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Turbulence has been recognized as a factor of paramount importance for the survival or extinction of sinking
phytoplankton species. However, dealing with its multiscale nature in models of coupled fluid and biological
dynamics is a formidable challenge. Advection by coherent structures, such as those related to winter convection
and Langmuir circulation, is also recognized to play a role in the survival and localization of phytoplankton.
In this work we revisit a theoretically appealing model for phytoplankton vertical dynamics, and numerically
investigate how large-scale fluid motions affect the survival conditions and the spatial distribution of the
biological population. For this purpose, and to work with realistic parameter values, we adopt a kinematic
flow field to account for the different spatial and temporal scales of turbulent motions. The dynamics of the
population density are described by an advection-reaction-diffusion model with a spatially heterogeneous growth
term proportional to sunlight availability. We explore the role of fluid transport by progressively increasing the
complexity of the flow in terms of spatial and temporal scales. We find that, due to the large-scale circulation,
phytoplankton accumulates in downwelling regions and its growth is reduced, confirming previous indications
in slightly different conditions. We then explain the observed phenomenology in terms of a plankton filament
model. Moreover, by contrasting the results in our different flow cases, we show that the large-scale coherent
structures have an overwhelming importance. Indeed, we find that smaller-scale motions only quite weakly affect
the dynamics, without altering the general mechanism identified. Such results are relevant for parametrizations
in numerical models of phytoplankton life cycles in realistic oceanic flow conditions.

DOI: 10.1103/PhysRevE.104.065106

I. INTRODUCTION

The occurrence of phytoplankton blooms is a topic of
considerable interest to oceanography, given its relation to pri-
mary production and carbon export [1,2]. The understanding
of the biological and physical conditions leading to blooms
is, however, still incomplete. This is due to the variety of
intervening processes, as well as to the lack of detailed in-
formation about the vertical structure of the phytoplankton
biomass distribution, and of the fluid flows that shape it.

Modeling studies in the field have been useful to rationalize
the evidence from experimental observations into theoretical,
predictive frameworks [3–6]. Among these theories, those ad-
dressing vertical dynamics in light-limited environments have
a rich history, starting from the introduction of the concept
of critical depth by Gran and Braarud [7], which lead to
Sverdrup’s celebrated critical depth hypothesis [8]. The idea
is that phytoplankton blooms would only be possible when
the mixed layer, the weakly stratified upper part of the water
column, is shallower than a certain critical depth, defined as
the point where the population depth-integrated gains (due
to photosynthesis) surpass the depth-integrated losses (due to
grazing and respiration). Sverdrup’s reasoning relies on sev-
eral assumptions: a well-mixed fluid layer; negligible nutrient
limitations; direct proportionality between the photosynthetic
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biomass production and the available energy from the in-
coming radiation; and a constant light attenuation coefficient
throughout the water column. Building on such ideas, and
aiming to improve realism, subsequent studies started to ad-
dress also the role of algal self-shading [9] and of turbulence
[4] on phytoplankton life cycles. A unifying framework for
different previous theories invoking the importance of the
water-column depth and of turbulence intensity emerged from
the influential work of Huisman and collaborators on sinking
phytoplankton dynamics [10,11]. Such previous studies, how-
ever, focused on the one-dimensional (1D) dynamics along
the vertical, assuming that turbulence can be approximated by
a diffusive process. Therefore, they could not account for the
effects due to its complex, multiscale character. In addition,
persistent and well organized two-dimensional (2D) fluid mo-
tions, such as those characterizing winter convection, were
also suggested to play an important role in phytoplankton
survival [12,13].

In this work we develop a 2D model that allows us to
include the effects of both large-scale fluid motions and
smaller-scale turbulent ones on the survival dynamics of sink-
ing phytoplankton in light-limited environments, with the
aim of extending the picture drawn from simpler 1D models
[10,11]. In fact, studies discussing the influence of turbulence
and horizontal advection over plankton cycles, patchiness,
and survival have already shown that fluid transport and
mixing may considerably impact the evolution of the pop-
ulation distribution (see, e.g., [14,15]). Our approach shares
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some similarity with the numerical investigations reported
in Ref. [16], based on large-eddy simulations (LES), and
in Ref. [17], employing a kinematic model of a stationary
flow. In the latter works, however, it is less evident how to
disentangle the contributions from large and small flow scales
than in ours, where we proceed incrementally, adding time
dependency and smaller scales to the flow separately.

More specifically, we carry out numerical simulations of
an advection-reaction-diffusion model for the phytoplankton
population density, in which the advecting velocity field is
specified by a kinematic cellular flow. The flow will consist
of a single (steady or unsteady) large-scale mode spanning
the whole depth of the system, and a series of temporally
varying modes with smaller and smaller length scales. Such
a choice allows for a simplified description of the buoyancy
and wind-driven flows [18], such as convective currents and
Langmuir circulations, often encountered in the upper layers
of oceans and lakes. A distinguished feature of these flows is,
indeed, the simultaneous presence of (small-scale) turbulence
and (large-scale) coherent structures.

We investigate the model dynamics, as a function of the
flow intensity and spatiotemporal structure, in a vertical fluid
layer of fixed depth. Our system can then be thought as rep-
resentative of a coastal area or a lake, where the mixed-layer
depth undergoes smaller variations than in the open ocean.
Interestingly, some studies motivated by either environmental
monitoring [19] or the aim of testing different theoretical
hypotheses [20–22] point to the relevance of such fluid envi-
ronments. Note, also, that, as our main goal is to focus on the
interplay between fluid transport and biological growth, for
the sake of simplicity, we neglect the dynamics of nutrients
and we do not explicitly represent those of predators. In our
setup, light availability is thus the only limiting factor for
phytoplankton growth.

