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Single-point hot-wire measurements in the bulk of a turbulent channel have been performed in order
to detect and quantify the phenomenon of preferential bubble accumulation. We show that statistical
analysis of the bubble-probe colliding-time series can give a robust method for investigation of
clustering in the bulk regions of a turbulent flow where, due to the opacity of the flow, no imaging
technique can be employed. We demonstrate that microbubbles (Ry=100 wm) in a developed
turbulent flow, where the Kolmogorov-length scale is =R, display preferential concentration in
small scale structures with a typical statistical signature ranging from the dissipative range, O(7),
up to the low inertial range O(1007). A comparison to Eulerian-Lagrangian numerical simulations
is also presented to further support our proposed way to characterize clustering from temporal time
series at a fixed position. © 2008 American Institute of Physics. [DOI: 10.1063/1.2911036]

I. INTRODUCTION

The phenomenon of preferential concentration of small
particles and bubbles in turbulent flows attracted much atten-
tion in recent years, from experimental vvorks,]_6 to numeri-
cal investigations,%18 and theoretical developments.19 The
preferential accumulation is an inertial effect. Particles
heavier than the fluid are on average ejected from vortices,
while light buoyant particles tend to accumulate in high vor-
ticity regions. Small air bubbles in water [below 1 mm, typi-
cal Reynolds number of order O(1)] can be regarded as a
particular kind of nondeformable light spherical particles
with density negligibly small compared to the fluid one. In
fact, in this size range, shape oscillations or deformations,
and wake induced effect can be reasonably neglected. Strong
preferential bubble accumulation in core vortex regions is
therefore expected according to the inertia mechanism, and
indeed observed experimentally2 and numerically.zo’21 Next
to the added mass force and gravity also drag and lift forces
can affect the clustering. Moreover, the coupling of the dis-
perse phase to the fluid flow (two-way coupling) and the
finite-size effect of particle-particle interaction (four-way
coupling) may also result in non-negligible factors of pertur-
bation for preferential concentration of particles and bubbles
in highly turbulent flows.

Both the lift force, the two-way coupling, and the four-
way coupling are notoriously difficult to model in numerical
simulations and a validation of the models against numerical
simulations is crucial. However, experimental measurements
on bubbly laden turbulent flows are challenging, as even at
very low void fractions (~1% in volume) the fluid is com-
pletely opaque and difficult to access with external optical
methods, especially in the bulk region of the flow. To experi-
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mentally explore the bubble clustering in the bulk at high
void fraction one therefore has to fall back on intrusive hot-
wire anemometer measurements. Such measurements had
earlier been employed to determine the modification of tur-
bulent spectra through bubbles.”** For the calculation of
the velocity spectra bubbles hitting the probe had first to be
identified in the hot-wire signalszs’26 and then filtered out. In
the present paper, we employ the very same hot-wire time
series to obtain information on the bubble clustering in the
turbulent flow. An alternative method to obtain local infor-
mation on the bubble distribution may be phase doppler par-
ticle analyzers.27

One could object that measurement from one fixed point
in space are too intrusive because they can destroy the clus-
ters, or that they are ineffective in extracting features of the
bubble trapping in turbulent vortical structures. The aim of
this paper is to demonstrate that this is not the case, when
using appropriate statistical indicators for the analysis of se-
ries of bubble colliding times on the hot-wire probe. We
show that it is possible to detect and quantify the mi-
crobubble clustering from a one-point measurement setup.
We compare experimental findings with results from numeri-
cal simulations based on Eulerian—-Lagrangian approach. Due
to limitations that we will discuss later, only a qualitative
agreement among numerics and experiments is expected.
Nevertheless, we show how this comparison is helpful in
clarifying the trend in the clustering at changing the turbulent
conditions.

Il. DETAILS OF THE EXPERIMENT METHODS

The experimental setup is the Twente water channel,
a vertical duct of square cross section with dimension
200X 45 X 45 cm®. We refer to Rensen ef al.”” for a detailed
description. An array of porous ceramic plates, positioned on
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TABLE I. Relevant turbulent scales and bubble characteristics for the two experimental samples analyzed. Fluid turbulent quantities have been estimated from
one-dimensional energy spectra. From left to right: integral scale, L,, mean velocity, U, single-component root mean square velocity, u’, Taylor Reynolds
number, Re,, large eddy turnover time, 7.4qy, dissipative time (7,) space (), and velocity (u,) scales, bubble Reynolds number (based on rising velocity in
still fluid), Re,, bubble-radius and Kolmogorov-length ratio, R,/ 7, Stokes number, St, ratio between terminal velocity in still fluid and dissipative velocity

