa:=(k;A; + k,A,)/(k,,A)). The exact relation holds (even for compressible flow)
(the notation used in (1.2) is explained in the caption of figure 1)

NUNOB . 2/133 . K,A, + KbAb

= =1FA'F . 1.2
Nugg X'+ 2 Ko A 8 (12)
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Nunop 1s the actual heat flux with all material parameters taken at their respective
real temperature values. The label OB means that all fluid properties are taken as
temperature independent constants, evaluated at the arithmetic mean temperature 7,,,.

Remarkably, for the analysed case of water at T,,=40°C (Ahlers et al. 2006)
the experimental data are consistent with F, =1. But as was shown in Calzavarini,
Grossmann & Lohse (2007) by numerical simulations it is F; # 1 for RB convection
in glycerol under NOB conditions, at least up to Ra=10%. However, in glycerol
due to the large Prandtl number Pr ~ 2500, a large-scale convection roll did not yet
develop and it could be that F; =1 is connected with the existence of such a roll. The
numerical simulations presented in this paper will unambiguously show that F; =1
does not hold in general. This property thus is coincidental for water due to the
specific temperature dependences of its material properties around 40 °C.

The question of modifications of the Reynolds number(s) through NOB effects is
intimately related to the flow organization. In recent years there was considerable
progress in our insight into the flow structure, thanks to numerical simulations
(Verzicco & Camussi 2003; Schmalzl, Breuer & Hansen 2004; Amati et al. 2005;
Stringano & Verzicco 2006; Shishkina & Wagner 2008; Stevens, Verzicco & Lohse
2009), to particle image velocimetry (PIV) measurements (Xia, Sun & Zhou 2003; Qiu
et al. 2004; Xi, Lam & Xia 2004 ; Sun, Xi & Xia 20054 ; Sun, Xia & Tong 2005b) and to
velocity correlation measurements (Brown, Funfschilling & Ahlers 2007). These papers
revealed that there are various feasible possibilities to define flow amplitudes and
that these differently defined amplitudes and the corresponding Reynolds numbers
have different scaling behaviour with Ra. Our numerical simulations have fully
confirmed and detailed this view. We will show that NOB conditions influence the
flow structure near top and bottom differently and modify the various Reynolds
numbers correspondingly. NOB conditions have the largest impact on the convective
flow in one top and one bottom corner of the cell, where macroscopically visible
secondary rolls develop. We will also show that the NOB modification of the global,
volume and time averaged, energy based Reynolds number Ref = (%uz)%/zr /(L™
is consistent with attributing it mainly to the change of the thermal expansion
coefficient B in the bulk. More specifically, we find Ref,,/Rek, ~ (B(T.)/B(T,))"? a
finding clearly not describable within the extended Prandtl-Blasius BL theory.

In this paper we focus on water (Pr =4.4). Nevertheless, the parameter space is
considerable. Next to Ra the crucial parameter is the NOBness A. For comparison we
perform numerical simulations for fluids with non-physical temperature dependences
of their material properties in order to clarify the origin of certain observations.

As the numerical effort is so large for three-dimensional simulations we restrict
ourselves to two-dimensional simulations. One may worry on whether two-
dimensional simulations are sufficient to reflect the dynamics of three-dimensional
RB convection. For heat flow under OB conditions this point has been analysed
in detail by Schmalzl et al. (2004) and earlier by DeLuca et al. (1990), Werne
et al. (1991) and Werne (1993). Recently, Johnston & Doering (2009) compared
two-dimensional Rayleigh-Bénard convection with constant temperature and with
constant flux boundary conditions. Schmalzl et al. (2004)’s conclusion is that for
Pr > 1 various properties observed in numerical three-dimensional convection (and
thus also in experiment) are well reflected in the two-dimensional simulations. This
in particular holds for the BL profiles and for the Nusselt numbers. Since one focus
of this paper is on the difference between OB and NOB convection, the restriction
to two-dimensional simulations might be even less severe, as NOB deviations occur
in both cases and the differences between two-dimensional and three-dimensional
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simulations might cancel out in quantities such as (7. — T,,)/T,,, Nunogp/Nuog, or
Renop/Reop. We also note that for a comparison with the Prandtl-Blasius BL theory
two-dimensional simulations are in fact more appropriate than three-dimensional
simulations, as the BL theory is two-dimensional per construction.

The paper is organized as follows: in §2 we will explain, justify and verify the
numerical method; §3 is devoted to our results on the mean temperature profiles
and the related shifts of the centre temperatures; §4 addresses the NOB effects on
the Nusselt number. The main section is § 5 where we first analyse the flow structure
for the OB case and then its modifications through NOB effects. Several feasible
measures for the wind amplitudes of the complex flow structure will be introduced.
Section 6 contains the conclusions.

2. Definitions, governing equations and numerical method

The equations governing non-Oberbeck—Boussinesq convection in incompressible
liquids are the incompressibility condition

al'll,' = 0, (21)

the Navier—Stokes equation

Pm(Opu; +u;jdju;) = —0;p + 3;(n(d;u; + diu;)) + pmg (1 - :) 83, (22)

m

and the heat-transfer equation
,omc,,,m(BZT-l—uijT) = BI(ABJT) (23)

The dynamic viscosity n(7T) and the heat conductivity A(7) are both temperature
and thus space dependent. The isobaric specific heat capacity ¢, and the density p
are assumed as constants and their values ¢, ,, and p, are fixed at the temperature
T,,, except in the buoyancy term, where the full nonlinear temperature dependence
of p(T) is implemented. For water, which we here consider as the working fluid,
density as well as specific heat are indeed constant with temperature to a very good
approximation. The experimentally known temperature dependences of 1, A and p (in
the buoyancy term) together with the values of the parameters p,, and c, , for water
are given in the appendix of Ahlers et al. (2006) and, for better reference, are reported
in table 1 in the form implemented in the present direct numerical simulations (DNS).

We deal with a wall-bounded system with an aspect ratio fixed at I"=1. The
velocity boundary conditions accompanying the dynamical equations are u; =0 at
the top and bottom plates z =L and z =0 as well as on the sidewalls x =0, x = L. The
temperature boundary conditions are 7, — T, = A for the temperature drop across the
whole cell of height L. At the sidewalls (x =0, x = L) heat-insulating conditions are
employed, 9,T|~o.r =0. The cell is considered to be two-dimensional, i.e. there is no
y-dependence. The Rayleigh number is defined with the material parameters taken at
the mean temperature 7,

_ BagL’A

vm Km

Ra (2.4)
We vary the Rayleigh number in DNS by varying the height L of the box, while the
non-Oberbeck—Boussinesqness is changed by varying the temperature drop A. Note
that in (2.2) the full temperature dependence of the density in the buoyancy term is
taken into account, rather than employing the linear approximation (1.1) only. Still the
Rayleigh number is defined with the coefficient of the linear expansion of the density
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v K g(L—p/pm)

