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The Ra and Pr number scaling of the Nusselt number Nu, the Reynolds number Re, the temperature
fluctuations, and the kinetic and thermal dissipation rates is studied forsnumericald homogeneous
Rayleigh–Bénard turbulence, i.e., Rayleigh–Bénard turbulence with periodic boundary conditions in
all directions and a volume forcing of the temperature field by a mean gradient. This system serves
as model system for the bulk of Rayleigh–Bénard flow and therefore as model for the so-called
“ultimate regime of thermal convection.” With respect to the Ra dependence of Nu and Re we
confirm our earlier resultsfD. Lohse and F. Toschi, “The ultimate state of thermal convection,”
Phys. Rev. Lett.90, 034502 s2003dg which are consistent with the Kraichnan theoryfR. H.
Kraichnan, “Turbulent thermal convection at arbitrary Prandtl number,” Phys. Fluids5, 1374
s1962dg and the Grossmann–LohsesGLd theory fS. Grossmann and D. Lohse, “Scaling in thermal
convection: A unifying view,” J. Fluid Mech.407, 27 s2000d; “Thermal convection for large Prandtl
number,” Phys. Rev. Lett.86, 3316 s2001d; “Prandtl and Rayleigh number dependence of the
Reynolds number in turbulent thermal convection,” Phys. Rev. E66, 016305s2002d; “Fluctuations
in turbulent Rayleigh–Bénard convection: The role of plumes,” Phys. Fluids16, 4462 s2004dg,
which both predict Nu,Ra1/2 and Re,Ra1/2. However the Pr dependence within these two theories
is different. Here we show that the numerical data are consistent with the GL theory Nu,Pr1/2,
Re,Pr−1/2. For the thermal and kinetic dissipation rates we findeu / skD2L−2d,sRe Prd0.87 and
eu/ sn3L−4d,Re2.77, both nearsbut not fully consistentd the bulk dominated behavior, whereas the
temperature fluctuations do not depend on Ra and Pr. Finally, the dynamics of the heat transport is
studied and put into the context of a recent theoretical finding by Doeringet al. f“Comment on
ultimate state of thermal convection”sprivate communicationdg. © 2005 American Institute of
Physics. fDOI: 10.1063/1.1884165g

I. INTRODUCTION

The scaling of large Rayleigh numbersRad Rayleigh–
BénardsRBd convection has attracted tremendous attention
in the last two decades.1–50 There is increasing agreement
that, in general, there are no clean scaling laws for NusRa,Prd
and ResRa,Prd, apart from asymptotic cases. One of these
asymptotic cases has been doped the “ultimate state of ther-
mal convection,”51 where the heat flux becomes independent
of the kinematic viscosityn and the thermal diffusivityk.
The physics of this regime is that the thermal and kinetic
boundary layers have broken down or do not play a role any
more for the heat flux and the flow is bulk dominated. The
original scaling laws suggested for this regime are51

Nu , Ra1/2sln Rad−3/2Pr1/2, s1d

Re, Ra1/2sln Rad−1/2Pr−1/2 s2d

for Pr,0.15, while for 0.15,Pr&1,

Nu , Ra1/2sln Rad−3/2Pr−1/4, s3d

Re, Ra1/2sln Rad−1/2Pr−3/4. s4d

The Grossmann–LohsesGLd theory also gives such an
asymptotic regime which is bulk dominated and where the
plumes do not play a role4 sregimes IVl and IVl8 of Refs.
1–4d. Apart from logarithmic corrections, it has the same Ra
dependence as in Eqs.s1d–s4d, but different Pr dependence,
namely,

Nu , Ra1/2Pr1/2, s5d
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Re, Ra1/2Pr−1/2. s6d

The same scaling relation of Eq.s5d first appeared in the
paper by Spiegel on thermal convection in stars,52 where it
was proposed on the basis of the hypothesis that in high-
turbulent conditions the dimensional heat flux shall be inde-
pendent both of kinematic viscosity and thermal diffusivity.
As a model of the ultimate regime we had suggested53 ho-
mogeneous RB turbulence, i.e., RB turbulence with periodic
boundary conditions in all directions and a volume forcing of
the temperature field by a mean gradient,54