scale, 8Tyl Uy

Ly (cm) U (cm/s) u' (cm/s) Re, Teday (8) 7, (ms) 7 (um) u,, (mm/s) Re, Ry/ 7 St gmyluy
(a) 22.6 19.4 1.88 206 12.0 151.0 388.0 2.57 44 0.26 0.007 4.2
(b) 23.1 14.2 1.39 180 16.6 240.0 489.0 2.04 44 0.20 0.004 53

the top of the channel, is used to generate coflowing small
bubbles of average radius, Ry=100 wm, as described in
Ref. 23. Fluid turbulence is generated by means of an active
grid, positioned immediately downstream the bubble injec-
tion sites. The typical flow is characterized by a large mean
flow, U, with turbulent fluctuations, u’ = {(u.()-U)*"?, of
smaller amplitude. The condition u'/U<1 assures that Tay-
lor’s frozen-flow hypothesis can be applied. The dissipative
Kolmogorov scale measures typically 7=400-500 wm,
while the Taylor microscale and the integral one, are, respec-
tively, A=30%, and Ly=500%. The typical bubble size is of
the same order, or slightly smaller, than 7.

We consider microbubble signals extracted from a hot-
film anemometry probe (300 wm in size) fixed at the center
of the channel. Detection of microbubbles is less ambiguous
than for large bubbles where probe piercing and breakup
events are highly probable.28 A microbubble hitting the probe
produces a signal with a clear spike. The bubble can be iden-
tified by thresholding of the velocity time-derivative signal,
see Fig. 2 of Ref. 23. This identification procedure leads
to the definition of a minimal cutoff time in the capability
to detect clustered events, two consecutive bubbles in our
records cannot have a separation time smaller than
7=10"2s. Such dead time is mainly linked to the typical
response-time of the acquisition setup. Here, we consider
two time series of microbubble measurements, i.e., hitting
times, selected from a larger database because of their uni-
formity and relevant statistics. We will refer to them in the
following as samples (a) and (b). The first sample (a) has
been taken for a 12 h long measurement; it consists of
N,=24099 bubbles with a mean hitting frequency
f=0.56 s7!. The second sample, (b), is a record of 11 h,
N,=11194 and f=0.28 s~'. There are two main differences
among the experimental conditions in which the two samples
have been recorded, that is the total volume air fraction
(called void fraction «), and the amplitude of the mean flow
and therefore the intensity of turbulence. Case (a) has a void
fraction of =0.3% and (b) has instead a=0.1%. Note that,
even at these very small void fractions, the mean number
density of bubbles amounts to O(10?) per cubic centimeter.
This explains the optical opacity of the bulk region of our
system. Nevertheless, given the small effect produced by the
dispersed bubbly phase on the turbulent cascading
mechanism,” we consider the discrepancy in « as irrelevant
for the velocity spectra. In contrast, the difference in the
forcing amplitude is more important, because it sensibly
changes all the relevant scales of turbulence, as summarized
in Table I. In particular, this leads to different values for the

minimal experimentally detectable scale: Ar,;,= 5 for case
(a) and Ar,;, =3 7 for (b), where Taylor hypothesis has been
used to convert time to space measurements, i.e., Ar=7U. In
the following, results of our analysis will be presented by
adopting space units made dimensionless by the Kolmogorov
scale 7. We consider this rescaling more useful for compari-
son to different experiments and simulations where a mean
flow may be absent.

lll. DESCRIPTION OF THE STATISTICAL TOOLS

In this section, we introduce the statistical tests that we
will adopt to quantify the clustering. Due to the fact that the
experimental recording is a temporal series of events, we
have necessarily to focus on a tool capable to identify, from
within this one dimensional series, possible signatures of
three-dimensional inhomogeneities.

A first way to assess the presence of preferential concen-
trations in the experimental records is to compute the prob-
ability density function (pdf) of the distance, Ar, between
two consecutive bubbles. Whether the particles distribute ho-
mogeneously in space, their distribution would be a Poisso-
nian distribution and hence the distance between two con-
secutive bubbles would be given by the well know
exponential expression: p exp(—pAr), where p=f/U is the
number of bubbles per unit length (i.e., their density).29 Due
to the presence of turbulence, we expect that, in general, the
spatial distribution of the bubbles will differ from a Poisso-
nian distribution: in any case, it is natural to expect that for
separation scales large enough the exponential form of the
pdf should be recovered. In fact, pairs of successive bubbles
with large separations Ar, larger then any structures in the
flow, are expected to be uncorrelated, memoryless, events.

