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Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform
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The Hilbert-Huang transform is applied to analyze single-particle Lagrangian velocity data from numerical
simulations of hydrodynamic turbulence. The velocity trajectory is described in terms of a set of intrinsic mode
functions Ci(t) and of their instantaneous frequency ωi(t). On the basis of this decomposition we define the
ω-conditioned statistical moments of the Ci modes, named q-order Hilbert spectra (HS). We show that such
quantities have enhanced scaling properties as compared to traditional Fourier transform- or correlation-based
(structure functions) statistical indicators, thus providing better insights into the turbulent energy transfer process.
We present clear empirical evidence that the energylike quantity, i.e., the second-order HS, displays a linear scaling
in time in the inertial range, as expected from a dimensional analysis. We also measure high-order moment scaling
exponents in a direct way, without resorting to the extended self-similarity procedure. This leads to an estimate
of the Lagrangian structure function exponents which are consistent with the multifractal prediction in the
Lagrangian frame as proposed by Biferale et al. [Phys. Rev. Lett. 93, 064502 (2004)].
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The statistical description of a tracer trajectory in turbulent
flows still lacks a sound theoretical and phenomenological
understanding [1,2]. Presently, analytical results linking the
Navier-Stokes equations to the statistics of the velocity incre-
ments v(t + τ ) − v(t) along the particle evolution are missing.
On the grounds of dimensional arguments, pure scaling laws
are expected for time increments larger than the Kolmogorov
dissipative time τη and smaller than the large-scale typical eddy
turnover time TL. The ratio between the two time scales grows
with the Reynolds number as Re ∝ TL/τη. Despite many
numerical and experimental attempts [3–7], clear evidence of
scaling properties still needs to be detected in the Lagrangian
domain even at high Reynolds numbers. Such a fact can be
explained by either invoking ultraviolet and infrared effects
induced by the two cutoffs τη and TL or by a real pure
breaking of scaling invariance, independently of the Reynolds
number [8,9]. Up to now, most of the attention has been paid
to the so-called Lagrangian structure functions (LSFs), i.e.,
moments of velocity increments,

Sq(τ ) = 〈|vj (t + τ ) − vj (t)|q〉, (1)

where, for simplicity, we have assumed isotropy and dropped
any possible dependency of the left-hand side on the
component of the velocity field. Phenomenological arguments
based on a “bridge” relation between Eulerian and Lagrangian
statistics [10–16] predict the existence of scaling properties
also in the Lagrangian domain Sq(τ ) ∼ τ ζL(q) for τη � τ �
TL, with ζL(q) being related to the Eulerian scaling exponents
ζE(q), defining the scaling properties of velocity increments
between two points in the laboratory reference frame. Such a
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relation has been well verified in the limit of very small time
increments, by studying the statistics of flow acceleration [12]
or by using relative scaling properties [17], i.e., studying one
moment versus another one, a procedure known as extended
self-similarity (ESS) [18]. On the other hand, clear evidence
of direct scaling properties as a function of τ still needs to be
detected (see Refs. [8,9] for two recent papers discussing this
problem). As a result, despite the successful comparisons,
using ESS, between theoretical predictions for ζL(q)/ζL(2)
and numerical and experimental Lagrangian measurements
(see Ref. [17]), the absence of a clear scaling range in the time
domain has cast doubts, on the one hand, on the correctness and
accuracy of the present phenomenological models, and, on the
other hand, on the fact that SF may not be the suitable statistical
indicator to study turbulent flows in the Lagrangian domain [9].
One of the main concerns regards possible nonlocal effects
induced by either large-scale and low-frequency modes or
by small-scale and high-frequency events that may result
in subleading spurious contributions. It is well known, for
example, that the temporal evolution of the velocity field
along a Lagrangian trajectory in turbulent flows is strongly
influenced by the presence of small-scale vortex filaments
inducing visible high-frequency oscillations even on the
single-particle velocity signal (see Fig. 1 and Ref. [19]). In this
Rapid Communication we want to apply a technique, called
the Hilbert-Huang transform (HHT), to analyze multiscale and
multifrequency signals, which has revealed to be particularly
useful in the data analysis of many complex systems [20–25].
HHT has been recently applied to analyze Eulerian turbulent
data [26–28], showing an unexpected ability to disentangle
multiscale contributions. The main interest in HHT lies in its
frequency-amplitude adaptive nature, being based on the de-
composition of the original signal on a set of quasieigenmodes
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FIG. 1. (Color online) (a) An example of Lagrangian velocity
v(t) with a vortex trapping event from the DNS simulation. The
data show the multiscale nature of Lagrangian turbulence with
different time scales (structures) superimposed on each other. (b)
Example of the decomposition of the above trajectory in intrinsic
mode functions from empirical mode decomposition. Note that the
Lagrangian velocity is separated into different functions with different
time scales. The empirical mode decomposition approach reveals the
multiscale property of the Lagrangian velocity at a local level.

