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The rotational dynamics of anisotropic particles advected in a turbulent fluid flow are important in

many industrial and natural settings. Particle rotations are controlled by small scale properties of

turbulence that are nearly universal, and so provide a rich system where experiments can be directly

compared with theory and simulations. Here we report the first three-dimensional experimental measure-

ments of the orientation dynamics of rodlike particles as they are advected in a turbulent fluid flow. We

also present numerical simulations that show good agreement with the experiments and allow extension to

a wide range of particle shapes. Anisotropic tracer particles preferentially sample the flow since their

orientations become correlated with the velocity gradient tensor. The rotation rate is heavily influenced by

this preferential alignment, and the alignment depends strongly on particle shape.
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The dynamics of anisotropic particles in turbulent fluid
flows is central to understanding many applications rang-
ing from cellulose fibers used in paper making [1] to ice
crystals in clouds [2,3] to locomotion of many micro-
organisms [4–7]. When the particles are small and their
concentration is low, their rotations are determined by the
velocity gradient along their trajectories. Velocity gradients
are dominated by the smallest scales in turbulence about
which we have an extensive fundamental understanding
[8–10]. So the statistics of rotations of anisotropic particles
forms an important problem foundational to many applica-
tions for which we need to develop a predictive understand-
ing based on the fundamental properties of turbulence.

Advances in imaging technology have made it possible to
obtain time-resolved trajectories of particles in turbulence
using high speed stereoscopic imaging, and these measure-
ments have produced many new insights about Lagrangian
translational dynamics of spherical particles [11]. There is
also an extensive literature on the motion of anisotropic
particles in fluidflows.Anisotropic particles have fascinating
dynamics even in simple flows [12–15]. Several simulations
have addressed the turbulent case [16–20], and experiments
have measured dynamics in 2D flows [21] and orientation
distributions in 3D turbulent flows [22–24]. However,
there are no available experimental measurements of time-
resolved rotational dynamics of anisotropic particles in 3D
turbulence.

When ellipsoidal particles are small compared with the
smallest length scales in the flow, their rotation rate is deter-
mined by the velocity gradient tensor through Jeffery’s
equation [12]:

_pi ¼ �ijpj þ �2 � 1

�2 þ 1
ðSijpj � pipkSklplÞ; (1)

where pi is a component of the orientation director and
� � l=d, is the aspect ratio of the ellipsoid given by the
ratio of length (l) to diameter (d). �ij is the rate-of-rotation

tensor, and Sij is the rate-of-strain tensor which are the

antisymmetric and symmetric parts of the velocity gradient
tensor respectively. Particle dynamics become much more
complicated when the particles are large [16] or density
mismatched [2], or high particle concentration produces
interparticle interactions and two-way coupling [1]. A phe-
nomenology of the dynamics of anisotropic tracers at low
concentrations in turbulence is needed to provide a founda-
tion for continuedwork on themore complex cases that often
appear in applications.
We have performed an experimental and computational

study of rotation rates along the trajectories of anisotropic
particles in turbulent flows. In the experiments, small rods are
tracked using stereoscopic images from four high speed
cameras. Turbulence was generated between two grids
oscillating in phase in an octagonal Plexiglas tank [25] that
is 1� 1� 1:5 m3. The experiments are performed at two

Taylor Reynolds numbers, R� ¼ ð15uL=�Þ1=2, R� ¼ 160

and R� ¼ 214. The Kolmogorov length scale (� ¼
ð�3=h�iÞ1=4) and time scale (�� ¼ ð�=h�iÞ1=2) are � ¼
375 �m and �� ¼ 70 ms at R� ¼ 160, and � ¼ 210 �m

and �� ¼ 25 ms at R� ¼ 214. The rods are 1 mm in length

by 200 �m in diameter and are cut from nylon thread at a
density of � ¼ 1:15 g=cm3. These rods have length of 2:6�
atR� ¼ 160 and 4:8� atR� ¼ 214. Reference [16] indicates
that rods less than about 7� should not have a measurable
change in their mean square rotation rate. The fluid is density
matched with rods by adding 19% CaCl2 by mass to water.
On average there is less than one particle in the detection
volume of approximately 140 cm3, so interparticle interac-
tions are negligible. The position of the center of the rodswas
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measured with an uncertainty of � 40 �m. We have mea-
sured the orientation of rods in two dimensional (2D) images
from each camera and reconstructed the orientation of rods
in three dimensional (3D) space using images from multiple
cameras. Determining the orientation of the rods in 3D
requires measurements of the orientation in 2D images
from at least three cameras that are not in the same plane.
The rotation rate, _p, is determined from quadratic fits to the
measured orientation versus time data. We have also studied
the motion of anisotropic tracers in direct numerical simula-
tions (DNS) of homogeneous and isotropic turbulence at
R� ¼ 180. The translational motion of tracer rods matches
that of fluid particles, so we are able to use a database of
previously simulated Lagrangian trajectories [26] to inte-
grate Jeffery’s equation (1) and obtain the time evolution
of particle orientations. The spatial spectral resolution was
5123 points. These simulations stored the full velocity gra-
dient tensor along Lagrangian trajectories at time intervals
of about 1=10��. Equation (1) has been therefore integrated

a posteriori with the same integration time step and with an
Adams-Bashforth second order in time scheme.

