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We present a collection of eight data sets from state-of-the-art experiments and numerical simulations
on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds
numbers in the range R� 2 �120:740�. Lagrangian structure functions from all data sets are found to
collapse onto each other on a wide range of time lags, pointing towards the existence of a universal
behavior, within present statistical convergence, and calling for a unified theoretical description. Parisi-
Frisch multifractal theory, suitably extended to the dissipative scales and to the Lagrangian domain, is
found to capture the intermittency of velocity statistics over the whole three decades of temporal scales
investigated here.
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Understanding the statistical properties of particle trac-
ers advected by turbulent flows is a challenging theoretical
and experimental problem [1,2]. It is a key ingredient for
the development of stochastic models [3,4], in such diverse
contexts as turbulent combustion, industrial mixing, pol-
lutant dispersion, and cloud formation [5]. The main diffi-
culty of Lagrangian investigations, following particle
trajectories, stems from the necessity to resolve the wide
range of time scales driving different particle behaviors:
from the longest TL, given by the stirring mechanism, to
the shortest ��, typical of viscous dissipation. Indeed the
ratio TL=�� � R� grows with the Taylor Reynolds number
R� that varies up to few thousands in laboratory flows.
Some aspects of Lagrangian statistics have been experi-
mentally measured: particle accelerations [2], velocity
fluctuations in the inertial range [6,7], and two-particle
dispersion [8,9]. Others, connected to the entire range of

motions, have long been restricted to numerical simula-
tions [10–14]. A fundamental open question is connected
to intermittency, i.e., the observed strong deviations from
Gaussian statistics, becoming larger and larger when con-
sidering fluctuations at smaller and smaller scales. Addi-
tionally, the dependency of velocity statistics at various
temporal scales on large scale forcing and boundary con-
ditions is the so-called problem of universality. Thus,
universality features are linked to the degree of anisotropy
and nonhomogeneities of turbulent statistics [15]. Similar
problems have already been explored measuring the veloc-
ity fluctuations in the laboratory frame (Eulerian statistics),
where clear evidence of universality has been obtained
[16]. To build a general theory of turbulent statistics,
universality is the first requirement and, if proved, may
open the possibility for effective stochastic modeling [17]
in many applied situations. This Letter is aimed at inves-
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tigating intermittency and universality properties of veloc-
ity temporal fluctuations by quantitatively comparing data
obtained from the most advanced laboratory [6–8] and
numerical [10–13,18] experiments. The main outcomes
of our analysis are twofold. First, we show that data
collapse on a common functional form, providing evidence
for universality of velocity fluctuations—up to moments
currently achievable with high statistical accuracy. At in-
termediate and inertial scales, data show an intermittent
behavior. Second, we propose a stochastic phenomenologi-
cal modelization in the entire range of scales, using a
multifractal description linking Eulerian and Lagrangian
statistics.

We analyze the probability distribution of velocity fluc-
tuations at all scales, focusing on moments of these dis-
tributions, namely the Lagrangian velocity structure
functions (LVSF) of positive integer order p:

 S�p�i ��� � h�vi�t� �� � vi�t��
pi � h���vi�

pi; (1)

where i � x; y; z are the velocity components along a
single particle path, and the average is defined over the
ensemble of trajectories. As stationarity and homogeneity
are assumed, moments of velocity increments only depend
on the time lag �. In the inertial range, for �� 	 �	 TL,
nonlinear energy transfer governs the dynamics. Thus,
from a dimensional viewpoint, only the scale � and the
average energy dissipation rate for unit mass � should
matter for the structure function behavior. The only admis-
sible choice is S�p�i ��� � ����

p=2, but it does not take into
account the fluctuating nature of energy dissipation.
Empirical studies have indeed shown that the tails of the
probability density functions of ��v become increasingly
non-Gaussian at decreasing �=TL. In terms of moments of
the velocity fluctuations, intermittency reveals itself in the
anomalous scaling exponents, i.e., a breakdown of the
dimensional law for which we have that

 S�p�i ��� � �
��p�; (2)

with ��p� � p=2. Notice that when dissipative effects
dominate, typically for scales �� �� and smaller, the
power-law behavior (2) is no longer valid, and refined
arguments have to be employed, as we will see in the
following.

The statistics of velocity fluctuations at varying time lag
� can be quantitatively captured by the logarithmic deriva-
tives of S�p�i ��� versus S�2�i ��� [19–21]. This defines the
local scaling exponents

 �i�p; �� �
d logS�p�i ���

d logS�2�i ���
: (3)

For statistically isotropic turbulence, all components are

equivalent, so that their spread quantifies the degree of
anisotropy present in the flow. The � dependence of
�i�p; �� allows for a scale-by-scale characterization of
intermittency.