This article is organized as follows. We introduce the
model dynamics for the pytoplankton density, and the kine-
matic flow field, in Sec. II. The numerical results are reported
in Sec. III, where we separately discuss the different flow
cases considered. Finally, discussions and conclusions are
presented in Sec. IV.

II. MODEL

We adopt a 2D advection-reaction-diffusion model for the
dynamics of the population density field θ (x, z, t ) (number of
individuals per unit volume), whose evolution equation reads

∂θ

∂t
= [p(I ) − l]θ − v · ∇θ + D∇2θ. (1)

We consider such dynamics in a vertical fluid layer, intended
to represent the mixed layer, of horizontal and vertical sizes
Lx and Lz, respectively, with rigid walls at the top and bottom
boundaries.

Biological growth is controlled by a production rate, p, and
a loss rate, l . Advection is realized by a 2D incompressible
flow u = (ux, uz ) and phytoplankton is assumed to sink with a
speed vsink ẑ, where ẑ is the unitary vector pointing downward
in the vertical direction; the total velocity appearing in Eq. (1)
is thus v = u + vsink ẑ. The coefficient D represents an effec-
tive diffusivity, due to both small-scale unresolved turbulent

motions and possible swimming behavior. The production
term accounts for both water background turbidity, with co-
efficient κbg, and population self-shading, with an attenuation
factor κ . Its functional form is

p(I ) = pmaxI

H + I
, (2)

where pmax is the maximum specific production rate, H is a
half-saturation constant, and the time- and depth-dependent
light-intensity is expressed as follows, according to Lambert-
Beer’s law:

I (z, t ) = Iine− ∫ z
0 κθ (s,t )ds−κbgz, (3)

with Iin the incident light (at the surface, where z = 0). The
biological parameter values adopted in our study, representa-
tive of realistic situations, are reported in Table I. They are
extracted from [10], with growth parameters measured for
freshwater phytoplankton species and κbg for clear lakes and
coastal areas [11].

We consider advection by a prescribed cellular flow, which
is intended to model the presence of eddying fluid motion
on different scales. The velocity field is then obtained as
u = (−∂z�, ∂x�) from a stream function that, in the general
form (see also [23–26]), can be written as

�(x, z, t ) = �L(x, z, t ) + �s(x, z, t ), (4)

where

�L(x, z, t ) = −U1

k1
sin {k1[x − s1 sin(ω1t )]} sin(k1z) (5)

and

�s(x, z, t ) = −
nk∑

i=2

Ui

ki
sin {ki[x − si sin(ωit )]}

× sin{ki[z − β(z)si sin(ωit )]}. (6)

Here �L represents a large scale persistent structure that
is allowed to oscillate in the horizontal and �s represents
smaller-scale vortices that oscillate both in the horizontal and
in the vertical. In Eq. (6), nk is the number of modes selected,
Li = L1η

1−i is the typical length scale of mode i, with η > 1
a scale separation factor and L1 = Lx the largest flow scale,
ki = 2π/Li is the corresponding wave number, and Ui is the
typical flow intensity at scale Li [the same notation is used in
Eq. (5), where i = 1]. We choose to account for a possible
explicit time dependency of the flow field in the form of
oscillations with amplitudes si and pulsations ωi. To respect
no-flux boundary conditions for Eq. (1) in z = 0 and z = Lz,
[vsinkθ − D∂zθ ]z=0,Lz = 0, we use the function

β(z) = 1

2

[
tanh

(
z − z1

ξ

)
− tanh

(
z − z2

ξ

)]
, (7)

to damp vertical oscillations near the vertical boundaries and
therefore guarantee that uz is negligibly small there. A similar
choice of a damping function was adopted to study chemical
reactions in closed vessels [27]. In our case, the parameter
values z1 = 2 m, z2 = Lz − z1, and ξ = 1 m turned out to be
adequate for this purpose. In the following we will consider
velocity fields with increasing degree of complexity, namely a
steady one-mode flow (Sec. III A), an unsteady one-mode flow

065106-2



EFFECTS OF LARGE-SCALE ADVECTION AND … PHYSICAL REVIEW E 104, 065106 (2021)

TABLE I. Parameters of the biological dynamics.

Parameter Value Meaning

κbg 0.2 m−1 Background turbidity
κ 1.5×10−11 m2 cell−1 Specific light attenuation of phytoplankton
pmax 0.04 h−1 Maximal specific production rate
l 0.01 h−1 Specific loss rate
H 30 μmol photons m−2 s−1 Half-saturation constant of light-limited growth
Iin 350 μmol photons m−2 s−1 Incident light intensity
vsink 0.04 m h−1 Phytoplankton sinking velocity

(Sec. III B), and a multiscale time-dependent flow (Sec. III C).
While our main focus will be on the interplay between large-
scale advection and small-scale turbulent diffusion, with this
choice we aim at exploring the effect of smaller temporal and
spatial scales on the biological dynamics.

