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Acceleration of heavy and light particles in turbulence: Comparison between
experiments and direct numerical simulations
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Abstract

We compare experimental data and numerical simulations for the dynamics of inertial particles with finite density in turbulence. In the
experiment, bubbles and solid particles are optically tracked in a turbulent flow of water using an Extended Laser Doppler Velocimetry technique.
The probability density functions (PDF) of particle accelerations and their auto-correlation in time are computed. Numerical results are obtained
from a direct numerical simulation in which a suspension of passive pointwise particles is tracked, with the same finite density and the same
response time as in the experiment. We observe a good agreement for both the variance of acceleration and the autocorrelation time scale of the
dynamics; small discrepancies on the shape of the acceleration PDF are observed. We discuss the effects induced by the finite size of the particles,
not taken into account in the present numerical simulations.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the transport of inertial particles with finite
density, such as sediments, neutrally buoyant particles or
bubbles in turbulent flows of water is of practical interest for
both industrial engineering or environmental problems. In a
turbulent flow, the mismatch in density between the particles
and the fluid causes light particles to be trapped in high
vortical regions while heavy particles are ejected form vortex
cores and concentrate in high strain regions [1]. As particles
with different buoyancy tend to concentrate in different
regions of the flow, they are expected to exhibit different
dynamic behaviours. In recent years, significant progress
has been made in the limit of infinitely heavy, pointwise
particles [2,3], and numerical simulations have received
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experimental support [4,5]. In case of infinitely light particles
(bubbles): the result of the numerical simulations on particle
distributions and on fluid velocity spectra [6–8] agree in various
aspects with experimental findings [9–12] although direct
comparison between experiments and numerical simulations
for the acceleration PDF and correlation of the particles has not
been investigated in the past.

Indeed, in spite of the growing resolution of Direct
Numerical Simulations (DNS) of the Navier-Stokes equations
at high Reynolds numbers, it remains a challenge to resolve
the motion of realistic inertial particles: some degree of
modelization is necessary. The equation of motion of finite
size, finite density particles moving in a turbulent flow, is not
precisely known, and a comparison with experimental data can
help in refining the models and extending their range of validity.

Several experimental techniques have been developed for
measuring the velocity of particles along their trajectories.
The optical tracking method developed in the Cornell group
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has revealed that fluid particles experience extremely intense
accelerations [13], while individual particles have been tracked
for time durations of the order of the flow integral time
scale using an acoustic technique [14]. Because of the very
fast decrease of the acoustic scattering cross-section with the
scatterer’s size, this method is limited to particles with diameter
of the order of the wavelength, i.e. inertial range sizes [15,
23]. The principle of the acoustic technique is completely
analogous to laser Doppler velocimetry (LDV), provided that
expanded light beams are used (an arrangement we call E-LDV
hereafter). The advantage of E-LDV, compared to acoustics,
is that the much smaller wavelength of light allows a better
resolution in space and also the use of smaller tracer particles.
The principle of the measurement technique is reported in [16],
where its performance has been compared and validated against
silicon-strip tracking [13,17] of neutrally buoyant Lagrangian
tracers. We focus here on the dynamics of inertial particles i.e.
particles whose density differ from that of the fluid. We report
the first comparison between experimental measurements of
acceleration of particles having a relative density in the range
10−3 (air bubbles) to 1.4 (PMMA) in the same highly turbulent
flow, and numerical results obtained by tracking pointwise
particles with finite density in a direct numerical simulation of
isotropic homogeneous turbulence [18,19].

Numerical simulations are performed by means of standard
pseudo-spectral methods, where particular care has been
used in keeping a good resolution at the dissipative scales.
The numerical code for integrating the evolution of the
Eulerian field and the Lagrangian tracing of particles is the
same as described in [7,8,25]. A thorough validation of the
numerical approach, included the Lagrangian evolution of
the tracers has recently been performed against experimental
measurements [26]. The numerical integration of tracers has,
with respect to experiments, the clear advantage of a uniform,
well controlled geometry and very large statistics; on the
opposite, the resolution can be limited to small Reynolds
numbers. For what concerns the treatment of realistic particles,
i.e. particles with a density mismatch and a “finite” size, the best
modelization to use is not clear and one of the main goals of this
manuscript is indeed to compare state-of-the-art Lagrangian
data against numerical results from a current modelization.