that are not defined a priori [29,30]. The idea is to not
introduce in the analysis any systematic predefined structures
as it always happens using Fourier-based methodologies (e.g.,
Fourier decomposition or wavelet transforms).

In this Rapid Communication, we apply and generalize the
HHT methodology to extract the hierarchy of the Lagrangian
scaling exponent ζL(q). The method is applied to the fluid
trajectory data obtained from direct numerical simulations
(DNSs) at Reλ = 400 (see Fig. 1). We present clear empirical
evidence of scaling properties in the usual sense, as a power
of the analyzed frequency, also in the Lagrangian domain. We
show that the measured Hilbert-based moments Lq(ω) display
a clear power law in the range 0.01 < ωτη < 0.1 at least up to
the maximum order allowed to be measured by our statistics,
0 � q � 4. The exponents are in good quantitative agreement
with the one predicted by using the “bridge relation” based on
multifractal phenomenology [12], supporting even more the
close relationship between Eulerian and Lagrangian fluctua-
tions at least for what concerns velocity increments in three-
dimensional (3D) isotropic and homogeneous turbulence. The
data set considered here is composed of Lagrangian velocity
trajectories in a homogeneous and isotropic turbulent flow
obtained from a 20483 (Reλ = 400) DNS simulation (see more
details in Ref. [31]). We analyze all the available ∼2 × 105

fluid tracer trajectories, each composed of N = 4720 time
samplings of vj (t) (where j = 1,2,3 denotes the three velocity
components) saved every 0.1τη time units. Therefore, we can
access the time scale from 0.1 < τ/τη < 236, corresponding
to the frequency range 0.004 < ωτη < 10.

The HHT is a procedure composed of two steps. The first
step is the decomposition of the signal into its intrinsic mode
functions (IMFs) followed by the Hilbert transform on such

modes. In the first step, through a procedure called empirical
mode decomposition (EMD), we decompose each velocity
time series into the sum

v(t) =
n∑

i=1

Ci(t) + rn(t), (2)

where Ci(t) are the IMFs and rn(t) is a small residual, an almost
constant function characterized by having at most one extreme
along the whole trajectory (which will therefore be neglected
in the following analysis) [29,30]. In Eq. (2) n may depend
on the trajectory, with a maximum value which is linked to its
length as nmax = log2(N ) � 12. Given the actual length of our
trajectories, with n � 6–7, we are typically able to reconstruct
the full behaviors (see Fig. 1).

To be an IMF, each Ci(t) must satisfy the following two
conditions: (1) The difference between the number of local
extrema and the number of zero crossings must be zero or one;
and (2) the running mean value of the envelope defined by the
local maxima and the envelope defined by the local minima
is zero. Indeed, the IMF is an approximation of the so-called
monocomponent signal, which possesses a well defined in-
stantaneous frequency [29,32]. The physical meaning of such
decomposition is clear: We want to decompose the original
trajectory into quasieigenmodes with locally homogeneous
oscillating properties [29,33]. In the second step, one performs
a Hilbert transform for each of the IMFs,

Ci(t) = 1

π
P

∫
Ci(t ′)
t − t ′

dt ′, (3)

where P stands for the Cauchy principal value. This allows
to retrieve the instantaneous frequency associated to each
Ci via

ωi(t) = 1

2π

d

dt
arctan

(
Ci(t)

Ci(t)

)
(4)