We numerically integrate Eq. (1) by means of a pseudo-
Lagrangian algorithm [28–31] (see the Appendix A for more
details) in our rectangular domain with Lx = 2Lz, using peri-
odic and no-flux (as in [10]) boundary conditions along the
horizontal (x) and the vertical (z), respectively. The initial
condition is a low uniform population density [θ (t = 0) =
5.5×106 cells m−3], but we checked in some selected cases
that the results do not appreciably change if the population is
initially present only in a small localized patch. To analyze the
blooming conditions we mainly rely on the temporal behavior
of the average biomass density,

〈θ〉(t ) = 1

LxLz

∫ Lx

0

∫ Lz

0
θ (x, z, t ) dx dz, (8)

and the per-capita growth rate (see, e.g., [32]),

rp(t ) = 1

〈θ〉
∂〈θ〉
∂t

. (9)

In particular, after an initial transient, the latter quantity is
expected to attain a statistically constant value rp, correspond-
ing to exponential growth (rp > 0) or decay (rp < 0) in the
early regime before the onset of nonlinear dynamical effects
(due to self-shading). We also use rp to indicate the time
average of rp(t ) over the entire simulation. Note that in a
simulation of duration T such time average can be expressed
as rp = (1/T ) ln [〈θ〉(T )/〈θ〉(0)].

III. RESULTS

A. Steady Flow

In the absence of a flow field (� = 0), our 2D model is
equivalent to the original 1D one [10] and numerical sim-
ulations reproduce the results of the latter, as verified by
computing vertical population profiles, as well as the phase
diagram summarizing the survival (or extinction) conditions
versus the diffusivity D and water-column depth (results not
shown). A typical snapshot of the population density field is
shown in Fig. 1(a), which clearly shows the independence of
the θ field on the lateral direction x.

A relevant feature of the original model is the existence of
a turbulence window allowing for phytoplankton bloom, for
large enough system depths. Determining analytical expres-
sions for the critical conditions for population survival (i.e.,

blooming) or extinction is not an easy task, even in such a
simple model [10]. This difficulty is due to the heterogeneity
of the environment and is common to different population
dynamics’ models (see, e.g., [5,33,34] for other 1D sys-
tems). Adopting some simplifying assumptions, it is possible
to obtain an approximate estimate of the minimum turbu-
lent diffusivity (the lower bound of the turbulence window)

FIG. 1. Instantaneous normalized population density field
θ (x, z, t∗)/〈θ〉 at a fixed instant of time t∗ = 640 h for D = 5 cm2 s−1

and U = (0, 1.24, 4.93) m h−1 [panels (a), (b), and (c), respectively],
where 〈θ〉 stands for the spatial average. The white line is the isoline
θ/〈θ〉 = 1, and t∗ is in the regime of stationary per-capita growth rate
[rp(t ) = rp = const]. The solid black lines in (b) and (c) represent
flow streamlines, with arrows indicating the circulation direction.
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required to compensate the sinking of phytoplankton, and
hence to let the population survive [9,10,33,35]. Nevertheless,
for the maximum turbulent diffusivity (the upper bound of the
window), beyond which the population cannot outgrow the
turbulent mixing rate to sustain the bloom in the upper part of
the water column, no simple analytical expression is known
[10,36].

Here, we numerically investigate the effect of a large-scale
steady cellular flow on the dynamics of the phytoplankton
population and its survival/extinction transitions. The stream
function corresponding to such a velocity field is

�st
L (x, z) = −U

k
sin(kx) sin(kz), (10)

i.e., Eq. (5) where no explicit time dependency is included
(with k = k1 = π/Lz and U = U1). We consider a depth for
which the turbulence window exists for the noflow system
(Lz � 60 m), as documented in [10], and we fix the turbulent
diffusivity to a value that is intermediate between the min-
imum (D ≈ 0.1 cm2 s−1) and maximum (D ≈ 100 cm2 s−1)
critical ones for blooming. Due to the increased computational
times of simulations in larger spatial domains, we choose a
depth value close to the minimum possible one, namely Lz =
60 m. Streamlines corresponding to the flow from Eq. (10)
can be seen in Figs. 1(b) and 1(c). From these figures it is
also evident that the flow impacts the spatial distribution of
the population, which is no longer laterally homogeneous. We
will discuss in more detail this point later in this section.

The flow intensity U is then varied in a broad range to
examine possible changes of behavior due to advection by
the coherent flow. We particularly focus on the upper bound
of the turbulence window (taking 5 � D � 20 cm2 s−1), for
which numerical simulations prove more useful, as in this case
theoretical predictions are not available even in the absence
of flow [10,36]. The effect of increasing U for fixed D is
apparent in Fig. 2(a), showing 〈θ〉 as a function of time. These
results were obtained using a localized initial condition corre-
sponding to a small patch of population density located in the
central upper part of the domain, close to (x = Lx/2, z = 0),
but we verified that the long-time growth dynamics of the
system stay unchanged when considering a uniformly spread
initial population. The coherent flow reduces the growth of 〈θ〉
and eventually causes an extinction when its intensity is large
enough. The growing or decaying temporal behavior is al-
ready quite well established after one large eddy turnover time
[see vertical lines in Fig. 2(a)], here estimated as 2πLz/U ,
approximating streamlines with perfectly circular orbits of ra-
dius Lz. At later times, the average biomass density continues
to grow (or decay) exponentially at a constant rate.

In order to characterize the bloom to no-bloom transition
induced by advection, we measure the per-capita growth rate
rp(t ) [see Eq. (9)]. This quantity, normalized by the intrin-
sic total (birth minus death) growth rate at the surface rb =
Iin/(H + Iin )pmax − l , versus time normalized by Lz/U , is
shown in Fig. 2(b). Here, a uniform initial population density
was chosen. Note that with a localized initial condition, and
the same flow and diffusivity conditions, we obtained identical
large-time values of rp(t ). As can be seen, at large enough
times, for all U , rp(t ) approaches a constant value rp, con-
firming the exponential character of growth or decay of 〈θ〉.