]u

]t
+ su · du = k]2u +

D

L
uz. s7d

Here u=T+sD /Ldz is the deviation of the temperature
from the linear temperature profile −sD /Ldz. The velocity
field usx ,td obeys the standard Boussinesq equation,

]u

]t
+ su · du = − = p + n]2u + bgẑu. s8d

Here,b is the thermal expansion coefficient,g the grav-
ity, p the pressure, andusx ,td and uisx ,td are temperature
and velocity field, respectively. This model has been previ-
ously studied by Borue and Orszag55 by means of a spectral
numerical simulation with built-in hyperviscosity. They fo-
cused mainly on turbulent spectra and second-order correla-
tion functions behavior, but not on scaling of integral quan-
tities with respect to Ra and Pr. Actually, their results
suggested a dependency of dimensional heat fluxQ on the
Ra number which was not compatible with the asymptotic
predictionss1d, s3d, ands5d. Furthermore they noticed for the
first time large scale structures in the temperature field
scalled “jets” in that paperd similar to the ones we observe in
our simulation.

How to connect the homogeneous Rayleigh–Bénard sys-
tem studied here with the standard top/bottom bounded
Rayleigh–Bénard system, and, in particular, how to connect
the respective Rayleigh numbers? We stress that such a rela-
tion is nontrivial. Let us denote the standard Rayleigh num-
ber of the top/bottom bounded system with temperature dif-
ferenceDtb between the top and bottom wall Ratb. We define
the bulk-RayleighRabulk for the bulk with the temperature
dropDbulk across the bulk and the bulk heightH−2lu, where
lu is the thickness of the thermal boundary layer. Then Rabulk

and Ratb are related through

Rabulk ;
Dbulk

Dtb
S1 −

2lu

H
D3

Ratb .
Dbulk

Dtb
Ratb. s9d

The ratiolu /H becomes rapidly negligible for highly turbu-
lent conditions. We think that from the available experimen-
tal and numerical data it is difficult to extract theDbulk/Dtb

dependency on Ratb sor alternatively the ratio among mean
thermal gradient in the bulk respect to the imposed thermal
gradient vs Ratbd, we only can guess that, if it is constant, it
shall be a very small number of order 10−2 or less, as can be
deduced, for example, from Ref. 23, Fig. 3sbd. Trying to
relate the bulk-Rayleigh number to Ratb for a complete cell is
out of the scope of the present work. Nevertheless it is

worthwhile to note that if in the asymptotic limit the relation
linking Ratb to Rabulk reveals to be nonlinear, the global re-
sults presented for the homogenous Rayleigh–Bénard model
cannot be directly translated to a real RB cell. Indeed, in Ref.
53 we showed that the numerical results from Eqs.s7d and
s8d are consistent with the suggested51,1–4Ra dependence of
Nu and Re, Nu,Ra1/2 and Re,Ra1/2. However, the Pr de-
pendences of Nu and Re, for which the predictions of
Kraichnan51 and GL sRefs. 1–4d are different, has not yet
been tested for homogeneous turbulence: this is the first aim
of this papersSec. IIId. Section II contains details of the
numerics. In Sec. IV we study the bulk scaling laws for the
thermal and kinetic dissipation rates and compare them with
the GL theory. In that section we study the temperature fluc-
tuations u8=ku2l1/2. The dynamics of the flow, including
Nustd and its PDFsprobability density functiond, is studied in
Sec. V and put into the context of a recent analytical finding
by Doering and co-workers.56 Section VI contains our con-
clusions.