Figure 1 shows the local exponents of order p � 4 from
a collection of eight data sets, see Tables I and II, for
different Reynolds numbers. Most of these data sets are
new as is the analysis performed here. We focused on the
fourth order moment, since it is the highest order achiev-
able with statistical convergence for all data sets. Two
observations can be done. First, all data sets show a similar
strong variation around the dissipative time �=�� �O�1�
that depends on the Reynolds number, and then a clear
tendency toward a plateau for larger lags � > 10��.
Second, all data sets, with comparable Reynolds numbers,
agree well in the whole range of time lags. The relative
scatter increases only for large �, due to the combined
effects of the lack of statistics, the anisotropy of the flows,
and the different values of R�. In particular, finite volume
effects in experimental particle tracking can produce a
small—but systematic—downward shift of the points at
long-lag times [21,22]. It is worth noticing that error bars
estimated from anisotropic contributions decrease by
going to small �, indicating that isotropy tends to be
recovered at sufficiently small scales; i.e., large scale an-
isotropic contributions become less and less important. In
addition, the fact that, at comparable Reynolds numbers,
all data sets recover the same behavior by going to smaller
and smaller time lags provides a clear indication of
Lagrangian universality of the energy cascade. Such an
agreement has not been observed before and is comparable
with that found for the corresponding Eulerian quantities
[16].

The quality of data shown in Fig. 1 opens the possibility
of quantitatively testing phenomenological models for
LVSF, scale-by-scale. The Parisi-Frisch multifractal (MF)
model of the inertial range [23], and its generalization to
the dissipative range [24–27], has proved to give a satis-
factory description of Eulerian and Lagrangian fluctuations
[14,28–30]. It is thus appealing to search for a link be-
tween Eulerian and Lagrangian statistics [14,28–30], since
this points to a unique interpretation of turbulent fluctua-
tions. Moreover, it would reduce the number of free pa-
rameters. According to the MF model, Eulerian velocity
increments at inertial scales are characterized by a local
Hölder exponent h, i.e., �ru� rh, whose probability
P �h� � r3�D�h� is weighted by the Eulerian fractal dimen-
sion D�h� of the set where h is observed [23]. The dimen-
sional relation �� r=�ru bridges Lagrangian fluctuations
over a time lag � to the Eulerian ones at scale r. Following
Refs. [27,28], it is shown in Ref. [30] how to extend the MF
framework to get a unified description at all time scales for
Lagrangian turbulence. Accordingly, Lagrangian incre-
ments display a continuous and differentiable behavior at
the transition from the dissipative to the inertial range,
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 ��v�h� � V0
�
TL

��
�
TL

�
�
�

���
TL

�
�
�
�2h�1�=��1�h�

; (4)

� being a free parameter controlling the crossover around
�� ��, and V0 the root mean square velocity. In order to
get a prediction for the behavior of the LVSF, given by

 h���v�pi �
Z
dhPh��; ������v�h��p; (5)

we have to consider, in (4), the intermittent fluctuations of
the dissipative scale [14,28,30], ���h�=TL � R

2�h�1�=�1�h�
� .

The last necessary ingredient is to specify the probability
of observing fluctuations of h. This is done in analogy to
Eq. (4):

 Ph��; ��� � Z�1���
��

�
TL

�
�
�

���
TL

�
�
�
�3�D�h��=��1�h�

;

(6)

where Z is a normalizing function [30] and D�h� is the

TABLE II. Direct numerical simulations. By columns: 1: nu-
merical simulation label; 2: Taylor Reynolds number R�; 3: num-
ber of collocation points N3; 4: total number of Lagrangian
tracers Np; 5: characteristic of dissipation—normal viscous
terms (N), weakly compressible code (C); 6: interpolation tech-
nique for Lagrangian integration—linear interpolation (L), tri-
cubic interpolation (T), cubic splines (CS); 7: reference where
information on the way the corresponding data set was obtained
can be found.

DNS R� N3 Ntr Diss. Tech. Ref.

1 140 2563 5
 105 N T [11]
2 320 10243 5
 106 N T [13]
3 400 20483 3
 105 N L [10]
4 600 18563 1:6
 107 C L [18]
5 650 20483 4
 105 N CS [12]

TABLE I. Experiments. By columns: 1: experiment label;
2: Taylor Reynolds number; 3: Kolmogorov time scale ��;
4: measurement volume in unit of the Kolmogorov length scale
�; 5: Ntr total number of Lagrangian trajectories measured;
6: measurement technique—particle tracking velocimetry
(PTV) and acoustic Doppler (AD); 7: reference where informa-
tion on the way the corresponding data set was obtained can be
found.

EXP R� �� (s) Meas. vol. (�3) Ntr Tech. Ref.