FIG. 2. (a) Average biomass density, on a logarithmic scale, ver-
sus time, for D = 20 cm2 s−1, Lz = 60 m and different values of the
advection intensity U in the steady-flow case. Vertical lines indicate
t = 2πLz/U , the time of one flow roll revolution. (b) Population per-
capita growth rate rp(t ), normalized by the intrinsic net growth rate
rb, as a function of time, normalized by the advective timescale Lz/U
of the steady-flow case, for various values of U , D = 20 cm2 s−1 and
Lz = 60 m. (c) Per-capita growth rate rp (constant value attained after
a transient), normalized by the intrinsic net growth rate rb, versus the
ratio of reactive to advective timescales γ , in the steady-flow case,
for different values of D.

Furthermore, the large-time value rp decreases from positive
values (for low U ) to negative ones (at larger U ), therefore
allowing a robust estimate of the critical flow intensity at the
transition.
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As first indicated in [37], where horizontal patchiness
was numerically studied adopting an NPZ (for nutrient-
phytoplankton-zooplankton) model in a turbulent flow, we
expect that also in the present case the dynamics are primarily
controlled by the interplay between advection and reaction
mechanisms. To quantify the relative weight of the latter pro-
cesses, we consider the ratio of the biological timescale r−1

b to
the flow timescale Lz/U , i.e.,

γ = U

rbLz
. (11)

Figure 2(c) reports the (constant) per-capita growth rate rp as
a function of γ . From this plot, one can clearly see that the
survival/extinction transition caused by the flow occurs for
γ = O(1), in correspondence with rp turning from positive to
negative. Essentially, a bloom can take place (rp > 0) when
the biological growth is faster than the advective transport
(γ < 1) to the less favorable deeper part of the domain. The
proximity of the data obtained with different values of D
highlights the generality of this mechanism and confirms the
weak effect of the turbulent diffusivity in this picture. We
remark that we could not detect a transition to a no-bloom
regime for D < 5 cm2 s−1, even with very large values of U .

Further insight comes from inspection of the spatial struc-
ture of the population density field θ (x, z, t )/〈θ〉 (normalized
with 〈θ〉) at a given time (Fig. 1). While in the absence of
flow the population is uniformly distributed along the hor-
izontal and decreases with depth, nonzero advection causes
an increase of θ in the downwelling region (at x = Lx/2).
This feature gets accentuated by increasing U , with the pop-
ulation accumulating in thinner and thinner filaments outside
vortices, and particularly in the one located at x = Lx/2. Such
a behavior points to the relevance of strain-dominated flow
regions for the spatial organization of the population and the
formation of fine structures. In our flow, as can also be easily
seen in Figs. 1(b) and 1(c), the latter regions are close to the
hyperbolic points corresponding to the vertices of the squares
of side Lz containing the rolls. Among such points, clearly,
a prominent role is played by the point (x, z) = (Lx/2, 0),
where the flow locally compresses the scalar field θ along the
x axis (and stretches it in the z direction), in the region of
highest growth rate (i.e., at the surface).

Relying on the above picture, a useful interpretation of
the dynamics observed in our simulations is offered by an
appropriate adaptation of the plankton filament model [38],
originally introduced to describe the formation of fine struc-
tures in 2D flows. To apply this reasoning, we neglect the
sinking speed, which is considerably smaller than the advect-
ing velocity close to the transition to extinction, as well as
self-shading, because close to an extinction the population
density is low everywhere and because our main point of
interest is at the surface. Under these hypotheses, Eq. (1)
becomes

∂tθ + u · ∇θ =
(

Iin

H + Iin
pmax e−κbgz − l

)
θ + D∇2θ. (12)

Since, as argued above, we are interested in the dynamics at
the surface, close to the hyperbolic point at x = Lx/2, the net
growth rate will be rb. Moreover, we can write the population

density as

θ (x, z, t ) = θback erbt + θ ′(x, z, t ), (13)

where θback is a background population density and θ ′ rep-
resents the perturbation determined by the flow. Using this
decomposition, it is not difficult to see that the equation gov-
erning the dynamics of θ ′ is the same as Eq. (12). Following
[38], we can then consider only the 1D dynamics for the
population fluctuation in the compressing (or cross-filament)
direction, because along the filament θ ′ should vary less due to
the stretching operated by the flow. In this region, the flow can
be locally approximated as u = ( − λ(x − Lx/2), λz), where
λ = kU ≈ U/Lz is the strain rate. Therefore, from Eq. (12),
for the cross-filament dynamics one has

∂tθ
′ − λ(x − Lx/2)∂xθ

′ = rbθ
′ + D∂2

x θ ′. (14)

The solution of the above equation is (see also [38]):

θ ′(x, t ) = θ ′
0 e− (x−Lx/2)2λ

2D e(rb−λ)t , (15)

with θ ′
0 a constant. From this expression we can see that, in

the x direction, the population density field keeps the same
(Gaussian) shape at different times. The filament width σ =√

D/λ does not depend on time and is only determined by
the physical parameters associated with fluid transport. As the
flow intensity increases, so does the strain rate, which explains
the thinning of filaments and the more important localization
of the population for higher values of U . Growth or decay over
time, instead, depends on whether rb is larger or smaller than
λ, respectively. This simple model thus provides theoretical
support to the survival/extinction criterion based on the ratio
between the biological and flow timescales, γ .