A}’l Bﬂ C)’l
0 6.6945204-1077 (mzs‘l) 1.5222630-1077 (m%s™) 0 (m?s™!)
1 —1.215394-1078 (m?®s~'K™! ) 3.347639- 10710 (m?s~'K~')  3.7576156- 1073 (ms—ZK )
2 1737730010710 (m?*s'K7?)  —2.702875-10"2 (m*s'K~2)  3.900878-10~° (ms2K2)
3 —2.48455-1072 (m¥s~' K3) 0 —1.811623- 1077 (ms™2K™3)
4 355232107 (m?s~! K-4) 0 0
5 —5.0790- 10716 (m?s~! K5) 0 0

TaBLE 1. Expansion coefficients of material properties of water around the temperature
T,, =40°C adapted from Ahlers et al. (2006). The kinematic viscosity, the thermal diffusivity
and buoyancy are written in a polynomial form as v(T)=n(T)/pm =" ,_0 Au(T — Tn)",
K(T)=A(T)/(Pmcpm)= Zn=0 B,(T—T,)" and g(1—p(T)/pm) = Zn=0 Co(T—T,)", respectively.
Using the leading coefficient Ci(=gpB,,) for the buoyancy force, we can write the Rayleigh
number defined in (2.4) as Ra = C1L> A /(vyuk), Where vy, =n(Tn)/ pm and k, = A(T)/(0mCpm),
which coincides with the usual OB definition. Note that in Ahlers et al. (2006) we instead
directly expanded v(T)=n(T)/p(T) (and correspondingly for «(7)) around 7, leading to
slightly different coefficients.

with respect to temperature, taken at the mean temperature, B, = — p,'9p/3T|r,,
cf. table 1. The Prandtl number Pr =v,,/x,, is also defined in terms of the material
parameters at the arithmetic mean temperature.

Equations (2.1)—(2.3) are solved on a two-dimensional domain with gravity pointing
in negative z direction. To discretize the Navier—Stokes and heat transfer equations,
we employ a finite difference scheme (see e.g. Peyret & Taylor 1983; Ferziger & Peric
1996). The space derivatives are approximated by the fourth-order central difference
scheme on a staggered grid (Harlow & Welch 1965). In particular for the advection
terms we employ the scheme proposed by Kajishima et al. (2001), which satisfies the
relations 9;(uju;) =u;0;u; +u;0;u; and 9;(u;T)=T9;u;+u;0;T in a discretized form
and ensures that the second moments of the velocity and temperature are highly
conserved. To integrate the equations in time, we use the second-order scheme, i.e. the
Adams—Bashforth method for the advection terms and the Crank—Nicolson one for
the viscous, diffusive and buoyant terms (see e.g. Canuto et al. 1988). To complete the
time marching in the momentum equation and simultaneously satisfying the solenoidal
condition (2.1) of the velocity vector, we employ a simplified-marker-and-cell
procedure (Amsden & Harlow 1970) by solving a Poisson equation for the pressure.
The two-dimensional discretized pressure equation, which is written in the fourth-order
finite difference form, is reduced into a one-dimensional problem by taking the fast
fourier transform (FFT) in the x direction. The boundary condition at the sidewalls
(x=0 and x =L) is satisfied, if the relation 9,¢|,—o=0,¢|,—; =0 holds for all the
quantities ¢ in the pressure equation. To impose this condition, we take a periodicity
2L for the FFT (ie. ¢(x)=¢(2nL + x) with n an arbitrary integer) and introduce a
fictitious domain L <x < 2L, in which the quantities are given by ¢(x) =¢(2L — x).
We directly solve the reduced-order equation written in a heptadiagonal matrix form
and then determine the pressure field by taking the inverse FFT.

We briefly comment on the temporal and spatial resolution. The time step is
chosen such that the Courant—Friedrichs—Lewy (CFL) condition is fulfilled: the CFL
number is 0.2 or less for all the present computations. The spatial resolution is
chosen according to Grotzbach (1983) (see also Shishkina & Wagner 2008) such that
the linear expansion 4 of a numerical grid cell obeys i/ngx < mmin(1, Pr—3/%). For our
case Pr=4.4 this implies h/nx < 1.03. Here nx =€, /4v3/* is the Kolmogorov length
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FiGURe 2. Upper two panels: temporal evolution of Nu,(t) and Nu,(t) as defined in equation
(2.5), before time averaging, for Ra =107, A=40K and L = 1.89 cm. The total integration time
T, reported here in seconds, is of the order 10* integral times of the autocorrelation coefficient,
77 ~0.606s. Lowest panel: ratio of the temporally averaged Nusselt numbers fot Nu,(t) dt/

fot Nu,(t) dr. Here the time averages at top and bottom agree up to 0.009 %. For other Ra
and A the statistical convergence is similar with maximum relative error being 0.091 %.

scale and ¢, is the turbulent kinetic-energy dissipation rate. The highest value of
h/ng in our simulations is 0.653 at the highest Rayleigh number Ra = 108, obeying
the Grotzbach criterion.

We have validated the numerical code by checking the instantaneous kinetic energy
and entropy budget relations for u?/2 and T2/2 both in the OB and NOB cases and
by evaluating the correctness of the onset of convection in the OB case. The critical
Rayleigh number we compute (Ra. =2585.27) is in agreement with the one computed
analytically by Luijkx & Platten (1981) (Ra.=2585.03) to a precision of less than
0.01 %. We note that Ra. is much larger than the more known Ra.=1708 for an
infinite aspect ratio system, due to the presence of lateral walls.

The area averaged heat currents are calculated as functions of time 7 both at the
top (¢) and the bottom (b) plates separately,

—ik; 9;(T),, (z=L, ) —kKyp 0, <T>Ab (z=0,71)
‘ ) Nuy(z) = :

KmA /L KmAJL
with (...)4 denoting the averaging over the horizontal surface (actually over x only,

since the system is two-dimensional) of the top and bottom plates. We find good
agreement of the time averages of Nu,(t), Nu,(t) (see figure 2).

Nu,(t)= (2.5)
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FIGURE 3. Temperature profiles @(£) =((T)ae) — T;)/A for Ra=10* and A=40K for water
at T,, =40°C. The symbols indicate the results of the numerical simulation, the lines stem
from the extended Prandtl-Blasius BL theory proposed in Ahlers et al. (2006). The numerical
simulations give ®(z). £ =z/lpy is the similarity variable. In classical BL theory its scale is
given by lg;, =+\/xv,/U;, with x being the distance from the plate’s edge; in this figure in
order to translate to ®(£) we have chosen the factor /p; such that the curves have the same
slope at £ =0 .

To quantify the statistical convergence, we make an uncertainty analysis estimating
the time autocorrelations (see, for instance, Tennekes & Lumley 1972, §6.4). For a
time-dependent function f(t), the error is evaluated as §f = f,,.s+/27;/7 ; here fr,,
is the root mean square of f, t; the integral time obtained from the autocorrelation
coefficient of f and .7 the total simulation time under statistically steady conditions,
ie. after a transient time 7p. Considering the error propagation, we evaluate the errors
of F;+ Fa, of F, and of Fax at 95 % confidence level as, respectively,

Nuyop 8(Nuyos)\’ 8(Nuog)\’
S(F,Fp) = _ ],
(FiFs) Nuop \/( Nunop + Nuop

— \/<6<NuNOB>>2 . (3(]\7”03))2 . (6(&)){ 26)

Nuyos Nuop Fy
Kb - K[
KA

8(Fa) = (To),

which will be indicated by the error bars in the plots.