Due to the possible accumulation on small scales (clus-
tering of bubbles), the long tail of the pdf may have an ex-
ponential decay rate that is different from the global mean, p.
The tail of the experimentally measured pdf can be fitted
with an exponentially decaying function, A exp(—p,Ar), with
a rate that we call p,, where h stands for homogeneous.
In the case of small-scale clustering, we expect p, to be
smaller than p. As an indicator of the fraction of bubbles
accumulated in turbulent structures, we use the coefficient
C=1-p,/p, whose value varies in between 0O and 1.

The test, so far, introduced is useful but only provides an
indication on how homogeneously distributed the bubbles
are at small scales, while it gives no indication on their pos-
sible “large-scale” correlations. Here, we introduce a second,
more comprehensive, statistical test particularly convenient
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to reveal the scales at which the inhomogeneity develops.
The idea is to compute the coarse-grained central moments
of the number of bubbles, on a window of variable length r,
w=((n—(n),)"),. The length of the window r will be the
scale at which we study whether the distribution resembles a
homogeneous one. We will focus on scale dependent kurtosis
and skewness excesses, respectively: K(r) = ,uf/ (,uf)z—3 and
S(r)= 3/ (u?)*?. A random distribution of particles spatially
homogeneous with mean density p corresponds to the Pois-
sonian distribution: p(n)=exp(=pr)(pr)"(n!)~', where r is the
length of the spatial window and » is the number of expected
events. Therefore, once the particle space rate p is given, the
value of any statistical moment can be derived for the corre-
sponding window length r. A spatially Poissonian distribu-
tion of particles implies the functional dependences
K(r)=(pr)~" and S(r)=(pr)~"2. Furthermore, we note that at
the smallest scale, when r=Ar;,, we reach the singular limit
(shot-noise limit) where for any given space window, we can
find none or only one bubble and all statistical moments
collapse to the same value. This latter limit, which is by the
way coincident with Poisson statistics, represents our mini-
mal detectable scale. We are interested in departures from the
shot-noise/random-homogeneous behavior for the statistical
observables K(r) and S(r).

IV. RESULTS OF THE ANALYSIS ON EXPERIMENTAL
DATA

In Fig. 1, we show the computed pdf(Ar) for the two
data samples considered. Deviations from global homogene-
ity are clear if the shape of the histogram is compared to the
solid line representing the pdfp exp(—pAr). These deviations
are slightly more pronounced in the more turbulent case (a)
as compared to case (b). Nevertheless, one can notice that the
pure exponentially decaying behavior, i.e., homogeneity, is
recovered from distances of the order of O(100%) up to the
large scales. The dotted line on Fig. 1, which represents the
linear fit on the long homogeneous tail in the interval
[10°,2 X 10%]%, and the inset boxes, where the pdf is com-
pensated by the fit, shows this latter feature. The evaluation
of the coefficient C leads to values for the relative bubbles
excess in clusters corresponding to 19% for case (a)
(Rey,=206) and 10% for case (b) (Re)=180), confirming
the trend of stronger concentration in flows with stronger
turbulence level. In Fig. 2, we show the kurtosis and skew-
ness behavior, evaluated for the two cases (a) and (b), in a
comparison with the Poissonian dependence. We observe, in
both cases, a clear departure at small scale from the scaling
implied by the global homogeneity, which is only recovered
at the large scale (=L;=5007) where the data points falls
roughly parallel to the Poisson line. The departure from the
Poisson line, that is noticeable already at the scales immedi-
ately above Ar,,,, is an indication that bubbles form clusters
even at the smallest scale we are able to detect, that is even
below 5 7 for case (a) or 37 for case (b). We observe that for
the less turbulent case, (b), the departure from the homoge-
neous scaling is less marked. A comparison to synthetic Pois-
son samples of an equivalent number of bubbles, that we
have tried, shows that the available statistics is sufficient to

Phys. Fluids 20, 040702 (2008)

1072
10
=
S l mﬂuAJunJ\uuﬂrm "\/h ﬂ MHI‘
S 100 F
[=9
107
0 500 1000 1500 2000
(a) Ar/m
1072
10 f
§ . 1 |ty wrlﬂurLuuﬂﬂnuﬂnﬂnm
S0k b
=3 .
107
0 500 1000 1500 2000
(b) A