[29]. Therefore, we construct the pair of functions [Ci(t),ωi(t)]
for all IMF modes, and this concludes the standard HHT
procedure. Let us stress again the fully adaptive nature of
the HHT: The IMFs are not defined a priori, and they
accommodate the oscillatory degree of the analyzed signal
without postulating systematic “structures” [29,30]. The most
important consequence is that the HHT is typically free
of subharmonics [23,27,28]. Here, in order to investigate
the amplitude of turbulent velocity fluctuations versus their
characteristic frequency, we define the ω-dependent q-order
statistical moment Lq(ω) by computing the moments of
each IMF conditioned on those instants of time where the
corresponding instantaneous frequency has a given value
ωi(t) = ω,

Lq(ω) ≡
n∑

i=1

〈|Ci |q |ω〉t , (5)

where q � 0 is a real number, and with 〈· · ·〉t we denote time
and ensemble averaging over different trajectory realizations.
We call it the Hilbert spectrum (HS) of order q. Let us notice
that each HS can be seen as a superimposition of spectra
obtained from different IMFs.

From a dimensional point of view the simplest link between
the instantaneous frequency ω and the coherence time of
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FIG. 2. (Color online) Log-log plot of the second-order Hilbert
spectrum, L2(ω) ≡ �n

i=1〈|Ci |2|ω〉t , superimposed with the different
contributions from each IMF, 〈(Ci)2|ω〉 with i = 1, . . . ,6.

an eddy τ is the reciprocal relation ω ∼ τ−1. Therefore, we
postulate for the general HS of order q a scaling relation of the
form

Lq(ω) ∼ ω−ζL(q); (6)

here, ζL(q) must be compared with the scaling exponent
provided by the LSF [28]. The above scaling relation was
validated by using both fractional Brownian motion with
various Hurst numbers 0 < H < 1 for monofractal processes
and a lognormal signal with an intermittent parameter μ =
0.15 as an example of a multifractal process. For all cases, the
scaling exponents provided by the HHT agree with the ones
derived by the standard SF method and with the theoretical
ones [28]. To begin with, we focus on the case q = 2, that, as
mentioned, is related to the amplitude of energy fluctuations
as a function of its coherence time or characteristic frequency.
In Fig. 2 we show the second-order HS, L2(ω) vs ω in log-log,
superimposed with the contributions from each different IMF
order. As one can see, only the whole reconstructed HS shows
a good scaling behavior. In order to better compare the HS to
LSF curves we plot them in Fig. 3 in compensated form in such
a way that the expected behavior in the inertial range would
be given by a constant, respectively, S2(τ )(ετ )−1 vs τ and
L2(ω)ε−1ω vs 1/ω. For completeness, in the same figure, the
compensated behavior of the Fourier spectrum, E(f )ε−1f 2 vs
1/f , is also provided. The first striking difference between HS
and LSF or Fourier is the enhanced scaling property of the
new quantity. We also note that the shape of the LSF curve
is consistent with the one in Refs. [8,9], where no plateau
was observed in the inertial range. On the compensated scale
the Fourier spectrum behaves better than the LSF, but the
range of scaling is about half of that of the Hilbert spectrum.
Such a difference is even more evident when the logarithmic
local slopes are compared (see the inset of Fig. 3). A clear
inertial scaling range, 0.01 < ωτη < 0.2, corresponding to an
interval of time scales 5 < τ/τη < 100, is observed for the
compensated L2. The reason why LSF fails in displaying
scaling is that it mixes low (infrared, IR)/high (ultraviolet,

FIG. 3. (Color online) Comparison between the second-order
compensated Lagrangian structure function S2(τ )/(ετ ) vs τ/τη (solid
line), the compensated Fourier spectrum E(f )/ε−1f 2 vs 1/(f τη)
(dashed line), and the corresponding Hilbert spectrum L2(ω)ε−1ω

vs 1/(ωτη) (•), where τη represents the dissipative time scale
of the turbulent flow and ε the mean energy dissipation rate.
Lower inset: The logarithmic local slopes for d log S2(τ )/d log τ

vs τ/τη, d log E(f )/d log f vs 1/(f τη), and d logL2(ω)/d log ω vs
1/(ωτη). Note that the expected inertial scaling exponents are, respec-
tively, S2(τ ) ∼ τ ζL(2), E(f ) ∼ f −[ζL(2)+1], and L2(ω) ∼ ω−ζL(2), with
ζL(2) = 1.