3. Mean temperature profiles and centre temperature

We will first focus on the water case with T,, =40°C, corresponding to the
experiments of Ahlers et al. (2006). In figures 3 and 4 the mean temperature profiles,
averaged over the full width 0<x <L of the cell, are shown for Ra=10* and
Ra =108, respectively and compared with the extended Prandtl-Blasius BL theory
developed in Ahlers et al. (2006) (the specific procedure adopted for the comparison
is detailed in the caption of figure 3).

For Ra=10* the agreement between numerical data and the time independent
extended BL theory is excellent, both for the profiles and for the centre temperature.
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FIGURE 4. Temperature profiles at Ra=10% with A=40K and T, =40°C in water. (a)
Horizontally area averaged temperature profiles as in figure 3. Though the centre temperature
T. is well described by the extended Prandtl-Blasius BL theory, for this relatively large
Ra the numerical temperature z profiles show significant deviations from those of the
extended BL theory. We attribute these deviations to the plume detachments, which are
not included in the extended Prandtl-Blasius BL theory. To demonstrate this we show in (b)
time averaged temperature z profiles at a fixed x value, namely along the middle line x =L/2,
ie. O&)y=12=(Tlx=r,» — T;)/A. Here the plume activity is expected to be weaker than in
the regions near the sidewalls, which contribute to the area averaged profile in (a). Indeed
DNS and BL theory agree satisfactorily along the centreline.

This good agreement is remarkable as originally the Prandtl-Blasius BL theory has
been derived for semi-infinite or at least long flat plates.

For Ra = 10® there are differences between the numerical and the BL theory profiles,
namely, the numerical profiles are somewhat smoother than those from the BL theory
(figure 4a). At this relatively large Ra such differences are not unexpected, because
of the enhanced plume activity at larger Ra, which is not included in the extended
BL theory. The plume activity is not homogeneous in the horizontal direction and
the area averages in evaluating ®(£) in the upper figure is taken over the whole
container width 0 <x < L, including also the neighbourhoods of the sidewalls, where
the plume convection is preferentially strong. The influence of the plume convection
can be confirmed by comparing with the numerical, only time averaged z profiles
along the middle line x =L/2 (see figure 4b). These profiles show good agreement
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FiGURE 5. Relative deviation (7, — T,,)/A of the horizontally area (and time) averaged centre
temperature 7, from the arithmetic mean temperature 7, in terms of A versus the temperature
difference A for water at fixed 7,, =40°C for various values of Ra. The nearly linear increase
means that 7, — T,, = constA? 4 h.o.t. The symbols x correspond to the experimental data in
Ahlers et al. (2006) for the apparatus of 50.62 cm height. The symbols including the horizontal
lines indicated in the upper left corner show the data including the error bars. The error bars
given for the numerical data for Ra = 10°, 107, and 10® are smaller than the sizes of the
symbols.

with the extended BL theory, much better than those in the upper panel. We attribute
this to the expectation that the plume detachment near x =L/2 is less than that
near the sidewalls, and thus the BL approximation should be more reasonable along
the middle line. It could be objected that the observed deviations might be due to
the influence of the sidewalls, which are included in the horizontal surface averages
but excluded for the centreline, with only time averaging. To clarify this point we
have performed a DNS with lateral periodic boundary conditions and I" =2. The
numerically obtained profiles (not shown here) are very close to the surface and time
averaged profiles of figure 4(a) rather than to the time averaged centreline profiles
in figure 4(b). This supports the conclusion that it is the plume flow and temporal
dynamics of the BLs, which is the main reason for the observed discrepancy between
the Prandtl-Blasius BL theory and the area averaged DNS profiles.

Nevertheless, in spite of the large deviations in the z-(or &-)dependence of the
area averaged temperature profiles as shown in figure 4(a), the centre temperature 7,
obtained from the extended BL theory (Ahlers et al. 2006) still very nicely agrees with
that calculated with DNS. This is confirmed in figure 5, showing 7, as a function of
the NOBness A for various Ra, ranging from 2 x 10° to 10%. In figure 6 we display the
T, shift for fixed A=40K and 7,, =40°C as a function of Ra. Interestingly enough,
beyond some 103 for Ra, the centre temperature T, is rather independent of Ra. Only
in the immediate range beyond the onset of convection, 7. — T,, is pronouncedly
smaller, reflecting the smooth transition to the small value of 7, — T,, in the non-
convecting state. The Ra dependence of T, is not monotonous, what we attribute
to transitions between the various coherent RB flow patterns in the considered Ra
range.

The results shown in figure 6 are consistent with previous findings (Lohse &
Grossmann 1993) that in the Ra range from onset of convection up to about
Ra~5-10" the flow only successively looses its spatial coherence. In this Ra range
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FIGURE 6. (T. — T,,)/A versus Ra for water at fixed 7,, =40°C and A =40K. Inset: deviation

of T, from the centre temperature in the laminar case Tc(l“m) at the onset Ra. = 2590 of thermal
convection at I" = 1. Note the strong variation of 7, in a range slightly above Ra = 10°, which
we attribute to transitions between different coherent flow structures.
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FIGURE 7. Nusselt number ratio Nuyog/Nuopp versus Rayleigh number Ra for water at fixed
values for 7, =40°C and A =40K. It is also indicated where we are in the steady, periodic
or chaotic regime.

the relative coherence length £, perence /L decreases from values far above 1 to values of
order 1/6, see figure 1 of Sugiyama et al. (2007) in which we have calculated £ operence / L
as a function of Ra, based on the unifying theory of Grossmann & Lohse (2000,
2001, 2002, 2004). Only for Ra beyond this transition range up to some 107, in which
spatially coherent structures are gradually lost, the heat convection is fully turbulent
and the pdf of the fluctuations becomes exponential instead of being Gaussian.

4. Mean heat flux

Similarly to T., the Nusselt number ratio Nuyop/Nuop displays an only weak
dependence on Ra (see figure 7). This ratio has been written in (1.2) in terms of two
factors, Fno and F;. The latter one measures the changes of the thermal BL widths
caused by NOB conditions. These widths of the temperature profile are sketched in
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FIGURE 8. F; and F, (defined in (1.2) and in the text before) versus Rayleigh number Ra for
water at fixed values for 7,, =40°C and NOBness A =40 K. The dashed line corresponds to Fa
resulting from the BL theory developed in Ahlers et al. (2006). Reasonable agreement between
BL theory and DNS is observed. F; in the presently considered water case is compatible with
F, =1 for larger Ra, as in experiment. The significant Ra-dependence for smaller and medium
Ra seems to reflect the changes of the coherent flow structures still present at these Ra. In
particular, one recovers the window of quite different behaviour slightly above Ra = 10°.
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FIGURE 9. Nusselt number ratio Nuyop/Nuop = F; + Fa together with the factors F; and Fx
versus NOBness A for fixed Rayleigh numbers (a) Ra =10* (b) Ra=107 and (c) Ra = 10°%.
The working liquid is water at 7,, =40°C. The dashed lines correspond to F resulting from
the BL theory developed in Ahlers et al. (2006).

figure 1; quantitatively we define them in terms of the temperature slopes at the
plates.