2. Experimental setup and results

The Laser Doppler technique is based on the same principle
as the ultrasound Doppler method which has good tracking
performance of individual Lagrangian tracers [14,23]. In order
to access dissipative scales, and in particular for acceleration
measurements, we adapt the technique from ultrasound to laser
light: the gain is of a factor 1000 in wavelength so that one
expects to detect micron-sized particles. For a Lagrangian
measurement, one has to be able to follow the particle motion to
get information about its dynamics in time. For this, wide Laser
beams are needed to illuminate the particle on a significant
fraction of its path. The optical setup is an extension of the
well known laser Doppler velocimetry technique; Fig. 1. A
Laser beam is split into two beams; each is then expanded by
Fig. 1. Experimental setup. (Top left): schematics of the von Kármán flow
in water – side view. (Top right): principle of the Laser-Doppler Velocimetry
using wide beams (ELDV) – top view of the experiment. PM: location of the
photmultipler which detects scattering light modulation as a particle crosses the
interference pattern created at the intersection of the laser beams.

a telescope so that their diameter is about 5 mm. Then the
two beams intersect in the flow where they create an array
of interference fringes. As a particle crosses the fringes, the
scattered light is modulated at a frequency directly proportional
to the component of the velocity perpendicular to the fringes. It
yields a measurement of one component of the particle velocity.
In practice, we use a CW YAG laser of wave length 532 nm with
1.2 W maximum output power. In order to get the sign of the
velocity we use acousto-optic modulators (AOM) to shift the
frequency of the beams so that the fringes are actually travelling
at a constant speed. The angle of the two beams is tuned to
impose a 60 microns inter-fringe so that the frequency shift
between the beams (100 kHz) corresponds to 6 m/s. As the
beams are not focused, the inter-fringe remains constant across
the measurement volume whose size is about 5×5×10 mm3. It
is imaged on a photomultiplier whose output is recorded using
a National Instrument PXI-NI5621 digitizer at rate 1 MHz.

The flow is of the Von Kármán kind as in several previous
experiments using acoustics [14] or optical techniques [13].
Water fills a cylindrical container of internal diameter 15 cm,
length 20 cm. It is driven by two disks of diameter 10 cm, fitted
with blades in order to increase steering. The rotation rate is
fixed at values up to 10 Hz. For the measurements reported
here, the Taylor-based Reynolds number reaches up to 850 at
a maximum dissipation rate ε equal to 25 W/kg. We study
three types of particles: neutrally buoyant polystyrene particles
with size 31 microns and density 1.06, PMMA particles with
size 43 microns and density 1.4 and air bubbles with a size of
about 150 microns. The mean size of the bubbles, measured
optically by imaging the measurement volume on a CCD, is
imposed by the balance between the interfacial surface tension
σ and the turbulent fluctuations of pressure. This fragmentation
process is known to lead to a well defined and stationary size
distribution [20] with a typical diameter D ∝ (σ/ρ f )

3/5ε−2/5,
ρ f being the density of the fluid.

The signal processing step is crucial as both time and
frequency – (i.e. velocity) – resolutions rely on its performance.
Frequency demodulation is achieved using the same algorithm
as in the acoustic Doppler technique. It is a approximated
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Table 1

(top) Parameters of the particles in the von Kármán flow at Rλ = 850 (η = (ν3/ε)1/4
= 17 µm and τη =

√
ν/ε = 0.26 10−3 s)

Experiment

Particle Radius a β =
3ρ f

ρ f +2ρp
St =

τp
τη

a0 a0/a0,T

Tracers 15.5 µm 0.96 0.24 6.4 ± 1 1
Neutral 125 µm 0.96 16 2.2 ± 1 0.34
Heavy 20.5 µm 0.79 0.58 4.3 ± 1 0.67
Bubble 75 µm 2.99 1.85 26 ± 5 4.06

Numerics

Particle Radius a β =
3ρ f

ρ f +2ρp
St =

τp
τη

a0 a0/a0,T

Tracers – 1 0.31 2.85 ± 0.07 1
Neutral – 1 4.1 2.94 ± 0.07 1.03
Heavy – 0.75 1.03 2.63 ± 0.12 0.92
Bubble – 3 1.64 25.9 ± 0.46 9.08