UV) frequency fluctuations to the ones in the inertial range
∼[10−2,10−1]τ−1

η . This becomes explicit when consider-

ing the relation S2(τ ) ∝ ∫ +∞
0 E(f )(1 − cos 2πf τ )df , and

defining

RfM

fm
(τ ) ≡ S2(τ )−1

∫ fM

fm

E(f ′)(1 − cos (2πf ′τ ))df ′, (7)

which measures the relative contributions to S2(τ ) from the
frequency range [fm,fM ]. When such an interval is set to
[0,10−2]τ−1

η we get the low-frequency contributions, and with
[10−1, + ∞]τ−1

η the high ones. In Fig. 4, we show that such
spurious nonlocal contributions can be as high as 80%.

FIG. 4. (Color online) Relative contribution of Fourier frequen-
cies in the range [fm,fM ] to the S2(τ ) LSF, as from Eq. (7). Low (IR)
frequencies [0,10−2]τ−1

η and high (UV) frequencies [10−1,+∞]τ−1
η .

Vertical lines denote the empirically defined inertial range.
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FIG. 5. (Color online) The Hilbert spectra Lq (ωτη) for q =
1,2,3,4. For display clarity, the curves have been vertically shifted
by factors 10−1, 10−2, and 10−3 for q = 2, 3, and 4. Solid lines come
from least square fit in the range 0.01 < ωτη < 0.1. The inset shows
the comparison of the measured local scaling exponent ζL(q,ωτη) =
d logLq (ω)/d log ω with the multifractal prediction ζ MF

L (q).

The HS functions Lq(ω) have good scaling properties
also for other q orders. We calculated Lq(ω) for the orders
q = 1,2,3,4, and empirically found a good power law behavior
in the range 0.01 < ωτη < 0.1 (respectively 10 < τ/τη <

100), as shown in Fig. 5. This allows to extract the scaling
exponents directly in the instantaneous frequency space,
without resorting to the above mentioned ESS procedure.
The numerical values for the ζL(q) extracted from the fit
in the range 0.01 < ωτη < 0.1 are reported in Table I. The
values of the scaling exponents are estimated as the average
of the logarithmic local slope ζL(q,ω) = d logL2(ω)/d log ω

on the above interval and the error bars as the difference
between the averages taken on only the first or the second
half (in log scale) of the fitted frequency range. Note that the
indicated errors are larger than the estimated statistical errors.
Here, statistical convergence was checked by performing the
same analysis on random subsets with 1/64 of the total data.
First, let us notice the evident departure from the dimensional
estimate (named K41 [34]), ζ K41

L (q) = q/2. Second, the
measured values are in good agreement with the prediction
given by the multifractal model ζ MF

L [12]. In order to better

TABLE I. Lagrangian scaling exponents ζL(q) for orders q =
1,4 as estimated from dimensional analysis q/2 (K41), from the
multifractal model (MF) [12], and as obtained here from Hilbert
spectra (HS).

q = 1 q = 2 q = 3 q = 4

ζ K41
L (q) 0.5 1.0 1.5 2.0

ζ MF
L (q) 0.55 1 1.38 1.71

ζ HS
L (q) 0.59 ± 0.06 1.03 ± 0.03 1.39 ± 0.10 1.70 ± 0.14

appreciate the quality of our scaling, we show in the inset of
Fig. 5 the logarithmic local slope empirically measured with
the HHT, ζL(q,ω), compensated with the predicted value from
the multifractal phenomenology, such that a plateau around
the value 1 is the indication of the existence of an intermittent
multifractal power law behavior.

In summary, we have presented a Hilbert-Huang transform-
based methodology to capture the intermittent nature of the
turbulent Lagrangian velocity fluctuations. Our test bench has
been a numerical database of homogeneous isotropic turbu-
lence at Reλ = 400. The first result is that for the second-order
statistical moment L2(ω), an energylike quantity, we observe
a clear inertial range versus time defined as τ = ω−1 for at
least one decade, in the range 0.01 < ωτη < 0.2. Such clean
scaling can not be highlighted using more standard methods.
Second, we extracted the hierarchy of the scaling exponent
ζL(q) without applying ESS. Our measurements provide a
solid confirmation to the predictions of the multifractal model.
The Hilbert method we applied here is general and can
be applied to other systems with multiscale dynamics, e.g.,
Rayleigh-Bénard convection [35], two-dimensional turbulence
[36,37].
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