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Ice front shaping by upward convective current
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The extent and the morphology of ice forming in a differentially heated cavity filled
with water are studied by means of experiments and numerical simulations. We show that
the main mechanism responsible for the ice shaping is the existence of a cold upward
convective current in the system. Such a current is ascribed to the peculiar equation of state
of water, i.e., the nonmonotonous dependence of density with temperature. The precise
form of the ice front depends on several factors, first, the temperature difference across
the cell which drives the convection, and second, the wall inclination with respect to
the vertical, both of which are explored here. We propose a boundary-layer model and
a buoyancy-intensity model which account for the main features of the ice morphology.
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Turbulent convective flows along with the ice formation process create intriguing coupling
behaviors, which have a widespread appearance in nature and a strong relevance in industrial
applications [1–5]. In general, the orientation of the temperature gradient and the gravity vector
are not parallel. Their angle can play an important role in determining the ice front morphology and
the system heat transfer performances. Examples are the surficial icing of lakes and rivers, floating
ice bodies (e.g., icebergs), ice bodies (e.g., ice shelf) extending outward from the land into waters,
and solidification in energy storage technology [6–11]. For water, the coupled physics among the
phase change, turbulent convection, and the density anomaly [water density reaches a maximum
ρc at the density peak temperature Tc (≈4◦C)] bring more challenges: Gravitationally stable and
unstable stratifications coexist, which can strongly affect flow structures [12–23].

In recent years, many studies have been devoted to exploring the interplay between convective
flows and thermal stratification/phase transitions under different system inclinations. For penetrative
convection [14], some of these have found that the inclination can induce the breakdown of fluid
stratification due to the density anomaly [24–26]. Others have explored the coupling dynamics of
phase change and turbulent convection using phase-change materials [27–30]. A recent work [31], in
a freezing-from-above system, showed that density anomaly induced stratification has major effects
on the flow structures and the resulting ice front speed and equilibrium state. However, there is
still a lack of explorations of the physical mechanisms behind the whole rich ice front morphology.
One may ask: How does the ice front morphology change when the system is tilted? What are the
hydrodynamical mechanisms that account for the extent and the complex ice front morphology?

In this Letter, by combining experiments, numerical simulations, and theoretical modeling, we
aim to systematically explore freshwater solidification and its coupling with turbulent convective
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FIG. 1. Comparison of the ice morphology at the equilibrium state in VC from experiments (a)–(c), and
simulations with (d), (e), (g) and without (f) considering the density anomaly. The heating condition is Tb =
6 ◦C (a), (d), 10 ◦C (b), (e), (f), and 12 ◦C (c), (g). (d)–(g) Temperature fields are represented in color, 0 ◦C
(black line) and 4 ◦C (red line) isotherms, and velocity vectors (black arrows). The arrows in (d)–(g) show
the large scale flow orientation in convective rolls, the blue/red colors denoting respectively the ascending
cold/warm water.

flows to understand the complex behaviors of the ice front morphology at varying the system
inclination angle β (unit: degrees). The experiments are conducted in a classical Rayleigh-Bénard
(RB) convection system [32–36] (a fluid layer confined between a cold top plate, with temperature
Tt , and a hot bottom plate, with temperature Tb), with a quasi-two-dimensional rectangular shape
(aspect ratios Lx/H = 1 and Lz/H = 1/4, with H = 24 cm in experiments). The working fluid is
de-ionized ultrapure water (Prandtl number Pr ≈ 11). The simulations are performed by means
of the CH4-PROJECT code [37], which adopts a lattice Boltzmann algorithm for the description of
the fluid and temperature dynamics, and an enthalpy method for the ice evolution (for details,
see the Supplemental Material [38]) [31,39–43]. Since the water thermal expansion coefficient
inverses at Tc (≈4 ◦C), here we use the nonmonotonous relationship of density with temperature for
water near Tc [44], ρ(T ) = ρc(1 − α∗|T − Tc|q), with ρc = 999.972 kg/m3 the maximum density
Tc ≈ 4 ◦C, α∗ = 9.30×10−6(K−q), and q = 1.895. Both in experiments and simulations Tt is fixed
at −10 ◦C. In the simulations we neglect the microscopic physics leading to kinetic undercooling,
the Gibbs-Thomson effect, and the anisotropic growth/melting [45]. In this study, we monitor the
local and the global ice thickness, denoted respectively hi(x, t ) and hi(t ) and expressed in units of the
cell height H (hi = 1 means full solidification). We consider that the equilibrium is reached when
the standard deviation of hi(t ) over a time window of about 8 min is less than 0.5%. We first show the
comparison of the ice front morphology at the equilibrium state under different heating conditions
(i.e. different Tb) between experiments and simulations, under vertical convection (VC, solidification
from the left with β = 90). Figures 1(a)–1(c) are the experimental results with Tb = 6, 10, and
12 ◦C, respectively (for more results, see the Supplemental Material [38]). The corresponding
simulation results with properly considering the density anomaly are shown in Figs. 1(d), 1(e) and
1(g), representing a good agreement with the experimental measurements. This indicates that the
simulation indeed can capture the correct behavior of the system. The ice front morphology displays
a drastic change as Tb increases. This is due to the competition of two convective rolls originating
from the density anomaly, i.e., the one originating from the plumes detaching from the hot plate
[red arrow in Figs. 1(d), 1(e) and 1(g)] and the other from the cold upward convective current along
the ice front [blue arrow in Figs. 1(d), 1(e) and 1(g)]. The strength of the rolls can be adjusted by