At asl __ Ab

EXC 7 E oy &
In figures 8 and 9 we reveal the origin of the Nusselt number modification in the NOB
case. In general it is a combination of the A-dependence of both factors F, and Fa
in the product (1.2). As shown in figure 8 for fixed non-Oberbeck—Boussinesqness A,

F, displays a weak dependence on Ra for Ra > 10*. This can be understood from the

sl
b
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FiGure 10. Same as figure 9, but now with a temperature independent (artificial) thermal
expansion coefficient 8,,, i.e. with only linear temperature dependence of p(T) as in (1.1). The
A-dependences of the factors Fa and F; and thus F, - F) are different from those in the case
of fully temperature dependent (7).

weak Ra-dependence of the centre temperature 7. on the NOB changes of the material
parameters (see figures 5 and 6), and because Fa = ((k; — kp)T, — k: Ty + kpT) /(K D)
depends on T, only (for given T; and T}).

On the other hand, the factor F;, describing the variation of the thermal BL
thicknesses, shows a rather weak but obvious dependence on the RB flow regimes.
For the fully chaotic regime (Ra > 10°), the deviation of F; from F;=1 is much
smaller than that of F,, which indicates that Nuyop/Nugp is dominated here by Fx
and thus by the behaviour of the centre temperature. As shown in figure 9, which
displays the dependences on the NOBness A for the largest analysed Ra = 107 and 108,
the A-dependence of F; happens to be very small, and for those Rayleigh numbers
F;~1 happens to be a good approximation. This might be due to an incidental
combination of the temperature dependences of the material parameters n(7), A(T)
and p(T) around the chosen mean temperature 7,, =40°C in the case of water. The
experimental finding, reported in Ahlers et al. (2006), that F;~1 in a similar Ra
range, for the same 7,, =40°C, and for A up to 40K therefore can be considered
as incidental. It is not a general property of NOB Rayleigh-Bénard convection. We
have also checked the influence of buoyancy on the BL widths as described by F;. If
we disregard the T-dependence of B(T), i. e. the nonlinear temperature dependence
of p(T) in our numerical simulations and thus have a constant 8 =g, F;, shows a
larger deviation from 1 at Ra =107 and happens to be closer to 1 at Ra=10%, see
figure 10, just opposite to the case with full T-dependence of B(T'). Still the nonlinear
temperature dependence of p, ie. the temperature dependence of 8, has a relatively
weak effect on F; and F, and therefore on the Nusselt number modification.

The second conclusion we can draw from figures 8, 9 and 10 is that in all cases Fu
is correctly described by the BL theory given in Ahlers et al. (2006). As F can be
calculated from 7, only, this is of course to be expected, since 7, is well described by
the extended Prandtl-Blasius BL theory (see figure 2).
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FIGURE 11. (colour) Snapshots of the velocity (arrows) and temperature (colour) fields for
Ra=10% at T,, =40°C, working fluid water. (a) corresponds to the OB case (all material
properties are kept temperature independent, taken at 7,,), (b) corresponds to the NOB case,
both with the same A =40K. The temperature colour scheme is in °C, same in both panels.

5. The flow structure and various wind amplitudes

We focus now on the structure of the flow field or ‘wind’ in thermal convection.
Although in our two-dimensional simulations we miss interesting but typically three-
dimensional flow modes (cf. Ahlers et al. 2009, for a summary), even in two dimensions
the velocity field is rather complex, as the snapshots in figure 11 display. Nevertheless
such convection fields have mostly been described by only one single amplitude U. This
wind amplitude U is a crucial parameter both in the general OB theory (Grossmann
& Lohse 2000, 2001, 2002, 2004) as well as in the extended BL theory dealing
with NOB effects (Ahlers et al. 2006). The Grossman—Lohse (GL) theory hypothesizes
that one needs only one single mean wind amplitude to describe the heat transport
(also for large Ra) and that this amplitude is essentially uniform throughout the cell.

The extended BL theory, developed in Ahlers et al. (2006) for NOB situations,
assumes that such a uniform wind is still present even under NOB conditions and
that in particular the top and bottom BLs see the very same wind amplitude
U, =U,=Upopp, in spite of the NOBness. The amplitude Uypp is allowed to be
different from Upp, but for the Nusselt number calculations (not for 7., as detailed
above) its value has to be taken as a parameter of the theory. It is this character
of Unop as a boundary condition for the Prandtl-Blasius BL equations which leaves
the BL theory incomplete for calculating the heat transport across the RB cell. Thus
neither the Reynolds nor the Nusselt number deviations under NOB conditions can
be predicted, unless further input (data or assumptions) is introduced (as for instance
F,=1).

We organize our analysis of the two-dimensional flow structure as follows. Starting
with the visualization of the dynamical flow fields, we next introduce a time averaged
convective Eulerian field. Then we discuss several sensible possibilities to adequately
define relevant wind amplitudes quantitatively. Finally, we present our results about
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the dependences of the U amplitudes or Re=U/(vL~!) numbers on the Rayleigh
number Ra and the NOBness A.

5.1. Dynamical features

For RB convection in water in an aspect ratio I'=1 container it is known from
experiment and also noticeable in our two-dimensional DNS flow as shown in
the snapshots in figure 11, that a large-scale circulation (LSC) with an extension
comparable to the box size L is present both in the OB and NOB cases at Ra = 108.
In addition and on top of this LSC there are of course fluctuations of the u, T fields.

The time development of the numerical u field shows reversals in the circulation sign,
in agreement with experimental observations (Sreenivasan, Bershadski & Niemela
2002; Brown, Funfschilling & Ahlers 2005; Brown & Ahlers 2006, 2007; Ahlers et al.
2009) and earlier numerical simulations (Hansen, Yuen & Kroening 1992). In three-
dimensional experiment these reversals can occur either by rotation of the convection
roll’s plane or by cessation and restart; in the two-dimensional numerics of course
only the latter type of reversal occurs. Several models have been developed for these
reversals, see e.g. Sreenivasan et al. (2002); Fontenele Araujo, Grossmann & Lohse
(2005); Benzi (2005); Brown & Ahlers (2007). We shall report on details of our results
about the statistical properties of the reversals in our two-dimensional simulations
elsewhere. In the context of the present paper these reversals only complicate the
statistical analysis of the flow field, as long-time averages of the velocity field become
zero and wash out the flow structures.