Figure 1 shows an experimentally measured trajectory of
a 1 mm rod at R� ¼ 214. This example illustrates several
of the important properties of the rotation of rods. First,
this rod has bursts of high rotation rate where the rotation

rate squared is up to 30 times its mean, reflecting the
intermittency of rod rotations. Second, in the upper right,
the rod is caught in a vortex, but its rotation rate is not large
because the rod has become aligned with the vorticity
reflecting the tendency of anisotropic particles to become
aligned by the velocity gradients in the flow.
The probability distribution function (PDF) of the rota-

tion rate squared, _pi _pi, of rods is shown in Fig. 2(a). The
PDF has long tails which indicates the presence of rare
events with rotation rates squared up to 60 times the
average value (h _pi _pii). The agreement between DNS and
experiment is very good for the core of the distribution up
to 20 h _pi _pii. At larger rotation rates, the experimental

FIG. 1 (color online). Three-dimensional view of a rod tra-
jectory with a large rotation rate from the experiment at R� ¼
214. The color of the rod represents the rotation rate. This rod is
tracked for 284 ms. The green lines show the projection of the
center of the rod onto the y-z and x-y planes. The rod is a circular
cylinder with length 1 mm and diameter 0.2 mm.

a

b

FIG. 2 (color online). The PDF of rotation rate squared of
rods. (a) Comparison of simulation (blue line, R� ¼ 180) with
experiment (black circle, R� ¼ 160; red plus, R� ¼ 214) for
aspect ratio � ¼ 5. Error bars represent both random uncertainty
and the systematic uncertainty produced by measuring rotation
rates from experimental orientation data over a time interval.
(b) Comparison of the PDF of rotation rate squared for rods at
� ¼ 5 (blue plus) and spheres at � ¼ 1 (black circle) with PDFs
of enstrophy (green square) and energy dissipation rate (red
triangle) for the simulation at R� ¼ 180. One symbol is dis-
played for every twenty bins.
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PDFs are slightly below the DNS. This difference is not
much larger than the systematic errors in the experimental
data represented by the error bars, but it may reflect the
effect of the finite length of the rods in the experiment.
Although Ref. [16] indicates that these should not have a
measurable change from the tracer limit in their mean
square rotation rate, it is possible that the rare events are
more sensitive to rod length. In Fig. 2(b), the probability
distribution of rotation rate squared from the numerical
simulation is compared with the distributions of enstrophy
(!2 ¼ 2�ij�ij) and energy dissipation rate (� ¼ 2�SijSij,

where � is the kinematic viscosity). For large values of
rotation rate squared, the PDF for rods (� ¼ 5) is larger
than that of spheres (� ¼ 1), and both are larger than either
enstrophy or energy dissipation rate. Spheres simply rotate
with the vorticity, _pi _pi ¼ �ij�ijsin

2	, and the larger in-

termittency for spheres compared with enstrophy comes
from the distribution of the angle, 	, between p and the
vorticity vector. Rods with � ¼ 5 have a contribution to
their rotation rate from Sij, which one might think would

decrease the probability of large rotations, making it more
like the distribution of the energy dissipation rate. However,
variations in the orientation of the rod with respect to the
velocity gradient tensor contribute additional fluctuations
giving rods the most high rotation rate events.

Figure 3 shows the effect of the shape of particles on
their rotation dynamics by plotting the mean square rota-
tion rate as a function of aspect ratio, �. Our two experi-
ments at � ¼ 5 are consistent with our simulations and
with earlier work on thin rods at lower Reynolds numbers
by Shin and Koch [16]. The simulations allow us to study
the full range of aspect ratios. The mean square rotation
rate of disk shaped particles (�< 1) is much larger than
that of the spheres (� ¼ 1). This can be qualitatively
understood as the additional contribution of strain [Sij in

Eq. (1)] to the rotation rate. However, the rotation rate of
rods (�> 1) is much smaller than spheres even though the
rate-of-strain contributes to their rotation as well.