FIG. 1. Probability density function of distance between successive bubbles,
pdf(Ar). Exponential behavior, pe™*", (solid line) and exponential fit,
AePndr of the large-scale tail (dashed line) are reported. The inset shows the
pdf(Ar) compensated by the fitted large-scale exponential behavior, i.e., the
pdf(Ar) divided by AePr4",

validate the deviations from the homogeneity discussed so
far. Scale dependent deviation from Poisson distribution is an
evidence of the fact that the dispersed microbubbles are
trapped within the dynamical vortical structures of turbu-
lence. Furthermore, we observe that gravity plays a minor
role in this dynamics. In fact, on average the bubbles are
swept down by the mean flow and g7,/u,~ O(1) (see Table
I), which implies that even the smallest vortical structures of
the flow may trap bubbles.'” Therefore, it is mainly the iner-
tia that drives the bubble accumulation in the flow.

V. RESULTS OF THE ANALYSIS ON NUMERICAL DATA

To give further evidence for the robustness of the sug-
gested statistical analysis of the hot-wire time series, we now
repeat the very same procedure with numerical simulation
data. We employ standard numerical tools already described
and discussed in details in Refs. 13 and 14. In short, we
integrate Lagrangian pointwise bubbles evolving on the
background of an Eulerian turbulent field. The equation for
the evolution of the pointwise bubble is the following:

dv. Du 1

dt_3Dt Th(v u)-2g—-(v-u) X w, (1)
where u and w are, respectively, the fluid velocity and vor-
ticity computed at the bubble position and constitute a sim-
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FIG. 2. Scale dependent kurtosis, K(r), for cases (a) (top) and (b) (bottom).
Dotted lines represent the Poissonian behavior, that is K(P)(r):(pr)‘l. No-
tice that the Poisson scaling behavior is reached for large r windows only
scaling wise. In the insets, the scale dependent skewness, S(r), behavior is
shown. Again, the Poissonian relation is drawn S(p)(r)=(pr)™* (dotted line).

plified version of the model suggested in Ref. 30 with the
addition of the lift term (see Ref. 13). The Eulerian flows is
a turbulent homogeneous and isotropic field integrated in a
periodic box, of resolution 1283, seeded approximately with
10° bubbles, corresponding to a void fraction a=4.5%. Since
previous numerical and experimental studies'>* have re-
vealed that the effect of bubbles on strong unbounded turbu-
lence is relatively weak, our numerical bubbles are only
coupled in one-way mode to the fluid, i.e., bubbles do not
affect the fluid phase. The bubble-Reynolds number Re,, is
set to unity and the Stokes number is St<< 1. Therefore, the
bubble radius is of order 7, and the bubble terminal velocity

Phys. Fluids 20, 040702 (2008)

vy=2gT7, in still fluid is smaller than the smallest velocity
scale u,. As (and actually even more than) in the experiment,
the role of gravity is marginal. In Table II, we report details
of the numerical simulations, these are chosen trying to
match the experimental numbers. However, we could not
reach the same scale separations as in the experiments. In the
bottom panel of Table II, we translated the numerical units to
their physical equivalent. We note that in the numerics the
Stokes number, St=7;,/ Ty which is an indicator of the degree
of bubble interaction with turbulence, cannot be as low as in
the experiments. To achieve the same, St would require too
much CPU time. For practical reason, the Stokes values
adopted in our numerics are roughly one order of magnitude
larger than in the experiments, although always much
smaller than unity, St<< 1. Under this conditions, simple spa-
tial visualization” shows strong bubble accumulation in
nearly one-dimensional elongated structures in correspon-
dence to high enstrophy regions (identified as vortex fila-
ments). As already stated, our goal is to use the numerics to
confirm the behavior of the suggested observables. To this
end, we put 128 virtual pointwise probes in the flow and
recorded the hitting times of the bubbles, which we give a
virtual radius R(. The bubble radius is related to the bubble
response time 7,, namely, Ry=(97,»)""> when assuming no-
slip boundary conditions at the gas-liquid interface.

An important difference between the experiments and
the numerics is the mean flow: it is present in the experiment
while intrinsically suppressed in the simulations. In the nu-
merical simulations the time is connected to space displace-
ments through the relation AR=At u’, where u’ is the root
mean square velocity.

The level of turbulence, given the available resolution,
has been pushed as high as possible (Re, =90) to obtain a
better analogy with the experiment. Also, in the numerical
simulations, two cases with different Reynolds numbers are
considered, see again Table II.