ρp and ρ f are the densities of the particles and fluid, and τp = a2/(3βν) is the stokes response time of the particles. The Taylor-based turbulent Reynolds

number is computed as Rλ =

√
15u4

rms/εν measuring the one-component root-mean-square velocity, urms, with the E-LDV system and ε by monitoring the power
consumption of the motors. The nondimensional constant a0 is derived from the Heisenberg–Yaglom relationship. The last column compares the value for the
inertial particle to the one obtained for the Lagrangian tracer (which is denoted by the subscript T ). (bottom) Same as above: parameters of the particles tracked in
the DNS of homogeneous isotropic turbulence at Rλ = 180. Out of the numerically analysed 64 parameter combinations (β, St), we have picked those which were
close to the experimental values for (β, St).
maximum likelihood method coupled with a Kalman filter [21]:
a parametric estimator assumes that the signal is made
of a modulated complex exponential and Gaussian noise.
The amplitude of the recorded signal and the modulation
frequencies are assumed to be slowly evolving compared to the
duration of the time window used to estimate the instantaneous
frequency. Here the time window is about 30 µs long and
sets the time resolution of the algorithm. Outputs of the
algorithm are the instantaneous frequency, the amplitude of
the modulation and a confidence estimate which is used to
eliminate unreliable detections. Afterwards, the acceleration
of the particle is computed by differentiation of the velocity
output. Note that measurements are performed only when
a particle moves within the (limited) measurement volume
so that after processing, the data consists in a collection of
sequences with variable lengths. For all the measurements, the
acceleration variance is computed using the same procedure
as in [17]: it is obtained for several widths of the smoothing
kernel used in the differentiation of the velocity signal and then
interpolated to zero filter width.

For small neutrally buoyant particles, i.e. Lagrangian tracers,
our data is in excellent agreement with the high-speed imaging
measurements performed by the Cornell group [13,16,17].
When the variance of the acceleration is normalized by the
Heisenberg–Yaglom scaling: 〈a2

〉 = a0ε
3/2ν−1/2 (ε being the

energy dissipation rate per unit mass and ν = 1.3 ·10−6 m2 s−1

the kinematic viscosity of the fluid), both experiments yields the
same values for the nondimensional constant a0 (a0 = 6.4±1 at
Rλ = 850 for the E-LDV compared to 6.2 ± 0.4 for the Cornell
data at Rλ = 690).

We have applied our technique to compare the dynamics of
Lagrangian tracers to the one of heavier or lighter particles
(see Table 1 for numbers). We first compute the velocity
root-mean-square value urms for the three cases: the values
are {1.1, 1.2, 1.0} ± 0.1 m.s−1 at Rλ = 850 for the tracers,
heavy (PMMA spheres), and light particles (bubbles). Within
error bars, the large scale dynamics seems to be unaffected
by changes in the particle inertia. The acceleration distribution
and autocorrelation in the three cases are shown respectively
in Fig. 2 (top) and Fig. 3 (top). The acceleration PDFs
are quite similar for moderate acceleration values (below
about 10 arms), as also observed in low Reynolds number
numerical simulations [22]. However, the probability of very
large accelerations seems to be reduced in the case of inertial
particles as compared to Lagrangian tracers. The normalized
acceleration variance a0 varies very significantly: it is reduced
to 4.3 ± 1 for heavier particles while it is increased to 26 ± 5
for bubbles. The correlation functions also show significant
changes with inertia: the characteristic time of decay is longer
for heavy particles and shorter for bubbles compared to tracers.
We measure τcorr/τη = {0.5, 0.9, 0.25} respectively for
tracers, heavy and light particles, with the correlation time
defined as the half-width at mid-amplitude of the correlation
function. We thus observe important changes in the dynamics,
even if the distribution of acceleration weakly changes with
inertia.

Note that in our setup the Kolmogorov length is about
η = 17 µm at Rλ = 850, so that the bubble size is about
10 η and therefore may not be considered as a point particle.
Thus, one may wonder if the bubble dynamics is not altered
by spatial filtering as recently demonstrated for particles with
diameters in the inertia range [23]. To check, we have compared
the dynamics of large neutrally buoyant particles with diameter
250 µm to the one of Lagrangian tracers. The results is shown
in Fig. 2 together with the other particles: the effect of the
particle size on the PDF is found to be weak as the curve nicely
superimposes with the ones for inertial particles. However, the
size effect is clear when comparing either the coefficient a0
(reduced to 2.2), or the autocorrelation functions. One observes
that the correlation time of the large particles is twice that
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Fig. 2. Probability distribution function of accelerations, normalized to the
variance of the data sets. (top) Data from experiment at Rλ = 850. (middle)
DNS of homogeneous isotropic turbulence at Rλ = 180. (bottom) Comparison
of experimental measurements and DNS results.

for the tracers. We conclude that the bubbles size may have a
leading effect on the acceleration variance, and that the value
of a0 reported here probably underestimates the one that would
be measured for smaller bubbles (with diameters closer to the
Kolmogorov scale).