The above model accounts for the dynamics at the surface
and, strictly speaking, it is only there that its predictions
should apply. If the population cannot survive at the surface,
however, it should not survive deeper below either, due to
the reduced growth rate, which makes the conclusion appear
more general. Considering that, differently from the 1D fila-
ment case, in our fully 2D model both the strain rate and the
growth rate vary with depth, and that sinking and self-shading
might also play a minor role, the comparison between our
previous estimate of the control parameter, γ = U/(Lz rb),
and that from Eq. (15), λ/rb, seems to us reasonable also
from a quantitative point of view. Regarding the dependence
on the vertical coordinate, we further note that the biological
growth rate monotonically decays with z, and that the strain
rate, in absolute value, decreases until half the total depth,
before growing again in the lower half of the domain, but now
acting in the opposite way (stretching instead of compressing
the scalar in the x direction). The combination of these effects,
impacting both the width and the intensity of the filament, can
then explain, in a qualitative way, the tendency, particularly
visible in Fig. 1(b), of this localized downwelling structure to
fade around z = Lz/2.

To test the validity of the above argument for our system,
we examined the horizontal profiles of population density at
z = 0 from simulations with different values of D and U ,
once rp(t ) reached the constant value rp. We found that such
profiles are to a good extent time independent and that their
shape is well described by a Gaussian function. Figure 3
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FIG. 3. Horizontal profiles of surface population density at dif-
ferent times (in units of the advective timescale Lz/U ), normalized
by their average values, θ (x, 0, t )/〈θ (x, 0, t )〉x , for the steady-flow
case (� = �st

L ) with U = 1.001 m h−1 and D = 20 cm2 s−1. The
dashed black line represents the Gaussian solution of Eq. (12),
� + θ ′

i exp [(x − Lx/2)2/(2σ 2
numerical )], with � = θback exp (rbt ) and

θ ′
i = θ ′

0 exp [(rb − λ)t] [see also Eqs. (13) and (14)]. The constants
�, θ ′

i and σnumerical are fitting parameters.

shows an example of the latter profiles θ (x, 0, t ), at different
instants of time (for given values of U and D), normalized
by the corresponding average values 〈θ (x, 0, t )〉x. By means
of a fit in a subregion centered around x = Lx/2, where the
phytoplankton patch is mainly localized, we then estimated
the standard deviation of the Gaussian curves, σnumerical, which
provides a measure of the filament width σ . The results
are compared to the theoretical prediction in Fig. 4, which
indicates a strong correlation between the numerical and the-
oretical estimations of σ . As one can observe in the figure,
we actually detect a tendency of the numerically estimated
σ to grow slightly faster than the theoretical one. However,
such a small difference seems quite reasonable, taking into
account the assumptions made for the theoretical prediction
with respect to the details of our numerical setup. Note, too,
that while the linear proportionality between σnumerical and σ is
quite robust, particularly for large values of D, the quality of
the agreement (between the numerical and theoretical values)
depends on the width of the central region chosen for the
estimation of σnumerical.

It is worth remarking that at the bottom, due to the similar
structure of the deep and surface flow, the spatial organiza-
tion of the reactive scalar parallels that found at the surface.
Analogous reasoning in the straining regions close to x = 0 or
x = Lx would always give extinction locally, however, as the
prefactor in the exponent of the exponential involving time
would be −l − λ < 0, as the growth rate is negligibly small

FIG. 4. Filament width, estimated from a fit (in the interval
50 < x < 70 m) with a Gaussian function of horizontal profiles of
population density from simulations with different values of D and
U , versus its theoretical prediction σ = √

D/(kU ), with k = π/Lz.
The dashed black line corresponds to σnumerical = 0.085 + 1.276σ .

there. Hence, the relatively high values of population density
at the bottom appear to be due to fluid transport (including
sinking) only and the zero-flux boundary conditions.

Finally, according to Eq. (15), in the limit of very small
diffusivity, the filament width approaches zero while its den-
sity amplitude grows exponentially. Consequently, it becomes
more and more difficult to observe an advection-driven ex-
tinction. From a practical point of view, this is essentially
impossible in numerical simulations, as it would require an in-
finite spatial resolution, in order to resolve the cross-filament
structure. These are likely the reasons why we could not detect
the transition to no-bloom at sufficiently small values of D.

B. Unsteady flow

We now consider a time-dependent large-scale flow, by
allowing for lateral oscillations of the flow pattern adopted
in the previous section, which is enough to produce chaotic
Lagrangian trajectories of fluid particles [39,40]. More ex-
plicitly, the flow field will now be specified by Eq. (5), i.e.,
Eq. (4) with �s = 0. The amplitude and pulsation of the roll
oscillation are respectively set to s = Lz/5 and ω = πU/Lz,
corresponding to a fraction of the roll size and a period
comparable to the advective timescale Lz/U , a choice that
has been shown to be optimal to enhance chaotic diffusion
[23,25,26,39]. Note that we do not allow for vertical oscil-
lations, in order to keep the top and bottom boundaries of
our domain at fixed vertical positions. Figure 5 shows two
snapshots of the population field at different times in the
constant per-capita growth-rate regime. These visualizations
suggest that the dynamics are fairly similar to those in the
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FIG. 5. Instantaneous population density field, normalized by its
spatial average, θ (x, z, t )/〈θ〉, in the unsteady-flow case, for U =
1.4 m h−1 and D = 5 cm2 s−1. The two panels correspond to two
different times. The white line is the isoline θ/〈θ〉 = 1 and the black
lines are the streamlines of the flow field at the considered instants of
time, with arrows indicating the circulation direction.

stationary-flow case, although horizontal symmetry is now
broken due to the lateral oscillations of the flow.