In Figs. 3 and 4, we show the results of the statistical
analysis of clustering from the time series obtained from the
numerical virtual probes. These two figures should be com-
pared to the analogous experimental findings already dis-
cussed and shown in Figs. 1 and 2. Some qualitative simi-
larities are striking. First, starting from Fig. 3, we observe
that deviations from random and homogeneous, i.e., pure
exponential behavior, are relevant at small scales. This fea-
ture is confirmed by the scale dependent kurtosis and skew-

TABLE II. Relevant turbulent scales and bubble characteristics for the two numerical simulation performed. The top part reports the actual values in numerical
units from the simulation, the bottom part shows for comparison the corresponding physical equivalent quantities for air bubbles in water, this is to better
appreciate similarities/differences with the experimental conditions of Table I. The values on the bottom part are computed starting from the dimensionless

quantities Re,, Re,, St, and by assuming v=10"% m?s~! and g=9.8 m s~

L, u' Re, Teddy T, n u, Re, Ry/m St gyl Uy
(a’) 5.0 1.4 94 3.6 0.093 0.025 0.275 1.0 1.13 0.14 0.55
(b") 5.0 1.0 87 4.9 0.147 0.032 0.218 1.0 0.89 0.09 0.69
Ly (cm) u' (cm/s) Re, Teddy (MS) 7, (ms) 7 (um) u,, (cm/s) Re, Ry/m St gm/u,
(a’) 0.41 7.2 94 57.3 4.7 68.7 1.45 1.0 1.13 0.14 0.55
(b") 0.46 5.5 87 82.5 7.3 85.7 1.16 1.0 0.89 0.09 0.69
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FIG. 3. Numerical result on the probability density function of distance
between successive bubbles, pdf(Ar). Case (a’) (top) is the most turbulent.
In the inset, the same compensated plot as in Fig. 1.

ness of Fig. 4, where departure from the Poisson scaling
already starts below 7 scale. Second, the most turbulent case
is the most clusterized, (a’) (Rey,=94) more than (b’)
(Rey,=87). The evaluation of the fraction of clustered
bubbles, based on the fit of the pdf(Ar) as in the experiment,
gives the value 29% for (a’) and 37% for (b’). Though the
qualitative behavior of the statistical indicators is the same,
also some important differences arise in this comparison.
First of all, full homogeneity in the numerics seems to be
recovered already at scales of order O(10%), whereas in the
experiments if was only recovered at O(1007). Furthermore,
the deviations from the Poisson distribution and the fraction
of clustered bubbles are definitely stronger in the numerics.
There are several possible interpretation for this mismatch,
including the possible incompleteness of the employed
model Eq. (1): first, some physical effects have been ne-
glected: the fluid-bubble and the bubble-bubble couplings
and the associated finite-size effects (in the present condi-
tions bubbles can overlap!). A second reason can be the dif-
ferent degree of bubble interaction with turbulence, a quan-
tity that is parametrized by the Stokes number St=7,/7,. The
estimated St in the experiment is roughly one order of mag-
nitude smaller than in the simulation. This corresponds to
bubbles that react faster to the fluid velocity changes and
hence to bubbles that closely follow the fluid particles and
accumulate less. Such a trend is also confirmed by our
numerics.
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FIG. 4. Numerical result on scale dependent kurtosis, K(r), for case (a’)
(top) and (b’) (bottom), and Poissonian behavior (dotted). In the insets, the
scale dependent skewness, S(r), behavior is shown.

VI. CONCLUSIONS

We have performed statistical tests in order to detect and
quantitatively characterize the phenomenon of preferential
bubble concentration from single-point hot-wire anemometer
measurements in the bulk of a turbulent channel. Our tools
clearly show that the experimental records display bubble
clustering. The fraction of bubbles trapped in such structures
is indeed considerable and can be estimated to be of the
order of 10%. The scale dependent deviations from random-
homogeneous distribution, that we associate to typical clus-
ter dimension, extends from the smallest detectable scale,
O(7), to scales in the low inertial range, O(1007). Accumu-
lation of bubbles is enhanced by increasing the turbulence
intensity. Comparison with present Eulerian-Lagrangian
simulations, where pointlike bubbles strongly accumulate in
vortex core regions, shows similar qualitative features and
trends.

We hope that our explorative investigation will stimulate
new dedicated experiments and numerical simulations to fur-
ther quantify the clustering dynamics as function of Rey-
nolds number and particle size, type, and concentration. The
challenge is to further develop and employ quantitative sta-
tistical tools to allow for a meaningful comparison between
experiment and simulations, in order to validate the model-
ing of particles and bubbles in turbulent flow.
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