L091501-2



ICE FRONT SHAPING BY UPWARD CONVECTIVE …

FIG. 2. Boundary-layer model to explain the ice front morphology in the VC case. (a) Sketch of the model:
The ice front at T0 = 0 ◦C (black line), the Tm isotherm which is the outer boundary of the thermal boundary
(red dashed line), and the Tc isotherm (green dashed line). The angle between the tangential direction of the ice
front and the x direction is γ ; the thickness normal to the ice front (the green thick line in the ice) is hi (x)

cos γ
(with

cos γ = dx/dS). (b)–(d) Comparison of ice front morphology among experiments (shaded area), simulations
(line), and the model (dashed line) for different Tb.

changing Tb. When Tb = 6 ◦C [Fig. 1(a)], the whole ice is shielded by the upward convective current,
and thus the ice front is flat but only tilted. As Tb increases to 10 ◦C, the ice front becomes highly
uneven and is thicker when protected by the upward convective current, thinner at the bottom, and
thinnest at the top where the impingement of hot plumes increases the local heat transfer. Further,
when Tb is even higher [Figs. 1(c) and 1(g)], the hot anticlockwise roll is much stronger, so it is able
to intensively penetrate the cold clockwise roll and finally affect the ice front, resulting in a thinner
averaged ice thickness but with a similar shape to that of Tb = 10 ◦C.

In the simulations, the flow structures and ice front profile are highly different when neglecting
the density anomaly [i.e., when the density is a linear function of the temperature, see Fig. 1(f)]:
There is only one convective roll, and the ice front is flat and thinner at the top and thicker at
the bottom. The clear distinction between the simulation with [Fig. 1(e)] and without [Fig. 1(f)]
considering the density anomaly indicates that this property is crucial to properly describe the ice
formation in the presence of natural convection.

To better understand the morphology of the ice front at its steady state, we introduce a simple
model based on the idea that a developing thermal boundary layer forms along the ice-water
interface. We note that when the ice has ceased to grow there exists a local balance between the
heat flux across the ice and the one across the boundary layer adjacent to the ice. The intensity
of such fluxes can be estimated by considering the thermal difference across the ice and the
boundary layer and the specific geometry of the problem, as shown in the sketch in Fig. 2(a). We
introduce a curvilinear coordinate S measuring the length of the ice front starting from its boundary
point at the x = 0 position, which is linked to the local ice thickness by the arclength formula

S(x) = ∫ x
0

√
1 + [ d (hi (ξ ))

dξ
]2 dξ . We now express heat flux balance in the direction normal to the ice

surface as

ki
(T0 − Tt )

hi(x) dS(x)
dx

= kw

(Tm − T0)

δT [S(x)]
, (1)
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where kw and ki are the thermal conductivity of water and ice, (T0 − Tt ) is the temperature difference
in the ice, and hi(x) dS(x)

dx is the ice thickness in the direction normal to the ice front. The estimation
of the heat flux in the water involves making further assumptions. First, we consider that the heat
transport in the boundary layer in the direction normal to the ice front is purely conductive, and this
is justified by the fact that for Pr � 1 the thermal boundary layer is nested inside the viscous one
[46]. Second, we assume that the thermal difference across the fluid boundary layer is half of the
one in the adjacent recirculation region [denoted with the blue arrow in Figs. 1(d), 1(e) and 1(g)],
i.e., (Tm − T0), with Tm = (T0 + Tc)/2. Third, the boundary-layer thickness δT (S) is assumed to vary
along the ice front, as in a developing vertical thermal boundary layer, with a dependence that we
take to be δT (S) = C1(S + C2)1/4 [47–49]. The latter expression has two dimensionless parameters
C1 = c · {g[1 − ρ(Tm)/ρc]/(νκ )}1/4 with c the proportional constant (c ≈ 5 m3/4, and c has the
unit m3/4 to make C1 dimensionless) [47–49], and the offset C2 because of the nonzero boundary-
layer thickness at x = 0, with C2 = {hi(0)[kw(Tm − T0)]/[ki(T0 − Tt )]/C1}1/4, with the boundary ice
thickness hi(0) as an input from the simulation results. Since the sidewall is adiabatic, dhi