To confirm this observation we performed the same anal-
ysis as in Sec. III A. The results indicate that the overall
phenomenology remains unchanged, with only little quanti-
tative differences. The temporal behaviors of both the average
biomass density 〈θ〉(t ) and the per-capita growth rate rp(t )
are similar to those observed with the steady flow [Figs. 2(a)
and 2(b), respectively], but they now present small oscillations
with a frequency corresponding to that of the roll lateral
displacement (not shown). As for the critical advection in-
tensity Uc determining the bloom/no-bloom transition, it is
found to be slightly higher in the present time-dependent
case. The increase with respect to the previous, steady case
depends on the value of the small-scale diffusivity (about 6%
for D = 20 cm2 s−1 and 18% for D = 10 cm2 s−1), but the
dependency of Uc on D remains weak. Considering that the
explicit time dependency of � in Eq. (5) now gives rise to
chaotic diffusion of Lagrangian particles, and hence to an
effective diffusivity larger than D, such an increase of Uc

seems to us reasonable, from a qualitative point of view. A
more quantitative assessment of the comparison between the
unsteady and steady flow cases is illustrated in Fig. 6(a). Here
we show r̄p/rb of the steady flow case as a function of r̄p/rb

in the unsteady case, for several values of U and D. As can
be seen, over the range of values of D and U explored, the
two quantities are almost perfectly correlated, corroborating
the idea that the lateral oscillations do not produce any major
modifications.

FIG. 6. (a) Time averaged normalized per-capita growth rate
r̄p/rb of the steady-flow case vs the corresponding quantity from the
unsteady-flow case. (b) Same as in (a) but for r̄p/rb from the multi-
scale flow case vs r̄p/rb from the unsteady-flow case. In both (a) and
(b), several values of the large-scale flow intensity (0.79 � U1 �
3.69 m h−1) and of D are considered. Fitting the data corresponding
to a given value of D [(5, 10, 15, 20) cm2 s−1] with a linear function,
we obtain slopes that are always quite close to 1, particularly in
(a) (slopes between 0.84 and 0.93); the data in (b) display a little
more variability (with fitted slopes between 0.86 and 1.21). The black
dashed lines have unitary slope.

C. Multiscale flow

We now extend our analysis to a multiscale flow, mim-
icking a turbulent one, specified by the full stream function
in Eq. (4). Again, the flow is explicitly time dependent and
performs oscillations, now on different scales, with ampli-
tudes si = Li/10 and pulsations ωi = πUi/Li (a choice that
is analogous to that of Sec. III B, considering that L1 = Lx).
The first and largest-scale mode only oscillates laterally (as
in the previous section) while smaller-scale flow compo-
nents are allowed to move also in the vertical direction.
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FIG. 7. Instantaneous population density field, normalized by
its spatial average, θ (x, z, t )/〈θ〉, in the multiscale-flow case, for
U = 1.021 m h−1 and D = 5 cm2 s−1, in the regime rp(t ) = const.
The white line is the isoline θ/〈θ〉 = 1 and the black lines are the
streamlines of the flow field at the considered instant of time, with
arrows indicating the circulation direction.

Close to the vertical boundaries, however, their oscillations
are damped according to Eq. (7), in order to respect no-
flux boundary conditions for the reactive scalar. We choose
a number of modes that allows spanning the scale range
going from the domain size L1 = 120 m to the smallest
length scale Lnk = 1 m, corresponding to ≈1/(5κbg), where
κ−1

bg is related to the growth dynamics, as it is the typical
length over which light is absorbed by the medium. Such
small length scale also roughly corresponds to the scale that
can be estimated from Richardson scaling of diffusivity with
length, � ∼ (2/3)3/4ε−1/4D(�)3/4 [25,41], using the values
of diffusivity explored in the previous sections, 5 < D <

20 cm2 s−1, and values of the kinetic energy dissipation rate
ε ≈ (10−8–10−6) m2 s−3 that appear reasonable for oceanic
turbulence [17,42,43]. We then set the scale separation factor
to η = 2 and the number of modes to nk = 7. Finally, we
assume a Kolmogorov scaling of velocity, Ui = U1(Li/L1)1/3.

Figure 7 presents the population density field at a given
time (t∗ = 520 h), normalized by its spatial average. As in
previous visualizations, we select the time t∗ such that the dy-
namics have already reached the constant growth-rate regime
characterized by rp(t ) = const. The iso-contours of the stream
function at the same time (black lines in the figure) allow
one to appreciate the presence of eddies of different sizes
and the more disordered spatial structure of the velocity field.
Although the latter small-scale features reflect in the spatial
distribution of the population, which is now irregular, the
signature of the largest-scale flow is still apparent, particularly
in the θ patch at the center of the domain (x 
 Lx/2 = 60 m)
and close to the surface.