How then to obtain the main features of the dynamical, complex time-dependent u
field? To achieve them we consider conditionally time averaged Eulerian fields as well
as several profiles, which partly take the fluctuations into account too. In addition a
global, energy based wind amplitude is introduced.

5.2. Conditionally time averaged velocity fields

To overcome the problem that long time averages due to the statistical flow reversals
give zero velocity everywhere, we perform conditioned time averages, which take the
time dependent rotational direction of the wind into account. This instantaneous
rotational direction is identified by the sign of the vorticity at the centre of the
box. Whenever the wind reverts its direction, before performing the standard time
averaging the velocity field is mirrored along the vertical centreline. Respecting
this, from the full velocity field u(x,t) we can compute another, time averaged,
complete two-dimensional Eulerian-type velocity field #(x), in which the respective
local direction of the velocity is coupled to the sign of the central vortex. Component-
wise we define this conditionally time averaged flow field as

o+
(x,2) = -7 / dr uy(%, 2. 1) sign (1),
o (5.1)

to+7

u(x,z) =" / dru. (%, z,1).
1o

Here  denotes the averaging time, sign w.(t) is the sign of the vorticity
w(x, z)=0,u, — d,u. at the centre of the box (x,z)=(%, %) and ¥ is

X=L/24(L/2—x)-sign w.(t).
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FIGURE 12. Lines of constant values for the conditionally time averaged velocity field u(x, z)
at different Rayleigh numbers Ra = 10%, 10°, 10® in OB convection (a) and NOB convection
(b), both with the same A =40 K. Counterclockwise velocity direction is drawn with solid lines,
while the clockwise ones are indicated by dotted lines. The OB flow structure, which already
develops secondary (counter) rolls in two opposite corners, enjoys top—bottom symmetry. The
asymmetry in the NOB cases is best seen in the two different amplitudes of the corner-flow
rolls, identified by counting the number of their equally spaced streamlines.

In a similar manner we also define the conditionally averaged velocity squares as

o to+7
ul(x,z) =" / dru(%, z, 1),
Io
- to+7 (52)
ul(x, z) =g! dr u?(fc,z,t).

fo

Rather than conditioning on the sign of the vorticity at the centre, one could also
condition on the sign of the total angular momentum, as has been done by van Heijst,
Clercx & Molenaar (2006) (which minimizes the contributions of some high-frequency
oscillations), but for the purpose of this paper the difference between these two types
of conditional averaging has turned out not to be relevant.

Conditionally time averaged fields u(x), being time independent objects, allow to
visualize the persistent spatial structures in the flow field. Some conditionally time
averaged fields obtained for different Ra numbers are shown in figure 12.

Note again the large circulation roll in the centre range but also the secondary
counter-rotating rolls in two opposite corners. We remark that such secondary
circulation rolls in nearly-two-dimensional convection have been experimentally
detected by Xia, Sun & Zhou (2003). In our simulations secondary rolls appear for
Ra > 10°. We interpret the secondary rolls as caused by boundary layer separations,
which are known to occur when a flow is heading a perpendicular wall. They might be
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FIGURE 13. Probability density function of the vorticity w. at the cell centre at Ra = 10°, 108,

considered as kind of ‘wakes’ behind the separation. Remarkably, the secondary roles
are of considerable size for the BL separations of the up and down going flows, which
approach the top and bottom plates, respectively, but are nearly invisible for the
horizontal ones, which approach the sidewalls (at least for these Rayleigh numbers).
This might be attributed to the plume creations in the BLs on the bottom and top
plates, which affect the horizontal but not the vertical sections of the flow.

We emphasize that the convergence of the statistics implies that a centre-point
symmetry should be established for the conditionally time averaged field u. Indeed,
within 5% precison we achieve such a centre-point symmetry in our numerical
simulations. As we shall see later this accuracy is by far sufficient to discriminate the
main NOB effects in comparison to the OB results.

For information we add the probability density function (PDF) of the centre
vorticity w., (non-dimensionalized by the molecular vorticity v,,L™2), see figure 13.
Already for Ra=10° two preferred values of the LSC can be recognized, reflecting
clockwise and counter-clockwise rotation of the large scale convection roll. For
Ra=10% the two preferred vorticities are even more pronounced, reflected by the
sharp peaks in the PDF. While in the chaotic phase (Ra ~ 10°) the PDF is still broad,
the flow cessations at Ra~ 10% are very fast events, since the small probability for
w, =0 suggests that the flow changes its direction more or less momentarily, leaving
only a very small probability to find w.=0.

5.3. Wind profiles: amplitudes

Because even the conditionally time averaged velocity field as shown in figure 12 has
a rich spatial structure, it is not immediately apparent how to define ‘a characteristic
single wind velocity amplitude U’ unambiguously. Several definitions have been
proposed in the literature. In the present section we introduce various possible
definitions for wind amplitudes U and corresponding Reynolds numbers Re =U L /v,
by investigating global measures as well as local ones, and also certain profiles.

(i) Global. A global measure for the strength (amplitude) of the convection can be
based on the volume average. While the velocity average over the full volume is of
course zero, we can consider the velocity r.m.s. average and obtain the energy-based
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UEE\/<;(M§+L¢§)>VJ=\/<;(u§+u§)>v. (5.3)

Apparently, both the primary centre roll as well as the secondary rolls contribute to
the value of UZ. While the primary roll covers the whole interior, which is expected
to be mixed by turbulence and therefore has essentially uniform temperature 7., the
secondary rolls experience either the cooler top or the hotter bottom regions only.
Since under NOB conditions the viscosity deviations are different near the top and
bottom (and, of course, from the bulk), the secondary rolls are expected to have
different properties among each other as well as relative to the primary centre roll.
UE represents a well-defined mixture of all of them.

(i) Local. To deal with the top and bottom differences, local wind amplitudes
may be introduced by considering the values of the conditionally time averaged field
u(x) at particular spatial positions x; in the flow field. Particular positions are e.g.
those, where the conditionally time averaged velocity field # has peak values U?’i
along some vertical lines, labelled by j. In the following, we shall consider such local
peak amplitudes U” at peak positions on vertical lines with abscissas x; = %, % and
%. These points P; roughly correspond to the positions where the main primary
circulation roll is strongest (x; = %), to the flow maxima along the centreline of the
container (x; = %) and to the region where the counter-rotating roll is well developed
(x3= L)-

(iii)gProﬁles. Mixed type wind amplitudes, neither fully global nor fully local, can
be introduced as area averages or rather, in two dimensions, as line averages. The
areas (lines) can either be chosen as top/bottom plate parallel or as sidewall parallel.
The corresponding area averaged wind amplitudes then either, as in the case of plate
parallel averaging, depend on the height z of the area (line) and lead to z-dependent
wind profiles; this is relevant for the horizontal wind and its vertical profile U,(z).
Or they depend, as in the case of vertical line averaging, on the x-distance to the
sidewalls and lead to x-dependent profiles; these are relevant for the up rising or
down falling flow and its horizontal profile, denoted as U, (x).