II. DETAILS OF THE NUMERICS

Our numerical simulation is based on a lattice Boltzman
equation algorithm on a cubic 2403 grid. The same scheme
and resolution has already been used in Refs. 54 and 57. We
run two sets of simulations in statistically stationary condi-
tions. The first fixed at Pr=1 varying the Ra number between
9.63104 and 1.43107. The second fixed at Ra=1.43107.
This, the highest value we can reach at the present resolu-
tion, was studied for five different Pr numbers, 1/10, 1/3, 1,
3, and 4. We recorded shortly spaced time series of Nu and
root mean squaredsrmsd values of temperature and velocity,
and we stored a collection of the whole field configurations
with a coarse time spacing. The length of each different run
ranges between 64 and 166 eddy turnover times. Our simu-
lation was performed on an APEmille machine in a 128 pro-
cessor configuration.58,59 Each eddy turnover time requires
on average 4 h of computation. The total computational time
required for the whole set of simulations is roughly
150 days. The total number of stored configurations is
around 2000.

III. Nu„Ra,Pr… AND Re„Ra,Pr…

The Nusselt number is defined as the dimensionless heat
flux

Nu =
1

kDL−1fku3TlA,tszd − kk]3TlA,tszdg =
ku3ulA,tszd

kDL−1 − 1,

s10d

where the averagek¯lA,t is over a horizontal plane and over
time. From Eqs.s7d–s10d one can derive two exact relations
for the volume averaged thermal dissipation rateeu

=kks]iud2lV and the volume averaged kinetic dissipation rate
eu=nks]iujd2lV, namely,

eu =
n3

L4Nu Ra Pr−2, s11d

055107-2 Calzavarini et al. Phys. Fluids 17, 055107 ~2005!

Downloaded 11 May 2005 to 130.89.92.77. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



eu = k
D2

L2 Nu. s12d

One can therefore numerically compute Nu in three dif-
ferent ways:sid from its direct definitions10d, sii d from the
volume averaged kinetic dissipation rates11d, andsiii d from
the volume averaged thermal dissipation rates12d.

The results are shown in Fig. 1sad as a function of Ra for
Pr=1. There is very good agreement of Nu obtained from the
three different methods for all Ra, giving us further confi-
dence in the convergence of the numerics. If we fit all data
points beyond Ra=105 with an effective power law, we ob-
tain Nu,Ra0.50±0.05, consistent with the asymptotically ex-
pected law Nu,Ra1/2.61

In Fig. 1sbd we display Nu as function of Pr for fixed
Ra=1.43107. For the cases with PrÞ1 the convergence of
the three different methods to calculate Nu is not perfect.
This may be due to numerical errors in the resolution of the
small scale differences, especially whenn andk are consid-
erably different. However, one can clearly notice a strong
increase of Nu with Pr. A fit with an effective power law
gives Nu,Pr0.43±0.07, which is consistent with the
asymptotic power law Nu,Pr1/2 suggested by the GL theory
and by the small Pr regimes1d proposed by Kraichnan, but
not with Kraichnan’s large Pr regimes3d. Increasing Pr fur-

ther sat fixed Rad the flow will eventually laminarize, i.e.,
can no longer be considered as model system for the bulk of
turbulence. This also follows from Fig. 2sbd, in which we
show the Reynolds number

Re =
u8L

n
s13d

as function of Pr for fixed Ra=1.43107. Note that this is the
fluctuation Reynolds number, defined by the rms velocity
fluctuation u8=ku2l1/2: in homogeneous RB no large scale
wind exists. ResPrd displays an effective scaling law Re
,Pr−0.55±0.01, consistent with the GL prediction Pr−1/2 for the
ultimate regimesif one identifies the wind Reynolds number
in GL with the fluctuation Reynolds number hered and also
with the Kraichnan predictions2d. Also the Ra scaling of Re
is consistent with GLsand also with Kraichnand, Re,Ra1/2,
as seen from Fig. 2sad and as already shown in Ref. 53.

IV. SCALING LAWS FOR eu,eu AND THE
TEMPERATURE FLUCTUATIONS

A. Kinetic and thermal dissipations

The homogeneous RB turbulence offers the opportunity
to numerically test one of the basic assumptions of the GL
theory, namely, that the energy dissipation rate in the bulk
scales like

FIG. 1. sad NusRad for Pr=1, computed in three different ways:sPd using
Eq. s10d, shd using Eq.s11d, and ssd from Eq. s12d. The power law fits,
performed on the mean value of the three different estimates and for Ra
.105, give a slope 0.50±0.05.sbd NusPrd for Ra=1.43107, fit performed
as before, with a resulting slope of 0.43±0.07.