3. Comparison with numerical simulations

We compare the experimental data with the results from a
direct numerical simulation [18,19] where a passive suspension
Fig. 3. Autocorrelation coefficients of the accelerations: (top) Data from
experiments at Rλ = 850. (bottom) Data from DNS of homogeneous isotropic
turbulence at Rλ = 180 For the (β, St) values we refer to Table 1.

of pointwise particles with finite density are tracked in
a homogeneous isotropic turbulent flow. The dynamics of
the particles is computed in the most simplified form of
the equation of motion, i.e. assuming that the particles are
spherical, nondeformable, smaller than the Kolmogorov length
scale of the flow, and that their Reynolds number is small [24].
When we retain only the Stokes drag force and the added mass
effect, the equation of motion then reads

dvp

dt
= β

Du
Dt

+
1
τp

(
u − vp

)
, (1)

where vp = ẋ(t) is the particle velocity, u(x(t), t) the velocity
of the fluid at the location of the particle described by the
Navier–Stokes equation, while β = 3ρ f /(ρ f + 2ρp) accounts
for the added mass effect and and τp = a2/(3βν) is the
Stokes response time for a particle of radius a. When made
dimensionless by the Kolmogorov dissipative scales (τη, η, uη)
Eq. (1) reads

a ≡
dvp

dt
= β

Du
Dt

+
1
St

(
u − vp

)
, (2)

with the particle acceleration a now expressed in the
Heisenberg–Yaglom units. Thus, at a given Reynolds number,
the particles dynamics only depends on the values of the two
dimensionless parameters β and St = τp/τη This is generally
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different from the case of infinite inertia of the particles
(β = 0) and finite response time τp, which has been formerly
addressed in several numerical and theoretical studies [2], and
for which instead only the Stokes number St matters. It is also
different from the pure bubble case (β = 3) for which the
particle indeed has no inertia but only added mass [6–8]. We
performed numerical simulation at Reλ = 180 (grid resolution
5123), in which many particles, characterized by different pairs,
(β, St) (specifically 64 different sets of O(105) particles) were
numerically integrated by means of Eq. (1). Particles do not
have feedback on the flow field.

In order to compare the numerical results with the
experimental data, three types of particles (tracers, heavy and
bubbles) with different inertia and Stokes number have been
studied. The values for both β and St have been chosen close
to the ones of the particles used for the E-LDV (see Table 1).
The evolution of the normalized acceleration variance shows
the same trend in experiments and numerics: a0 is reduced
from the tracer value 2.85 to 2.63 for heavier particles and
increased to 26 for bubbles (Table 1). This seems to be a
robust trend in the DNS. To emphasize this, in Fig. 4 we
show the behaviour of

√
a0, i.e. the root-mean-square value of

the particle acceleration normalized by the Heisenberg–Yaglom
scaling, in a wide range of the (β, St) parameter space from a
less turbulent DNS (Reλ = 75) which has a very large number
of (β, St) pairs. Results from the Reλ = 180, not shown
here, are qualitatively similar. Note again that no significant
Reynolds number dependence of the probability distribution
was found in Ref. [16].

The acceleration distribution behavior and its comparison
with the experiment is reported in Fig. 2. In the numerics
we observe that the probability of very large accelerations is
reduced for the heavier particles as compared with tracers,
while it is increased for the bubbles. This feature,seems not to
be present in the experimental results. Furthermore, we notice
that for the three types of particles, the acceleration PDFs,
rescaled by the rms acceleration, is close to the experiments.
Experimental ones have always longer tails, reflecting the
more intermittent nature of the turbulent flow, which has a
larger Reynolds number (Reλ,EXP = 850 vs. Reλ,DNS =

180). We also observe a qualitative agreement for the changes
in the acceleration autocorrelation functions when changing
inertia, Fig. 3. One measures τcorr/τη = {0.95, 1.35, 0.25}

respectively for tracers, heavy and light particles. Just as
observed for the experiments, the dynamics is faster for the
bubbles while heavier particles decorrelate slower than fluid
tracers. The Reλ difference is more pronounced here than in the
PDFs (see Ref. [16]) and prevent a more detailed comparison.