Such area (line) and time averages are the relevant quantities in the well-known
relations between the energy respective dissipation rates ¢&,, & and the non-
dimensionalized heat current density, i.e. the Nusselt number Nu. While the dissipation
rates are volume averages, the Nusselt number is defined in terms of a horizontal
area average, which by conservation of energy even is independent of height z. One
contribution to Nu comes from the (Tu.)4,-correlation, the other one from the
gradient of the temperature profile (T) 4 ,(z). This justifies to introduce the mentioned
area (line) averages also for velocity components. In particular, the vertical profile
of the horizontal velocity U,(z) is of interest, as well as the horizontal profile of the
vertical velocity, U,(x), precisely defined as

Ur(z) = (i) ;) (2), and  U(x) = (irz) () (x). (5.4)

where (...).) and (...), represent the line averaging along the x direction for fixed
z or along the z direction for fixed x.

Area averaged profiles are displayed in figure 14. Surprisingly there are small
ranges with negative (positive) U,(z) of the area averaged horizontal velocity in the
immediate vicinity of the bottom (top) plates. Formally, their origin is that the area
averaged profiles as U,(z) take notice of the sign of the corresponding local velocities

wind amplitude
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FIGURE 14. The vertical and horizontal velocity profiles U,(z) and U,(x) as derived from the
conditionally time averaged velocity components %, and u, at three different Ra numbers
104, 10°, 108. The abscissa and ordinate scales are the dimensionless width and height. The
upper scales show the horizontal velocity profiles non-dimensionalized with v,,/L, i.e. Re,(z);
the right scales show the vertical velocity’s U,(x) profiles, also non-dimensionalized by v,,/L.
Note the increase of the Re, . scales with increasing Ra. Dashed lines indicate the OB case,
full lines the NOB case. In both cases A =40K. Also indicated are the corresponding thermal
slope BL widths /j,, which strongly decrease with Ra.
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FIGURE 15. The vertical and horizontal rms velocity profiles U™ (z) and U™ (x) as derived

from the area averaged r.m.s. fields \/(u2), ,(z) and +/(u2),,(x) at three different Ra numbers

104, 10%, 108. The scaling schemes for the abscissa and ordinate, the representations of the lines
and the conditions are the same as in figure 14. Note the different magnitudes (scales) for the
different Ra.

and these in the secondary rolls are opposite to that of the centre roll. Thus one
clearly sees the effects of the secondary rolls in the inversion of the vertical profile in
the neighbourhood of the bottom and top plates. Physically this might be interpreted
that plumes in this range of small distances from the plates are mostly advected in the
opposite direction until they come farther away. One also observes broken top—down
symmetry. This is caused by the secondary rolls, since these cover regions of different
temperatures.

(iv) r.m.s. profiles. In addition to area averages of the (conditionally time averaged)
velocity components themselves one might also wish to analyse area averages of the
r.m.s. fields of the corresponding components, defined as

<”T)2c>x(z) (Z) = < >x(z (Z)

These are displayed in figure 15.

In the r.m.s. profiles U!"* one also observes the kink and the broken symmetry as
in the averaged velocity proﬁles U, in figure 14, but no change in sign, of course.
The preferentially strong plume convection near the sidewalls is clearly reflected in

U™(z) = and U™(x)= <IT§>Z(X) (x). (5.5)
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FIGURE 16. Several energy and peak based Reynolds numbers in the OB case versus Ra for
water at T,, =40°C. The temperature difference between bottom and top is A =40K.

the U!"™*(x) profiles and their sharper peaks as well as apparently significantly smaller
boundary layers than in the U™ (z) profiles. In the vertical profiles of U!™(z) the
near-wall inversion (owing to the opposite sign of the velocity in the secondary and
centre rolls) is not present, in contrast to the amplitude averaged U,(z) profile in
figure 14, since U™ is positive everywhere. Instead, one recognizes the signature of
the secondary roll effect as the steep slope in the U™ profile between the plate and
its maximum position.

Experimentally, often Lagrangian flow properties as, for example, the plume
turnover times are used to characterize in particular the large-scale coherent flow.
We emphasize that such features should be identified in the U.(z), U,(x) profiles.
The U™ (z), U™ (x) profiles, instead, reflect the energy strengths of the considered
components. In the following we will use two different velocity amplitudes defined on
the local maxima of the horizontal profiles U,(z) and U™ (z), denoted respectively as
UM grms:Mms where the super-script M, indicates the second (and positive) maximum
on U,(z). In figures 14 and 15, the z distances, at which the velocities have the values
UM and U™-Mms respectively, are comparable. Both are located within the thermal
BL at Ra = 10* while they are outside at Ra = 10° and 10%. Furthermore, NOB effects
on the maximum positions are observed to be Rayleigh number independent, in
the sense that one observes shifts of comparable size towards the bottom plate at
Ra =10* and 10°. However, as we shall see later, one notices slight differences because
the non-trivial spatio-temporal flow structure is differently reflected in the U, and
U™ profiles.

5.4. Scaling of amplitudes with Ra, Oberbeck—Boussinesq case

Having described the flow structures and the definitions of several relevant measures
for the magnitude of the thermally driven convection, we now offer our results
on the Ra- and A-dependence of the various U amplitudes and the corresponding
Reynolds numbers Re = U/(v,,L™"). We start with the OB case, i.e. having temperature
independent material parameters throughout the container, their values taken at the
given arithmetic mean temperature 7,,. Figure 16 shows the scaling of Re%, Re™> and
Re™Mms with Ra for the OB case.

The structure in the Reb, versus Ra curve around Ra ~10° is due to changes in
the still present coherent flow patterns, implied by the boundary conditions. They
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FIGURE 17. Reynolds numbers Re”’ at x; = %(triangles), L(crosses), L (circles) in the OB case
versus Ra for water at 7,, =40°C; again A =40K. The inset shows a sketch of the flow with
the positions of the velocity peaks being indicated by the three different symbols.

are observed in the Nu behaviour too (not shown here), and are also detected in
experiment, see for instance Threlfall (1975). For water as the working fluid the
typical spatial coherence length (in terms of L) of the coherent flow structures has
decreased to about order 0.1 only in the Ra range between some 107 and 10°
(Sugiyama et al. 2007). A power-law fit, Ref =cRa”, in the range 7-10° < Ra < 108,
corresponding to the transition range from chaotic to turbulent behaviour, gives the
exponent y =0.62.