FIG. 2. sad ResRad for Pr=1, with a fitted slope 0.50±0.02.sbd ResPrd for
Ra=1.43107, with a fitted slope of −0.55±0.01.
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eu,bulk ,
n3

L4Re3. s14d

In contrast if energy dissipation is dominated by the bound-
ary layersBLd region GL predicts theeu,BL,n3L−4Re5/2 be-
havior. In Fig. 3sad we plot eu/ sn3L−4d vs Re for all Ra and
Pr, and findeu/ sn3L−4d,Re2.77±0.03closer to the expectation
s14d but not fully compatible with it.

The disentanglement of the thermal dissipation rateeu

into two different scaling contributions is, in principle, less
straightforward. The GL theory decombines

eu/skD2L−2d = c3sRe Prd1/2 + c4sRe Prd, s15d

where the first term has been interpreted as boundary layer
and plume contributioneu,pl and the second one as back-
ground contributioneu,bg.

4 The prefactorsc3 andc4 are given
in Ref. 4. Plumes are interpreted as detached boundary
layer.4 Our simulation gives, see Fig. 3sbd, the eu / skD2L−2d
,sRe Prd0.87±0.04 behavior again closer to the background
scaling, but not fully compatible with it, and consistent with
the kinetic energy dissipation result. These unexpected de-
viations from the bulk behavior can be due to the presence of
layers characterized by strong gradients both in the velocity
and in the temperature field, i.e., to the formation of dynami-
cal BL in the flow. It has been already observed in Ref. 55

and it is confirmed by our visualizations that the temperature
field patterns often lead to the appearance of some nearby
large vertical jetsssee Sec. V of this paperd. These jets are
associated to the formation of strong vertical temperature
gradientss]3ud on the surfaces at their boundaries. We think
this feature of homogeneous convection is of basic impor-
tance to explain the observed deviations from pure bulk scal-
ing.

B. Temperature fluctuations

In our numerics we find the temperature fluctuationsu8
=ku2l1/2 to be independent from Ra and Pr, see Fig. 4. These
figures show that we haveu8.D for all Ra and Pr within our
numerical precision. In contrast, Ref. 4 predicted a depen-
dence of the thermal fluctuations on both Ra and Pr, namely,
u8 /D,sPr Rad−1/8 for the regimes IVl and IVl8 which corre-
spond to the bulk of turbulence analyzed here. Our interpre-
tation of Fig. 4 is that the bulk turbulence only has one
temperature scale, namely,D. For real RB turbulence it is the
boundary layer dynamics which introduces further tempera-
ture scales, leading to the Ra and Pr number dependence of
the temperature fluctuations observed in experiments.5,16,47,48

V. DYNAMICS OF THE FLOW

In this section we provide an insight into the dynamics
of the periodic Rayleigh–Bénard flow. A bidimensional ver-
tical snapshot of the flow is shown in Fig. 5. Already from
this pictorial view the presence of an upward moving hot
column and a downward moving cold column is clearly evi-
dent.

Indeed these large scale structure can be related to the
presence of “elevator modes”sor jets, forming in the flowd
growing in time until finally breaking down due to some
instability mechanisms.

As proposed by Doering and co-workers in Ref. 56 it is
possible to predict the presence of these modes directly start-

FIG. 3. sad We showeu/ sn3L−4d vs Re. The fit gives a slope of 2.77±0.03,
slope 3 and 5/2 are shown for comparison.sbd eu / skD2L−2d vs Re Pr. We
obtained a fitted slope of 0.87±0.04 while slopes 1 and 1/2 are also shown
for comparison.