It is interesting to compare the growth rate rp/rb measured
in this multiscale setting and in the previous ones, e.g., in the
one-mode unsteady-flow case. As can be seen in Fig. 6(b),
the estimates from the two cases are still quite correlated, and
diffusivity plays a rather weak role [similarly to the previous
comparison, reported in Fig. 6(a)]. Still, we notice that in
Fig. 6(b), for small enough D, it is possible to observe that the
multiscale estimate of the growth rate rp tends to be slightly
larger than its counterpart in the absence of small eddies.
We then argue that the latter flow features provide an effect

FIG. 8. Vertical population density profiles 〈θ〉x , normalized by
the global spatial average 〈θ〉, for the different stream functions �

considered, U1 = 1.001 m h−1 and D = (5, 20) cm2 s−1. Different
line types correspond to different choices of �, with black and gray
curves indicating the different values of D. Panels (a)–(d) correspond
to different instants of time, in the constant growth-rate regime
rp(t ) = const, as specified in the plot titles (in units of the advective
timescale Lz/U1).

that partially compensates the deadly action of the large-scale
coherent flow, but that is only measurable for D � 10 cm2 s−1.

To further investigate the impact of small-scale fluid
motions, we also analyze vertical profiles 〈θ〉x(z) of the phyto-
plankton distribution (similarly to what is done in [6,11,16]),
obtained by averaging θ (x, z, t ) over the horizontal coordi-
nate x at fixed instants of time. Such profiles, normalized by
the corresponding global spatial averages 〈θ〉, are shown in
Fig. 8 for all the flow cases studied (one-mode steady-flow,
one-mode oscillatory flow, multiscale time-dependent flow) at
common given times. Independently of the considered flow or
value of D, their shape is always characterized by a maximum
at small but finite depth and a decrease deeper below the
surface, plus a second inflection point close to the bottom
boundary. These features are typical for sinking phytoplank-
ton species [10], whereas nonsinking ones would display a
maximum at the surface [3].

The similarity of the profiles obtained in different config-
urations (Fig. 8) points to the dominance of advection by the
large-scale coherent flow, as including its time dependence or
smaller scales does not alter the general picture substantially.
Note, however, that for sufficiently low D the addition of small
scales favors, to small but measurable extent, a localization
of the population close to the surface, akin to the verti-
cally nonhomogeneous distribution typical of the no-flow case
[see Fig. 1(a)] and increased possibility of survival.
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FIG. 9. Normalized vertical population density profiles 〈θ〉x/〈θ〉
for � = 0 (no flow), � = �st

L (large-scale steady flow), � = �L

(large-scale time-dependent flow), � = �L + �s (multiscale time-
dependent flow), � = �s (small-scale time-dependent flow, without
�L) and U1 = 1.001 m h−1. Panels (a) and (b) respectively refer
to D = 5 cm2 s−1 and D = 20 cm2 s−1. Note the different value
ranges on the horizontal axes in (a) and (b). All the profiles here
reported are computed at a common fixed time tU1L−1

z = 10, for
which rp(t ) = const.

The importance of the large-scale flow can be even better
appreciated by inspecting Fig. 9. Here, again for a com-
mon fixed time (tU1L−1

z = 10) in the (statistically) constant
growth-rate regime, we show the normalized vertical profiles
〈θ〉x/〈θ〉, for the smallest and largest values of diffusivity used
[D = 5 and 20 cm2 s−1 in panels (a) and (b), respectively], for
different flow types. Specifically, we examine the following
different combinations: � = 0 (no flow), � = �st

L (large-
scale steady flow), � = �L (large-scale time-dependent flow),
� = �L + �s (multiscale time-dependent flow), and � = �s

(time-dependent flow without the large-scale contribution pro-
vided by �L). The last case was explicitly added to test
the relevance of the large-scale advection. It is apparent that
whenever �L is present the population gets homogenized in
the vertical direction, with respect to the no-flow case. The
addition of time dependency and small scales to the flow turns
out to play only a minor role, as the corresponding profiles
are essentially indistinguishable from the one obtained with
�L only. When the latter contribution is removed and the
flow only possesses smaller scales, instead, the population
distribution retrieves the vertically nonhomogeneous charac-
ter typical of the � = 0 case. In such a case, in fact, the
vertical profile 〈θ〉x approaches the one obtained without flow,
as is particularly evident in Fig. 9(b) (where D = 20 cm2 s−1).
Finally, it seems to us that Fig. 9 summarizes in an effective
way the main outcome of this work, meaning the outstanding
relevance of advection by the large-scale coherent flow, as the
dominant mechanism controlling phytoplankton dynamics in
the present setting.

IV. CONCLUSIONS

We numerically investigated the dynamics of sinking phy-
toplankton in a stirred 2D fluid layer where the vertically

decreasing light availability is the only limiting factor for
biological growth. For this purpose we extended a previous
theoretical 1D model [3,10,36], where turbulent motions were
only described in terms of an effective diffusivity, by taking
into account in an explicit way the transport operated by a
structured fluid flow. The choice to neglect possible hetero-
geneities in the nutrient distribution was motivated by our goal
to focus on the role of transport mechanisms. While clearly
this poses some limitations in relation to real natural environ-
ments, where nutrients can also affect biological growth, such
a configuration still appears reasonable for nutrient-rich, eu-
trophic habitats, namely shallow warm lakes or high-latitude
oceans.