The behaviour of the Re”’ at x; = %, % %L, see figure 17, is more noisy but scaling-
wise similar to (at least compatible with) Re”, although in Re”’ the spatial structures
of the flow field are well taken into account. Re® is more robust with respect to the
convergence of the statistics. Experimentally at moderate Ra the Reynolds numbers
may scale differently, cf. Lam et al. (2002). In that reference the Reynolds number
based on the maximum horizontal velocity near the bottom plate outside the BL is
reported to scale oc Ra®’ for Ra<2+107 and oc Ra®*> for Ra>2-10". The set of
exponents y obtained in our simulation for Ref and the three Re’ (y ~ 0.62) are
therefore reasonably consistent with experimental findings. '

5.5. Scaling of amplitudes with Ra and A, non-Oberbeck—Boussinesq case

We now study the NOB case, starting with the conditionally time averaged
velocity field =, which now is bottom-top asymmetric. In particular, there is
thinning/thickening of the bottom/top kinetic BLs. For the wind amplitudes based
on the peak values of u along vertical lines we can distinguish between bottom and
top peak velocities UbP’ and U,P’ for the various x;-lines. As shown in figure 18, the

ratio Re,"~*?/Re,*~""* characteristic for the peak velocities taken in the main primary
circulation roll converges to unity as Ra is increased up to Ra ~ 10% and A kept fixed.
This shows that for the primary roll, which scans the bulk of the convection cell, a
single velocity amplitude develops in the turbulent range also under NOB conditions,
just as assumed in the BL theory introduced in Ahlers et al. (2006, 2007). This is also
found in figure 19, where the peak velocity scales are replace by U;"> and urms-Mms In
particular, the large variation in the bottom/top Reynolds number ratio in figure 18,
which reflects the spatial inhomogeneity in the velocity distribution, is smoothened by
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FIGURE 18. Ratio ReijOB/Re,P;’NOB versus Ra for the different peak positions in the cell
Note that due to the centre-point symmetry of the conditionally time averaged field u, the
peak positions along the lines x;;, = % % 3TL for the bottom part have to be compared with
the peak positions along xj,,=%, %% for the top part. The figure shows that the main
convection loop for large Ra establishes a uniform velocity amplitude, while the secondary
counter-rotating rolls do not enjoy the same property. Instead, since they are BL-dominated
rather than bulk-dominated, they show significant NOB bottom—top asymmetry. Note that the
accuracy of this test may be assessed from the level of the centre-point asymmetry we had
in the OB case, which was always below 5 %. Therefore we may conclude that in the chaotic
regime there are no NOB deviations distinguishable for the Re}if ~os/ Re:?NOB ratios at the two
positions x; 3 = % %. But there is a significant deviation for L/8, i.e. for the secondary rolls’
ratios.
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FIGURE 19. Same as figure 18, but with the peak values of the horizontal area averaged
velocities UM and U™s-Mms taken for the velocity scales.

taking the area average as indicated by the almost flat profiles of UM and U™s:Mms
in figure 19.

The secondary rolls, counter-rotating to the primary roll, have different wind
amplitudes near bottom and top, as becomes apparent in the bottom—top ratio at
the line x;,/L =0.125 and its mirror at the top x;,/L =1 — 0.125. The secondary
roll at the warmer bottom plate is faster than the corresponding secondary roll near
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FiGURE 20. The Reynolds number ratio Ref,;/Reb; based on the total kinetic energy for
water at T,, =40°C. (a) Rekyp/Reby versus A for various choices of fixed Ra. The symbols
including the horizontal lines indicated in the upper left corner show the data including
the error bars. The numerical data for Ra = 10° and larger are given with statistical error
bars. (b) Ref,p/Reby versus Ra at fixed non-Oberbeck—Boussinesqness A =40K. The full
line is calculated from BL theory under the assumption that A3/ + A5 =278, ie. F;=1. The
dashed line indicates the limit A — 0 where the Reynolds number ratio approaches 1. For the
explanation in terms of the T-dependence of B see text, in particular (5.6).

the top plate. We understand this from the smaller viscosity near the bottom due to
the higher temperature. For the working fluid water and A =40K the bottom—top
asymmetry is as large as ~25%

We therefore calculated the NOB/OB ratio of Ref versus A for various values
of Ra as well as versus Ra at fixed non-Boussineqness A =40K. This is shown in
figure 20. We observe that NOB effects are clearly present, although rather weak only,
of order 2 %, indicating a small increase of the kinetic energy based mean velocity.
The reason for the rather small NOB effect on the global wind amplitude in spite of
the large changes of the bottom and top velocities is that the secondary rolls only



Flow organization in Rayleigh—Bénard convection 25

contribute a limited fraction to the global volume average. Also, the OB-to-NOB
changes of the velocities of the secondary rolls are opposite in sign, one contributing
a larger (bottom), the other contributing a smaller (top) amplitude. The remaining
net change of the global amplitude U% thus again is due to the nonlinear temperature
dependences of the material parameters, producing different secondary roll velocities
at bottom and top. This crucial importance of the nonlinearities in the temperature
dependence of the material properties was already found in Ahlers et al. (20006).

Let us recall that the Nusselt number becomes smaller with increasing A as
was shown in figure 9. Therefore, although the global Reynolds number ratio is
enhanced under NOB conditions, the overall heat transport is attenuated. We have
also included in figure 20 a comparison with BL theory. We remind that to make this
theory predictive an additional assumption on F, (e.g. F;, ~ 1) has to be made. Note
that the extended BL theory in this form underestimates the NOB effect on the wind.

As the origin of this discrepancy we can now identify the effect of the temperature
dependence of the thermal expansion coefficient, which by (Prandtl-)Ansatz is not
included in the BL equations in Ahlers et al. (2006). For this explanation we offer the
following argument. As a naive estimate one can assume that the volume averaged
velocity scale UF in essence should coincide with the free-fall velocity, that is Uf ~
JgLB(T)A. This corresponds to the scaling Re ~ Pr—"/?Ra'/?. Assuming then that
the temperature of the bulk is dominated by 7,, and T, respectively in the OB and

NOB cases, one gets

Regy B(T)
This is in encouraging agreement with the DNS data, cf. figure 20. We note that
also Rekoz/Reby ~ (B(T.)/B(T,))” with y=0.62 is consistent with the data of
figure 20(a), rather than y =1/2 as suggested in (5.6). This finding implies Ref,p ~
(B-AL?/(kpyvim))?, similar to Refy ~ (B, AL?/(knvn))” = Ra” as seen for the OB case
of figure 16. Note that of course B.AL’/(k,,v,) is not the control parameter Ra.

As a further support of our argument emphasizing the importance of the
temperature dependence of the thermal expansion coefficient in the bulk we also
calculated Rek,y/Reby for a hypothetical liquid, which has all material properties as
water, apart from the thermal expansion coefficient 8, which we keep constant at ,,
see figure 21. Indeed, Rek,, now only shows a smaller than 1 % deviation from Rejp,
even at A=60K. These tiny deviations from Ref,,/Reby; =1 are consistent with
the results from the Prandtl-Blasius theory with the additional assumption F; =1.
Figure 21 thus confirms that the main origin of the NOB deviation in the Reynolds
number Ref is the temperature dependence of the thermal expansion coefficient, an
effect which clearly cannot be captured in the Prandtl-Blasius BL theory.

The changes of Ref caused by the loss of OB conditions can be analysed
quantitatively in detail. For this we decompose the volume average into three regions,
corresponding to the main, primary, LSC and the two secondary lower and upper
corner rolls.