FIG. 4. sad Normalized temperature varianceu8 /D vs Ra at fixed Pr=1.sbd
u8 /D vs Pr at fixed Ra=1.43107.
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ing from Eqs.s7d ands8d. Doeringet al. showed that, due to
the periodic boundary conditions, this coupled system of
equations admits a particular solutionu=u0e

klt sinsk ·xd, u3

=u0e
klt sinsk ·xd, u2=u1=0, which is independent from the

vertical coordinatez fherek=skx,kydg and with

l = −
1

2
sPr + 1dk2 +

1

2
ÎsPr + 1d2k4 + 4 PrSRa

L4 − k4D .

s16d

From Eq. s16d one finds that the first unstable mode
appears for RaùRac=s2pd4,1558.54, corresponding to the
instability of the smallest possible wavenumber in the sys-
tem, i.e.,k2=s2p /Ld2n2 with n=s1,0d.

The presence of accelerating modes with growth rate
controlled byl can also be seen from Fig. 6 where we show
Nustd on log scalesnotice the huge range over which Nu
fluctuatesd, and its logarithmic derivative.

In Fig. 7 we show the PDF of Nustd which is strongly
skewed towards large Nu values. This asymmetry reflects the
periods of exponential growthsalso visible in Fig. 6d. As can
be seen in Fig. 8, for all Ra and Pr the system typically
spends 54% of the time in growing modes.

Also the relative fluctuations of Nu on the Ra and Pr
numbersssee Fig. 9d seem to indicate no dependencies, at
least in the range of parameters studied.

Despite the presence of exact exploding solutions, our
system clearly shows that in the turbulent regime these solu-
tions become unstable due to some yet to be explored insta-
bility mechanism. The interplay between exploding modes
and destabilization sets the value of the Nusselt number, i.e.,
the heat transfer through the cell.

We stress that the study of the dynamics of the explosive
solutions and of their successive collaps in a turbulent cell is
crucial for the understanding the behavior of “integral” quan-
tities, like, for example, the heat transfer.

VI. CONCLUSIONS

In conclusion, we confirmed that both the Ra and the Pr
scaling of Nu and Re in homogeneous Rayleigh–Bénard con-
vection are consistent with the suggested scaling laws of the
Grossmann–Lohse theory for the bulk-dominated regimesre-
gime IVl of Refs. 1–3d, which is the so-called ultimate re-
gime of thermal convection. We also showed that the thermal
and kinetic dissipations scale roughly as assumed in that
theory. The temperature fluctuations do not show any Ra or
Pr dependence for homogeneous Rayleigh–Benard convec-
tion. From the dynamics the heat transport and flow visual-
izations we identify elevator modes which are brought into
the context of a recent analytical finding by Doeringet al. In
future work we plan to further clarify the flow organization
and, in particular, the instability mechanisms of the elevator
modes which set the Nusselt number in homogeneous RB
flow and therefore presumably also in the ultimate regime of
thermal convection.

FIG. 6. sad Time series Nustd for Ra=1.43107 stopd and Ra=9.63104

sbottomd, in both case Pr=1.sbd Logarithmic derivative of Nustd for Ra
=9.63104, here reproduced only for a small time section of the data insad.
The series of horizontal lines represent the exponential rate of growing
respectivelystop to bottomd for the models0,1d, ls0,2d, andls1,2d.

FIG. 5. sColord. Snapshot of the flow, at Ra,105 showing elevator modes
and jets. Hereu is shown in colors: red and yellow encode for positive
values, with red greater in amplitude than yellow; green is for small values
around zero; while blue stands for the negative values; dark blue stands for
the more negative values. Velocity in the same plane is shown with arrows.

055107-5 Rayleigh and Prandtl number scaling in the bulk Phys. Fluids 17, 055107 ~2005!

Downloaded 11 May 2005 to 130.89.92.77. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



ACKNOWLEDGMENTS

The authors thank Charlie Doering for stimulating dis-
cussions on Sec. V. D.L. wishes to thank Siegfried Gross-
mann for extensive discussions and exchange over the years.
This work was part of the research program of the Stichting
voor Fundamenteel Onderzoek der MateriesFOMd, which is
financially supported by the Nederlandse Organisatie voor
Wetenschappelijk OnderzoeksNWOd. Support by the Euro-
pean Union under Contract No. HPRN-CT-2000-00162 “Non
Ideal Turbulence” is also acknowledged. This research was
also supported by the INFN, through access to the APEmille
computer resources. E.C. was supported by Neuricam spa
sTrento, Italyd in the framework of a doctoral grant program
with the University of Ferrara and during his visit at Univer-
sity of Twente by SARA through the HPC-Europe program.