Understanding the rotation rate data in Fig. 3 requires
considering the preferential alignment that occurs between
particles and the velocity gradient tensor. When particles
are oriented randomly, their mean square rotation rate can
be calculated analytically from Eq. (1) by extending the
calculation in Ref. [16] to finite aspect ratio:

h _pi _pii
h"i=� ¼ 1

6
þ 1

10

�
�2 � 1

�2 þ 1

�
2
: (2)

This result is shown as the green solid curve in Fig. 3(a). As
particles are advected by the flow, they become oriented so
that their rotation rates are very different than the randomly
oriented case, with the largest difference occurring for thin
rods (� � 1). Quantification of the effects of alignment
with the velocity gradient tensor requires considering the
alignment of the rods with the vorticity vector and the
eigenvectors of the strain rate tensor. Thin tracer rods are

material line segments, and earlier work on the alignment
of material lines [27,28] has shown that lines align most
strongly with the vorticity and the intermediate eigenvector
of the strain rate. Recent work focusing specifically on

a

b

c

FIG. 3 (color online). Mean square rotation rate as a function of
aspect ratio. (a) Blue plus is the DNS at R� ¼ 180. Black open
square is the experiment at R� ¼ 214. Red open circle is the
experiment at R� ¼ 160. The error bars on the experimental
points represent systematic error due to extrapolation from the
finite fit time required tomeasure the rotation rate [29]. The purple
open circle shows the result for infinite aspect ratio rods from
simulations by Shin and Koch [16] atR� ¼ 53:3. The green line is
the analytic prediction for randomly oriented rods from Eq. (2).
The dashed line indicates the rotation due to vorticity. (b) Simple
cases of particles integrated through different velocity gradient
fields: Blue plus uses velocity gradients along Lagrangian trajec-
tories at R� ¼ 180. Black open square uses velocity gradients
sampled from the DNS and delta correlated in time. These data
match the analytic prediction for randomly oriented rods shown as
the green line. Red closed circle uses velocity gradients sampled
from the DNS and held fixed in time. The purple right handed
triangle uses the velocity gradient of a plane shear flow.
(c) Comparison of simulations at different Reynolds numbers.
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tracer rods has explored the preferential alignment with
vorticity in more detail [18]. Qualitatively, alignment with
the vorticity will reduce the mean square rotation rate since
only the vorticity perpendicular to the rod contributes to its
rotation rate. However, it is not currently known how to
quantitatively predict the effect of alignment on the mean
square rotation rate.

Figure 3(b) shows the dependence of rotation rate on the
aspect ratio for several simple cases in order to better
understand the ways the data in Fig. 3(a) depend on both
alignment with the velocity gradient tensor and the time
evolution of the velocity gradient tensor. If the velocity
gradients are sampled from DNS but are delta correlated
in time, the particles do not develop alignment with the
velocity gradients, and therefore the mean square rotation
rate matches the prediction for randomly oriented rods in
Eq. (2). When the velocity gradients are sampled from the
DNS and held fixed in time, the alignment effect is too
strong and the rotation rates are smaller than the rotation
rates of rods advected in the turbulence at almost all aspect
ratios. Finally, we integrated particles through time inde-
pendent plane shear flow which generates Jeffery orbits.
None of these cases has even qualitative agreement with
the rotation rates of rods advected in the turbulence. Since
the dependence of the mean square rotation rate on aspect
ratio is sensitive to both instantaneous statistics and tem-
poral correlations of the velocity gradient tensor, it pro-
vides a metric for evaluating models of the velocity
gradient tensor in turbulence that is directly accessible
experimentally.

Figure 3(c) shows the dependence of the rotation rate
on the Reynolds number. In simulations ranging from
R� ¼ 31 to R� ¼ 400, the mean square rotation rate

changes by less than 9% with the largest differences occur-
ring for disks (� � 1).
For a more quantitative evaluation of the shape of the

tails of the PDF of rotation rate squared, we report in
Fig. 4 a normalized fourth moment of the rotation rate,
hð _pi _piÞ2i=h _pi _pii2 as a function of aspect ratio. The nor-
malized fourth moment is a measure of occurrence of
extreme events. The experimental measurements are in
fairly good agreement with the simulations considering
that the differences are on the order of the experimental
measurement errors and particle size may affect the tails of
the experimental distribution as discussed above. The
fourth moment for a sphere can be related to the fourth
moment of the vorticity tensor by assuming that the
orientation director is uncorrelated with �ij which leads

to hð _pi _piÞ2i=h _pi _pii2 ¼ 6=5hð�ij�ijÞ2i=h�ij�iji2, in good

agreement with the simulations. All these fourth moments
are much larger than the value of 5=3 that is obtained if
the components, _pi, have a Gaussian distribution. Rods
(� � 1) and disks (� � 1) have nearly identical normal-
ized fourth moments, and the variation with aspect ratio is
less than 20%, indicating that the dependence on particle
shape of the normalized probability distribution is much
weaker than that of the mean square rotation rate in Fig. 3.
From both experiments and numerical simulations we

have obtained a phenomenology of the rotational rate of
ellipsoidal particles in turbulent fluid flow. Rodlike parti-
cles have a rotation rate that is strongly affected by the
alignment of the rods with the vorticity vector. Disklike
particles also show effects of alignment although their
mean square rotation rate is closer to the randomly oriented
case. The transition between the two limiting aspect ratios
is quite abrupt, with 80% of the difference in mean square
rotation rate between disks and rods occurring between
aspect ratios 0.5 and 2. Thus for many bacteria or ice
crystals that are transported in turbulent flows, the picture
of a thin Lagrangian rod or disk is much better than the
approximation that they are spheres.
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