A major outcome of the simplified theoretical model [10]
mentioned above was to provide evidence of two transitions
between extinction and survival of the population, depend-
ing on the turbulent intensity (for deep enough fluid layers).
Our aim, here, was to explore the impact of a more realistic
representation of the advecting velocity field on the survival-
to-extinction transition, for which no analytical prediction is
available, occurring at large turbulent intensity when biologi-
cal production cannot compensate turbulent mixing to sustain
the bloom in the well-lit region close to the surface. Using
realistic parameter values for the biological dynamics [10],
we then considered a domain with a fixed depth representative
of the mixed layer, in the presence of flows of progressively
increasing complexity, relying on a kinematic-flow approach
[25]. We first examined a velocity field possessing a single
large-scale stationary mode, in the form of two recirculating
cells spanning the horizontal extent of the system [23,44].
Such a spatial structure was intended to mimic the large-scale
features observed in realistic flows, such as those arising from
buoyancy driven convection [23,45] or wind-driven Langmuir
circulation [4,44,46]. We then added time dependency in the
form of lateral oscillations of such a flow pattern, and finally
included spatially and temporally varying smaller scales.

Our results indicate that advection plays a relevant role
on the biological dynamics. Indeed, persistent large-scale mo-
tions reduce the per-capita growth rate and can eventually lead
to the suppression of the bloom, when the flow is intense
enough. This effect is found to be controlled by the ratio
between the characteristic biological and flow timescales,
similarly to what occurs for plankton horizontal dynamics
stirred by mesoscale ocean eddies [47]. From a general per-
spective, a similar harmful role of the advecting flow was
also put in evidence in previous LES of turbulent thermal
convection [16], and in a study considering a steady cellular
flow and a matrix-based approach to compute the biological
growth rate [17]. However, those studies neglected the phyto-
plankton self-shading [17] and also sinking [16]. Moreover,
in both of them it is less straightforward than in our work
to disentangle contributions from large and small flow scales,
either because the latter are essentially absent [17] or because
they dynamically interact with the large-scale ones [16].

The main finding of the present study is that the large-
scale flow dominates the dynamics, which are only weakly
affected by (temporally and/or spatially) smaller-scale fluid
motions. This fact appears plausible, considering that the ver-
tical transport of phytoplankton should be mainly controlled
by the most energetic fluid motions, associated with the largest
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scales. It is revealed by both the strong correlation found
for the critical flow intensities (for the transition) and the
similar vertical population profiles, in the different flow cases.
Even in the presence of a multiscale flow, the velocity field
at the largest scale has a strong signature on the dynamics,
as it drives the localization of the population in a patch at
the center (with respect to the horizontal coordinate) of the
domain. This is a region of phytoplankton downwelling (sim-
ilarly to what is observed in Ref. [17]), corresponding to the
location of the straining point associated with the largest-
scale flow mode (i.e., the separatrix between the two largest
rolls).

In the (large-scale) one-mode, steady flow case, we have
been able to rationalize the picture by adapting the plank-
ton filament model originally introduced in Ref. [38]. This
allowed us to provide a quantitative justification for the con-
trol exerted by the biological-to-flow timescale ratio on the
transition to extinction. As shown by our analysis of the
multiscale-flow case, the presence of smaller-scale fluid mo-
tions tends to partially disrupt the regular spatial distribution
of the population due to the flow at large scale, and the associ-
ated central downwelling filament. This was further confirmed
by the comparison of phytoplankton density vertical profiles
in two multiscale flows, one of which does not possess the
largest-scale mode. Indeed, in the strain region between the
largest eddies, the combined action of the flow and of small-
scale diffusivity vertically homogenizes the population, thus
hindering survival. When only smaller eddies are present,
however, the planktonic population localizes closer to the
surface, and spreads more over the horizontal, giving rise to
a situation resembling that of the no-flow case, which is less
prone to extinction.

We hope that the analysis reported here can contribute
to the understanding of the basic mechanisms controlling
the interplay between fluid transport and phytoplankton
growth dynamics. The favorable comparison of some of our
results with those obtained in the framework of more re-
alistic fluid models [16] seems to us interesting in light
of parametrizations of plankton cycles in numerical mod-

els. Several extensions can be envisaged, in a rather natural
way. On one hand, it would be interesting to consider a
three-dimensional setup for our kinematic flow [48,49], to
explore possible links between the vertical organization of
phytoplankton and its horizontal patchiness. On the other, we
believe that accounting for vertical variations of the turbulent
intensity could provide a more realistic representation of real
aquatic environments under stirring.

APPENDIX: NUMERICAL METHOD

The dynamics specified by Eq. (1) are numerically inte-
grated by means of a pseudo-Lagrangian algorithm [28–31],
based on the splitting of the advection, reaction and diffusion
terms. Advection by the full velocity v (including both the
fluid flow and phytoplankton sinking) is integrated backwards
in time, for each grid point on which the population density
field θ (x, z, t ) is defined. This allows to determine the origin
of the Lagrangian trajectory ending at the considered grid
point after a time step dt . The value of θ at such Lagrangian
origin, which is generally not on the numerical grid, is then
determined by bilinear interpolation using the values of the
field on the nearest grid points. Once known, the latter value
of θ is used as the initial condition for the forward integra-
tion of the reaction dynamics over a time step. Finally, the
integration of the diffusion term is carried out by means of
a finite-difference implementation [30,31], using a smaller
time step dtD = dt/10, meaning that ten diffusive steps are
performed after each advection and reaction integration over
dt . The choice of the value of dtD results from the two con-
ditions required by the method. On one hand, the physical
diffusion coefficient D has to be larger than the numerical
one, Dn ∝ dx2/dt , with dx being the mesh size. On the other
hand, the stability condition for the Eulerian diffusive step
is DdtD/dx2 < 1. In our case, this leads to the choices dt =
0.01 h for the time step, and dx = O(0.1) m for the grid size,
allowing us to resolve the typical length scales of reaction,
advection, and diffusion processes, for the values of U and D
adopted.
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