1S. Grossmann and D. Lohse, “Scaling in thermal convection: A unifying
view,” J. Fluid Mech. 407, 27 s2000d.

2S. Grossmann and D. Lohse, “Thermal convection for large Prandtl num-
ber,” Phys. Rev. Lett.86, 3316s2001d.

3S. Grossmann and D. Lohse, “Prandtl and Rayleigh number dependence of
the Reynolds number in turbulent thermal convection,” Phys. Rev. E66,
016305s2002d.

4S. Grossmann and D. Lohse, “Fluctuations in turbulent Rayleigh–Bénard
convection: The role of plumes,” Phys. Fluids16, 4462s2004d.

5B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber,
S. Thomae, X. Z. Wu, S. Zaleski, and G. Zanetti, “Scaling of hard thermal
turbulence in Rayleigh–Bénard convection,” J. Fluid Mech.204, 1 s1989d.

6X. Z. Wu, L. Kadanoff, A. Libchaber, and M. Sano, “Frequency power
spectrum of temperature-fluctuation in free-convection,” Phys. Rev. Lett.
64, 2140s1990d.

7X. Z. Wu and A. Libchaber, “Scaling relations in thermal turbulence: The
aspect ratio dependence,” Phys. Rev. A45, 842 s1992d.

8G. Zocchi, E. Moses, and A. Libchaber, “Coherent structures in turbulent
convection: An experimental study,” Physica A166, 387 s1990d.

9A. Belmonte, A. Tilgner, and A. Libchaber, “Boundary layer length scales
in thermal turbulence,” Phys. Rev. Lett.70, 4067s1993d.

10L. P. Kadanoff, “Turbulent heat flow: Structures and scaling,” Phys. Today
54s8d, 34 s2001d.

11X. Chavanne, F. Chilla, B. Castaing, B. Hebral, B. Chabaud, and J.
Chaussy, “Observation of the ultimate regime in Rayleigh–Bénard convec-
tion,” Phys. Rev. Lett.79, 3648s1997d.

FIG. 7. sad andsbd PDF of Nustd for different Ra and Pr. The superimposed
curves correspond to a two parameterG distribution fit, Nua exps−b Nud
sRef. 60d.

FIG. 8. Normalized rising timetr /t as a function ofsad Ra for Pr=1 andsbd
Pr for Ra=1.43107. The timetr is the total time with positive slope of
Nustd, whereas the timet is the total time of the run. The slope of the two
fits in the shown graphs is compatible with zero, the overall mean value for
tr /t is 0.54.

FIG. 9. Relative fluctuationsssNud / kNul, where ssNud;kfNustd
−kNulg2l1/2, as function ofsad Ra for Pr=1 andsbd Pr for Ra=1.43107.

055107-6 Calzavarini et al. Phys. Fluids 17, 055107 ~2005!

Downloaded 11 May 2005 to 130.89.92.77. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



12X. Chavanne, F. Chilla, B. Chabaud, B. Castaing, and B. Hebral, “Turbu-
lent Rayleigh–Bénard convection in gaseous and liquid He,” Phys. Fluids
13, 1300s2001d.

13P. E. Roche, B. Castaing, B. Chabaud, and B. Hebral, “Observation of the
1/2 power law in Rayleigh–Bénard convection,” Phys. Rev. E63, 045303
s2001d.

14P. E. Roche, B. Castaing, B. Chabaud, and B. Hebral, “Prandtl and Ray-
leigh numbers dependences in Rayleigh–Bénard convection,” Europhys.
Lett. 58, 693 s2002d.

15E. D. Siggia, “High Rayleigh number convection,” Annu. Rev. Fluid
Mech. 26, 137 s1994d.

16J. Niemela, L. Skrebek, K. R. Sreenivasan, and R. Donnelly, “Turbulent
convection at very high Rayleigh numbers,” NaturesLondond 404, 837
s2000d.