4. Discussion

While solving a simplified version for the equation of
motion, the numerics reproduce qualitatively the effect of
the particles’ inertia on their dynamics. In particular, the
dependence of the acceleration autocorrelation on the particle
inertia is nicely reproduced, see Fig. 3. However, also some
discrepancies become visible, though not yet completely
Fig. 4. Behaviour of the normalized root-mean-square acceleration
√

a0 =

(〈a2
〉ε−3/2ν1/2)1/2 as a function of both St and β for a Reλ = 75 DNS. Iso-

contour for
√

a0,T (red) and the line
√

a0,T ·β+const . (green) are also reported.
Note that a0 does not depend on St for neutral (β = 1) particles. While
it is always reduced/enhanced for heavy/light particles. For large particles
(St ' 4.1) we find

√
a0 ' β

√
a0,T . (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this
article.)

conclusive, as a better resolution and statistics of both the
experiments and the numerics would be important for firmer
conclusions. Nevertheless, in this section we shall have a closer
look at the differences and propose some explanations.

First of all, there is only qualitative agreement on the ratio
a0,H /a0,T . It is larger for the experiment than for the numerics.
Moreover, the tails of the numerical PDF of the bubble
acceleration seem to be enhanced as compared to those for
tracer acceleration. Vice versa, the tails of the numerical PDF
of the particle acceleration seem to be reduced as compared to
those for tracer acceleration.

What is the origin of the difference between the experiments
and the numerics? First of all the Taylor–Reynolds numbers are
different, but Ref. [16] suggests an at most weak dependence of
the acceleration PDFs on the Reynolds number; a finding that
is supported by a comparison of our numerical simulations at
Reλ = 185 and Reλ = 75.

Next, in the numerical simulations we disregarded the lift
and the gravitational force. While this presumably has little
effect on heavy particles and tracer, it does modify the dynamics
of the bubbles. In Refs. [7,8] we had shown by comparison of
numerical simulations for point bubbles with and without lift,
that without lift the bubble accumulation inside the vortices is
more pronounced, i.e. bubbles without lift are more exposed to
the small-scale fluctuations, which clearly will contribute to the
pronounced tails of the numerically found acceleration PDF, see
Fig. 3, bottom.

Next, also the two-way coupling of the particles (i.e., the
back-reaction of the particles on the flow due to their buoyancy
difference) has been neglected in the simulations of this paper.
As e.g. shown in Refs. [7,8] for bubbles and in Ref. [27] for
particles, it has an effect on the turbulent energy spectrum
and thus also on the acceleration statistics. However, as in the
present experiments the particle and bubble concentrations are
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very low, the two-way coupling effect on the spectra should
hardly be detectable.

The final difference between numerics and experiments we
will discuss here – and presumably the most relevant one – is
the finite size of the particles in the experiments as compared
to the numerics which is based on effective forces on a point
particle. Although the heavy particles are not large as compared
to η, this clearly holds for the bubbles and the 250 µm diameter
neutral particles. Indeed, Fig. 3 shows how the finite size of
these particles smears out the acceleration autocorrelation, as
compared to the tracer case. Also the ratio a0,N /a0,T for large
neutral particles is only 0.34, which demonstrates that the
size of large particles has a large effect on their acceleration
variance. This type of spatial filtering, which also lowers the
PDF of large neutral particles in the experiment, is not related
to a temporal filtering of the particle based on its response time.
This is clearly visible in Fig. 2 (middle) where one can see
that two neutral particles (β = 1) with different response times
(different St or τp) have the same acceleration PDF, with same
a0, and same autocorrelation function. Thus this size effect,
which is not taken into account in the point-particle-based
numerical simulations, presumably is responsible for both the
relatively small value of a0,B/a0,T measured for bubbles, and
the change in the shape of the PDF.

To conclude, we have reported acceleration measurements
of inertial particles using extended Laser Doppler velocimetry
and have compared the experimental data to DNS simulations
of the motion of pointwise particles with finite density. We
have observed a qualitative agreement between experiments
and numerics in the shape of the PDF and of the autocorrelation
function. We have given arguments for the small discrepancies.
An experimental study of the motion of bubbles with smaller
sizes is needed for a better comparison with the numerical
simulations. Also numerical simulations keeping into account
the finite size of particles would presumably improve the
agreement between experiments and numerical data and
detailed comparisons as the one presented in this paper help
to reveal the limitations of point-particle models. Obviously,
going beyond point-particles is extremely challenging in
numerical simulations. A first step in this direction has
e.g. been taken by Prosperetti and coworkers with their Physalis
method [28] which presently is extended towards turbulent
flows [29].
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