dx |x=0 = 0
is an extra known condition. With the above choices Eq. (1) becomes an integrodifferential equation
that can be solved numerically for the local ice thickness hi(x). Figures 2(b)–2(d) show the
comparison of the model prediction with experiments and simulations. A good qualitative agreement
is reached in the region where the upward convective current takes place. The disagreement in the
upper part of the ice front is expected as the boundary layer no longer develops in that region due
to the downward warmer convective current [denoted with the red arrow in Figs. 1(d), 1(e) and
1(g)]. Although the exact spatial dependence of δT along the ice interface is not known, the present
model puts forward a robust physical mechanism for the shaping of the ice in the bottom part of the
convection cell.

Next, we perform systematical numerical simulations to explore how β affects the extent and
morphology of the ice front, with 0 � β � 180 (with the coordinate system attached to the cell).
We limit our study to Tb = 10 ◦C, but the results are easy to be generalized to other situations.

First, we calculate the heat transfer rate, which when expressed dimensionlessly is the global
Nusselt number [Fig. 3(a)], Nu = (〈uyT 〉 − κ∂y〈T 〉)/(κ�T/H ), where 〈· · · 〉 represents an average
over time and the whole cell volume, and H is the system height. It is noteworthy that there is
convection both at β = 0 (heating from below) and β = 180 (heating from above). Remarkably,
when β = 180, the fluid is unstably stratified in the temperature interval between T0 and Tc which
accounts for creating the convection. The latter feature is specific to water and does not occur in
other systems with the working fluid’s density increasing with temperature. Figures 3(b)–3(h) show
the temperature field with different β from simulations (for more results, see the Supplemental
Material [38]). The inclination results in different levels of thermal stratification, which induces
huge modifications to the ice front morphology. When β = 0, there is a stably stratified layer (from
T0 to Tc) on top of the unstably stratified layer (from Tc to Tb). As the cell is tilted with a small β,
the convection is strong enough to squeeze the stably stratified layer to be closely attached to the ice
front, so the ice morphology is influenced by a single-roll convective flow [see Figs. 3(b) and 3(c)].
As β increases towards 90, the inclination of the temperature gradient with respect to the gravity is
strong enough to break down the stratification and thus the stably stratified layer is set into motion
in the form of a clockwise convective roll (an upward cold water current) which competes with
the initially anticlockwise roll (downward warm water current). The shielding effect is prominent
because the ice thickness reaches a local maximum, and the hot plumes impacting on the top part of
the ice induce a local minimum of the ice thickness, so based on these two kinds of effects, the ice
front presents an inflection point during the transition from the thickest to the thinnest part, which
has also been reported in Figs. 1(b) and 1(c). The flow motion of the original stably stratified layer
intensifies as β increases for β < 90. Beyond β = 90, the stratification configuration flips over. On
the whole, the intensity of convection is higher at 0 < β < 90 than that of 90 < β < 180. This is
to be connected to the different thermal differences across the respective unstably stratified layers
which are (Tc − T0) ≈ 4 K in the former and (Tb − Tc) ≈ 6 K in the latter case. This change in
driving strength also accounts for the observed results of Nu [Fig. 3(a)].
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FIG. 3. (a) Nu as a function of β. Insets: Sketches of the arrangement of stably and unstably stratified
layers of the RB regime, β < 90 (left), and flipped RB, β > 90 (right). Error bars (estimated based on
the temporal time series of Nu in one simulation) are smaller than the symbols. The way to measure the
systematic error (i.e., ensemble average, qualitatively reflected by the scatter of the data) is to perform multiple
and independent simulations, which is numerically expensive and therefore is not considered here. (b)–(h)
Instantaneous temperature field in ice, Ti(x, y), and water, Tw (x, y), and isotherms (black thin lines) at the
equilibrium state for different angles β = [0, 180]. The red dashed line and red thick line in (b)–(h) are 0 and
4 ◦C isotherms, respectively. (i) Global ice thickness hi as a function of β. The shaded area shows the spatial
variation of hi(x) in the simulations. The parameters are Tb = 10 ◦C and Tt = −10 ◦C for all cases.