17J. Niemela, L. Skrbek, K. R. Sreenivasan, and R. J. Donnelly, “The wind
in confined thermal turbulence,” J. Fluid Mech.449, 169 s2001d.

18J. Niemela and K. R. Sreenivasan, “Confined turbulent convection,” J.
Fluid Mech. 481, 355 s2003d.

19S. Grossmann and D. Lohse, “On geometry effects in Rayleigh–Bénard
convection,” J. Fluid Mech.486, 105 s2003d.

20X. Xu, K. M. S. Bajaj, and G. Ahlers, “Heat transport in turbulent
Rayleigh–Bénard convection,” Phys. Rev. Lett.84, 4357s2000d.

21G. Ahlers and X. Xu, “Prandtl-number dependence of heat transport in
turbulent Rayleigh–Bénard convection,” Phys. Rev. Lett.86, 3320s2001d.

22A. Nikolaenko and G. Ahlers, “Nusselt number measurements for turbu-
lent Rayleigh–Bénard convection,” Phys. Rev. Lett.91, 084501s2003d.

23R. Verzicco and R. Camussi, “Prandtl number effects in convective turbu-
lence,” J. Fluid Mech.383, 55 s1999d.

24R. Verzicco, “Turbulent thermal convection in a closed domain: Viscous
boundary layer and mean flow effects,” Eur. Phys. J. B35, 133 s2003d.

25R. Verzicco and R. Camussi, “Numerical experiments on strongly turbu-
lent thermal convection in a slender cylindrical cell,” J. Fluid Mech.477,
19 s2003d.

26R. Camussi and R. Verzicco, “Convective turbulence in mercury: Scaling
laws and spectra,” Phys. Fluids10, 516 s1998d.

27X. D. Shang, X. L. Qiu, P. Tong, and K. Q. Xia, “Measured local heat
transport in turbulent Rayleigh–Bénard convection,” Phys. Rev. Lett.90,
074501s2003d.

28Y. B. Du and P. Tong, “Enhanced heat transport in turbulent convection
over a rough surface,” Phys. Rev. Lett.81, 987 s1998d.

29Y. Shen, P. Tong, and K. Q. Xia, “Turbulent convection over rough sur-
faces,” Phys. Rev. Lett.76, 908 s1996d.

30Y. B. Du and P. Tong, “Turbulent thermal convection in a cell with ordered
rough boundaries,” J. Fluid Mech.407, 57 s2000d.

31X. L. Qiu and P. Tong, “Onset of coherent oscillations in turbulent
Rayleigh–Bénard convection,” Phys. Rev. Lett.87, 094501s2001d.

32S. Cioni, S. Ciliberto, and J. Sommeria, “Strongly turbulent Rayleigh–
Bénard convection in mercury: Comparison with results at moderate
Prandtl number,” J. Fluid Mech.335, 111 s1997d.

33S. Ciliberto and C. Laroche, “Random roughness of boundary increases
the turbulent convection scaling exponent,” Phys. Rev. Lett.82, 3998
s1999d.

34K.-Q. Xia and S.-L. Lui, “Turbulent thermal convection with an obstructed
sidewall,” Phys. Rev. Lett.79, 5006s1997d.

35K.-Q. Xia, S. Lam, and S. Q. Zhou, “Heat-flux measurement in high-
Prandtl-number turbulent Rayleigh–Bénard convection,” Phys. Rev. Lett.
88, 064501s2002d.

36S. Lam, X. D. Shang, S. Q. Zhou, and K. Q. Xia, “Prandtl-number depen-

dence of the viscous boundary layer and the Reynolds-number in
Rayleigh–Bénard convection,” Phys. Rev. E65, 066306s2002d.

37H. D. Xi, S. Lam, and K. Q. Xia, “From laminar plumes to organized
flows: The onset of large-scale circulation in turbulent thermal convec-
tion,” J. Fluid Mech. 503, 47 s2004d.

38E. S. C. Ching, “Heat flux and shear rate in turbulent convection,” Phys.
Rev. E 55, 1189s1997d.