(ReE)z =darsc (Regsc)2 + Alower (Ref,wgr)z + aupper (Refpper)z‘ (57)

Here a, denotes the ratio of the area A, occupied by the region «, with « = LSC,
lower, or upper secondary roll, to the total area, and Re’ is the Reynolds number
based on the kinetic energy averaged over each area A,

E

LU 1 1 /— —
E _ o . E _ 2y 2 2
Re, with U, \/Aoz /A(,ix x 3 (ux(x) + uz(x)). (5.8)

Vm
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FIGURE 21. Same as figure 20(a), but here with only linear dependence of p(T) on the
temperature 7, meaning that the thermal expansion coefficient 8(T) is set to the constant
value 8,,. Note that under this approximation there is good agreement with the results from
BL theory and F; =1 for large Ra, which means that the thermal convection takes significant
notice of the full T-dependence of the thermal expansion coefficient 8. BL theory misses that
per construction.

The lower secondary roll is characterized by a clockwise rotation and negative values
of the %(x)-stream function ¥ (x,z)= [; dZ u;(x, Z). The region Ay of the lower
corner roll is defined by ¢ <0, x <L/2 and z<<L/2, while for the upper corner roll
we have ¢ <0, x> L/2 and z> L/2. The remaining region comprises the primary
main roll, LSC.

The insets of figure 22 show the (squared) NOB/OB Reynolds number ratios
(Rel yog)*/(Rel op)* for each region o at Ra=10%. The insets both in the upper
and lower panels reveal that the largest NOB enhancement of the kinetic energy
occurs inside the lower corner secondary roll (near the warmer bottom plate), as

already found in the bottom-top asymmetry of the peak velocity Re:*;g/; / Re: Nog
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FIGURE 22. The relative deviation of the kinetic energy {aunos(Ref yo5)* — an.08(ReE o5)*}

/(ReEp)? in region « due to NOB effects for water at Ra=10% and 7,, =40°C. The label «
denotes the portion of the LSC roll in the centre region (as indicated by the solid lines in
figure 12), or the secondary counter-rotating rolls in the lower and upper corners (given by the
dashed lines in figure 12). The partition is determined by using the sign of ¥ = fo dz u;¢(x, 2),
e.g. the lower corner flow is defined as the region satisfying ¢ <0, x < L/2 and z < L/2. (a) the
full temperature dependence is considered for the buoyancy g(1 — p/p,) as given in Table 1.
(b) restriction to only linear dependence of the buoyancy with respect to the temperature
T, i.e. the thermal expansion coefficient 8(7)= 8,, is constant. The insets show the (squared)
NOB/OB Reynolds number ratio in the each region.

in figure 18. But even this enhancement does not impact significantly on the overall
Re® change because the volume ratio of each corner flow is only aipwer = dupper =9 %o,
1.e. the spatial extension of both secondary rolls is about the same, while the main
volume fraction is a;sc ~ 82 %. This is even more pronounced in the OB case, where
Aower(ReE, )2/ (ReF)? =0.05 and a;sc (ReEg)?/(Ref)* =0.90, while for the NOB case
at A=40K these fractions are 0.07 and 0.04 for the lower and upper secondary
rolls, and the primary LSC contributes 0.89. To visualize these contributions of each
subvolume « to the overall change, we show in figure 22 the normalized kinetic energy
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deviation {anop..(Rekop.)* — dos.«(ReSy ,)*}/(Rebs)? due to the NOB effect. The
upper panel proves that the NOB enhancement of the total kinetic energy is primarily
due to the LSC and secondarily to the lower corner roll. For comparison we plotted
the corresponding deviations in the lower panel for a hypothetical fluid with thermal
expansion coefficient fixed at 8,,. Then the enhancement of the LSC contribution is
much smaller, while the attenuation and enhancement respectively in the upper and
lower secondary rolls are comparable and in addition compensate each other. This
leads to the much smaller change in the total kinetic energy in figure 21 as compared
with the case when allowing the full temperature dependence of 8(T) in figure 20.
Apparently the nonlinear temperature dependence of the buoyancy is very important.
Note that the derivative of the buoyancy d(g(1 — p/p.)) /9T, corresponding to the
driving force per temperature displacement, increases when increasing the temperature
deviation (T — T,,) because the coefficient C, for the buoyancy expression as reported
in Table 1 is positive. Therefore the buoyancy force gets larger and the bulk kinetic
energy is more enhanced for given temperature deviation T — T, if the mean bulk
temperature 7, is larger than 7, as observed in figures 2 and 6.

6. Summary and conclusions

In summary, we have studied the temperature profile, the heat current density
and the properties of the large scale convections as defined by several representative
velocity scales. The centre temperature T, and the Nusselt number ratio Nuyop/Nuop
resulting from the two-dimensional numerical NOB simulations are in good agreement
with the available experimental data for water (Ahlers et al. 2006). Ahlers et al. (2006)’s
experimental finding F; =1 for water is argued to be incidental, originating from the
specific temperature dependences of the material constants of water at 40°C. This
finding cannot be generalized to other fluids or to other mean temperatures. For
water the heat flux reduction due to the deviations from OB conditions is for all
practical purposes due to the modified temperature drops over the BLs, represented
by Fa, whereas for other working fluids it is influenced also by the changes of the
thermal BL thicknesses, expressed by F).

The results of the simulations also agree with Ahlers et al. (2006)’s predictions for
the central temperature, which is based on an extended Prandtl-Blasius theory. As
that theory per construction ignores plumes and sidewall effects, these apparently
hardly contribute to the determination of the central temperature 7.. However, they
do contribute to the shape of the temperature profiles. Our simulations reveal their
increasing effect on the profiles with increasing Ra. As the overall heat transfer
is determined by the slope of the temperature profiles at the plates, it is to be
expected that with increasing Ra the plumes increasingly affect the Nusselt number,
in coherence with Grossmann & Lohse (2000, 2001, 2002, 2004)’s unifying theory.

The second part of the paper is devoted to the flow organization in the OB and
the NOB cases. First of all, also in the NOB case the large scale convection roll is
characterized by only one velocity scale. In contrast, the top and bottom corner flows
have different velocity scales in the NOB case, reflecting the enhanced and reduced
viscosities close to the respective plates. We defined various different velocity scales,
based on global and area averages and peaks in the profiles and analysed how these
change under NOB conditions. For the ratio of the energy based Reynolds numbers
which also is representative for the others we find Ref,,/Rebp ~ (B(T.)/B(T,))"?, ie.
NOB deviations in the Reynolds number are strongly governed by the temperature
dependence of the thermal expansion coefficient. This finding suggests that fluids
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which display no or only a weak temperature dependence of the thermal expansion
coefficient hardly show any NOB effects on the Reynolds numbers.

From our point of view the two next steps in numerical work on NOB correction
for RB flow are: (i) Study the detailed modifications of the various BL thicknesses and
profiles through NOB effects, and (ii) confirm that at least for Prandtl number of 1 and
larger the findings of this paper also hold for three-dimensional RB flow. Moreover,
NOB experiments focusing on the flow organization, BL layers and Reynolds number
modifications would be very desirable.
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