1 124 8:5
 10�2 3403 1:6
 106 PTV [8]
2 690 9
 10�4 17003 6:0
 106 PTV [7]
3 740 2
 10�4 66003 9:5
 103 AD [6]
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FIG. 1 (color online). Log-lin plot of the fourth order local exponent ��4; �� averaged over velocity components, as a function of the
normalized time lag �=��. Data sets come from three experiments (EXP) (see Table I) and five direct numerical simulations (DNS)
(see Table II). Error bars are estimated from the spread between the three components, except in EXP3 where only two components
were measured. Each data set is plotted only in the time range where recognized experimental or numerical limitations are not
affecting the results. In particular, for each data set, the largest time lag always satisfies � < TL. The minimal time lag is set by the
highest fully resolved frequency. The shaded area displays the prediction obtained by the MF model by using Dlo�h� or Dtr�h�, with
� � 4, for a range of R� 2 �150:800�, comparable with the range of R� in the data. Notice that the MF predictions have been obtained
by fixing equal to 7 the multiplicative constant in the definition of ��. The straight dashed line corresponds to the dimensional
nonintermittent value ��4; �� � 2, achieved at small time lags where structure functions do become differentiable. Notice that two
among the DNS are sufficiently resolved to get the mentioned dimensional scaling in the high frequency limit.
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fractal dimension of the support of the exponents h. Once
the Reynolds number has been specified, we are left with
two parameters, the exponent � and a multiplicative con-
stant in the definition of ��, while the function D�h� comes
from the knowledge of the Eulerian statistics. Eulerian
velocity structure functions (EVSF) have been measured
in the past two decades (see Ref. [16] for a data collection)
providing a way to estimate the function D�h� based on
empirical data. Many functional forms have been proposed
in the literature that are consistent with data, up to statis-
tical uncertainties. Eulerian velocity statistics can be mea-
sured in terms of longitudinal or transverse fluctuations.
Fluid velocity along particle paths is naturally sensitive to
both kinds of fluctuations. We thus evaluated the LVSF in
(5) using the fractal dimensions Dlo�h� and Dtr�h� obtained
by longitudinal [16] and transverse [31] moments of
Eulerian fluctuations, respectively.

The shaded area in Fig. 1 represents the range of varia-
tion of the MF prediction computed from Dlo�h� or Dtr�h�,
measured in the Eulerian statistics (see below), and at
changing Reynolds numbers. This must be interpreted as
our uncertainty. The prediction works very well: all data
fall within the shaded area. The role of the parameters is
clear. Changing � modifies the sharpness and shape of the
dip region at ��—the larger � the more pronounced the
dip; while changing the multiplicative constant in the
definition of �� has no effect on the curve shape, but it
rigidly shifts the whole curve along the time axis.
Increasing the Reynolds number R�, the flat region at large
lags develops a longer plateau. In the limit R� ! 1 the MF
model predicts ��4� ’ 1:71 from Dlo�h� and ��4� ’ 1:59
from Dtr�h� statistics.

For the Eulerian D�h�, we used the following log-
Poisson [23] functional form,

 D�h� �
3�h� h��

log�	�

�
log

�
3�h� � h�
d� log�	�

�
� 1

�
� 3� d�: (7)

Different couples of parameters (h�; 	) have been chosen
to fit longitudinal and transverse Eulerian fluctuations. The
parameter d� � �1� 3h��=�1� 	� is fixed by imposing
the exact relation for third order EVSF. For the longitudinal
exponents [16], we used (h�lo � 1=9; 	lo � 2=3) [23]. For
the transverse exponents, we used (h�tr � 1=9; 	tr � 1=2),
which fits the data in Ref. [31] (see [32] for details.)

This comprehensive comparison of the best available
experiments and direct numerical simulations provides
strong evidence of the universality of Lagrangian statistics.
One important open question is the effect of a mean flow,
as in turbulent jets [33] and wall bounded turbulence,
where strong persistence of anisotropy may break the
recovery of small-scale universality. We showed that a
multifractal description is in good agreement with data,
even in the dissipative range where intermittency is sig-
nificantly increased. The multifractal description captures

the intermittency at all scales with only a few parameters,
independent of the Reynolds number. This is the universal
feature of Lagrangian turbulence revealed by this study.
There exists a long debate on the statistical importance of
vortex filaments around dissipative time and length scales
[23,34]. Simulations [10,20,35] show that the dip region
for �� �� can be depleted (enhanced) by decreasing (in-
creasing) the probability of particles being trapped in
vortex filaments. The multifractal model is able to capture
the intermittency around �� with the help of the free
parameter �. Different values of � should then correspond
to different statistical weights of vortex filaments along
particle trajectories. Only further advances in both experi-
mental techniques and numerical power will allow us to
test the same questions here addressed also for the higher
order statistics.
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