39E. S. C. Ching and K. F. Lo, “Heat transport by fluid flows with prescribed
velocity fields,” Phys. Rev. E64, 046302s2001d.

40E. S. C. Ching and K. M. Pang, “Dependence of heat transport on the
strength and shear rate of circulating flows,” Eur. Phys. J. B27, 559
s2002d.

41T. Takeshita, T. Segawa, J. A. Glazier, and M. Sano, “Thermal turbulence
in mercury,” Phys. Rev. Lett.76, 1465s1996d.

42A. Naert, T. Segawa, and M. Sano, “High-Reynolds-number thermal tur-
bulence in mercury,” Phys. Rev. E56, R1302s1997d.

43T. Segawa, A. Naert, and M. Sano, “Matched boundary layers in turbulent
Rayleigh–Bénard convection of mercury,” Phys. Rev. E57, 557 s1998d.

44J. Sommeria, “The elusive ultimate state of thermal convection,” Nature
sLondond 398, 294 s1999d.

45J. A. Glazier, T. Segawa, A. Naert, and M. Sano, “Evidence against ultra-
hard thermal turbulence at very high Rayleigh numbers,” NaturesLondond
398, 307 s1999d.

46C. Doering and P. Constantin, “Variational bounds on energy dissipation in
incompressible flows: III. Convection,” Phys. Rev. E53, 5957s1996d.

47Z. A. Daya and R. E. Ecke, “Does turbulent convection feel the shape of
the container?” Phys. Rev. Lett.87, 184501s2001d.

48Z. A. Daya and R. E. Ecke, “Prandtl number dependence of interior tem-
perature and velocity fluctuations in turbulent convection,” Phys. Rev. E
66, 045301s2002d.

49S. Kenjeres and K. Hanjalic, “Numerical insight into flow structure in
ultraturbulent thermal convection,” Phys. Rev. E66, 036307s2002d.

50M. Breuer, S. Wessling, J. Schmalzl, and U. Hansen, “Effect of inertia in
Rayleigh–Bénard convection,” Phys. Rev. E69, 026302s2004d.

51R. H. Kraichnan, “Turbulent thermal convection at arbitrary Prandtl num-
ber,” Phys. Fluids5, 1374s1962d.

52E. A. Spiegel, “Convection in stars, I: Basic Boussinesq convection,”
Annu. Rev. Astron. Astrophys.9, 323 s1971d.

53D. Lohse and F. Toschi, “The ultimate state of thermal convection,” Phys.
Rev. Lett. 90, 034502s2003d.

54L. Biferale, E. Calzavarini, F. Toschi, and R. Tripiccione, “Universality of
anisotropic fluctuations from numerical simulations of turbulent flows,”
Europhys. Lett.64, 461 s2003d.

55V. Borue and S. Orszag, “Turbulent convection driven by a constant tem-
perature gradient,” J. Sci. Comput.12, 305 s1997d.

56C. R. Doering, J. D. Gibbon, and A. Tanabe, “Comment on ultimate state
of thermal convection,” Phys. Rev. Lett.sprivate communicationd.

57E. Calzavarini, F. Toschi, and R. Tripiccione, “Evidences of Bolgiano–
Obhukhov scaling in three-dimensional Rayleigh–Bénard convection,”
Phys. Rev. E66, 016304s2002d.

58R. Tripiccione, “APEmille,” Parallel Comput.25, 1297s1999d.
59A. Bartoloniet al., “Status of APEmille,” Nucl. Phys. B106, 1043s2002d.
60S. Aumaitre and S. Fauve, “Statistical properties of fluctuations of the heat

transfer in turbulent convection,” Europhys. Lett.62, 822 s2003d.
61In our previous papersRef. 53d the overall magnitude of Nu was affected

by a normalization error, hence all points of Fig. 1 of that paper should be
multiplied by a factor 240scorresponding to the grid size of our simula-
tiond. This of course does not affect the scaling exponent given there.

055107-7 Rayleigh and Prandtl number scaling in the bulk Phys. Fluids 17, 055107 ~2005!

Downloaded 11 May 2005 to 130.89.92.77. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