To account for the influence of β in a quantitative way, we now calculate the stationary global ice
thickness ratio, hi = 〈hi(x, y)〉x,t , where 〈· · · 〉x,t represents an average over time and x-axis direction.
Figure 3(i) reports hi, as a function of β. hi shows an increasing trend as β increases because the
heat transfers less efficiently for large β (i.e., flipped RB system). The results from experiments (red
circles) and simulations (green squares) agree well with each other. It is noteworthy that the ice front
is highly variable in space as a result of the different coupling with turbulent flow structures. Here,
the spatial fluctuations of the ice thickness are represented by the local maximum and minimum of
hi, which is highlighted by the shaded area.

Coming back to cases when β is around 90, we can observe a peculiar yet robust form of ice
front morphology (which can be observed in the range of β = 40–140). In fact, the aforementioned
boundary-layer model can be extended to the tilted system, by modifying C1, with C1 = {{gx[1 −
ρ(Tm)/ρc] − gyH[β − 90◦][1 − ρ(T0)/ρc)]}/(νκ )}1/4, where H is the Heaviside step function,
gx = g sin β, gy = gcos β. The first term in C1 results from the inclination effect, and the second
part originates from the inherent buoyancy contribution induced by the density difference, and is
present only for inclinations larger than 90◦. Figures 4(c)–4(m) show the comparison of the ice front
morphology between simulations (shaded area) and model prediction (dashed line). As shown, the
model can qualitatively capture behaviors of the ice front at the inception of the thermal boundary.
Note when β < 40 and β > 140, the boundary layer attached to the ice front is disturbed because
of the plume impacting under intensive interactions of the stably and unstably stratified layers, so
the model cannot be utilized. A second limitation of the model is that the adopted expression for
δT (S) is based on VC [47] but it does not involve possible dependencies on the cell inclination.
Nevertheless, it is remarkable that the model already performs well in a wide range of β. Further
studies are needed to improve or quantitatively refine the model.

Another feature of the ice front is the position �x0 where hi(x) reaches maximum [symbols
in Fig. 4(b)]. As discussed before, the local maximum of hi originates from the competition of
the buoyancy intensity between two counter-rotating rolls. The buoyancy intensity of the cold
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FIG. 4. (a) Sketch of the buoyancy-intensity model to explain the position of the maximum ice thickness.
The buoyancy intensities of the clockwise and anticlockwise convective rolls are I1(β ) and I2(β ), respectively.
�x0 locates the position of the maximum of the hi(x), which is dimensionless normalized by H . hi(0), an
input parameter of the boundary-layer model, is roughly constant and around hi. hi(0) vs β is reported in the
Supplemental Material [38]. (b) �x0 as a function of β and its comparison with model predictions (adjustable
constant C = 0.08). (c)–(m) Comparison of the ice front morphology between simulations (shaded area) and
the model (dashed line) under different β near 90.

(clockwise) roll [blue arrow in Fig. 4(a)], I1(β ), and of the warm (anticlockwise) roll [red arrow
in Fig. 4(a)], I2(β ), can be approximately evaluated with

I1(β ) = gx

(
1 − ρ(Tm)

ρc

)
− gyH[β − 90◦]

(
1 − ρ(T0)

ρc

)
,

I2(β ) = gx

(
1 − ρ(Tm2)

ρc

)
+ gyH[90◦ − β]

(
1 − ρ(Tb)

ρc

)
, (2)

where the mean temperature Tm = (T0 + Tc)/2 and Tm2 = (Tb + Tc)/2. Equation (2) holds when
β �= 90 (for details, see the Supplemental Material [38]). The intensity ratio [I1(β )/I2(β )] captures
the trend of �x0 as a function of β, at least for 10 < |β − 90| < 50. A quantitative agreement
is obtained by an adjustment multiplicative factor C 	 0.08 [red dashed line in Fig. 4(b)]. This
heuristic model provides further evidence that the competition of two convective rolls accounts for
the form of ice morphology.

To summarize, we found that the existence of a cold upward convective current, due to the
density anomaly of water, accounts for the ice shaping in a convective cell. We provide a physical
understanding of the main features of the ice morphology in a wide range of system inclinations. The
present exploration offers deeper insight into comprehending the liquid-solid interface morphology
induced by the coupling between phase transitions and natural convection with possible applications
in geophysical and climate sciences.

This work was supported by Natural Science Foundation of China under Grants No. 11988102,
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