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High Reynolds numbers Navier-Stokes equations are believed to break self-similarity concerning

both spatial and temporal properties: correlation functions of different orders exhibit distinct

decorrelation times and anomalous spatial scaling properties. Here, we present a systematic

attempt to measure multi-time and multi-scale correlations functions, by using high Reynolds

numbers numerical simulations of fully homogeneous and isotropic turbulent flow. The main idea

is to set-up an ensemble of probing stations riding the flow, i.e., measuring correlations in a

reference frame centered on the trajectory of distinct fluid particles (the quasi-Lagrangian reference

frame introduced by Belinicher and L’vov [Sov. Phys. JETP 66, 303 (1987)]). In this way, we

reduce the large-scale sweeping and measure the non-trivial temporal dynamics governing the

turbulent energy transfer from large to small scales. We present evidences of the existence of the

dynamic multiscaling properties of turbulence - first proposed by L’vov et al. [Phys. Rev. E 55,

7030 (1997)] - in which multi-time correlation functions are characterized by an infinite set of

characteristic times. VC 2011 American Institute of Physics. [doi:10.1063/1.3623466]

I. INTRODUCTION

A comprehensive theory of the Eulerian and Lagrangian

statistical properties of turbulence is one of the outstanding

open problems in classical physics.1 Most studied quantities

concern either measurements performed at the same time in

multiple positions (Eulerian measurements)2,3 or along one or

several particles moving with the flow (Lagrangian measure-

ments).4–6 The latter are optimal to study temporal properties

of the underlying turbulent flows7,8 but cannot simultaneously

also disentangle spatial fluctuations, being based on single

point, as for the case of acceleration,9–12 or on a evolving set

of scales as for two-particles13–17 and multi-particle disper-

sions.18,19 On the other hand, neither analytical control nor a

firm phenomenological description of fully developed turbu-

lence can be obtained without a solid understanding of the

relation between spatio and temporal fluctuations.20–29,31,39 In

order to access unambiguously spatial and temporal fluctua-

tions one needs to set the reference scale and to get rid of the

large-scale sweeping in the same experimental –or numeri-

cal– set-up.32–37 The idea here is to exploit numerical simula-

tions to define a set of probes flowing with the wind, moving

on a reference frame stuck with a representative fluid particle.

In such a reference frame, we can access velocity fluctuations

over different spatial resolution, together with their temporal

evolution, without being affected by the large-scale sweep-

ing.38 The interest of these measurements is twofold. First, all

attempts to break the theoretical deadlock in turbulence have

been hindered by the difficulties in closing both spatial and

temporal fluctuations21,25,39 (notice that the main theoretical

breakthrough in turbulent systems have been obtained where

temporal fluctuations are uncorrelated40). Second, small-scale

parametrizations used for sub-grid turbulent closure call for

more and more refined phenomenological understanding of

spatial and temporal fluctuations.41,48

In this article, we show that quasi-Lagrangian measure-

ment is able to remove the sweeping effect, revealing that

correlation times in the Eulerian and Lagrangian frame scale

differently. Moreover, Lagrangian properties possess a

dynamical multi-scaling, i.e., different correlation functions

decorrelated with different characteristic time scales. The

locality in space and time of the energy cascade is supported

by studying the delayed peak in multi-time and multi-scale

correlations. The main result we present is the confirmation

of the theory by L’vov, Podivilov, and Procaccia21 where a

bridge between spatial and temporal intermittency is made

by means of a refinement of the multifractal phenomenology

(originally proposed for the spatial statistics of Eulerian

velocity in Ref. 42). Energy is transferred downscale with

intermittent temporal fluctuations, and an associated infinite

hierarchy of decorrelation times. Temporal fluctuations

become wilder and wilder by decreasing the scale.

The article is organized as follows. In Sec. II, we present

the numerical methods. In Sec. III, we show the result for

single-scale multi-time correlation functions, for the bridge

relation between temporal and spatial scaling exponents and

for multi-time and multi-scale correlation functions.

a)Author to whom correspondence should be addressed. Electronic mail:

enrico.calzavarini@polytech-lille.fr.
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II. METHODS

A. Sweeping and quasi-Lagrangian reference

The difficulty in studying the temporal correlations in

turbulence is associated with the sweeping of small-scale

structures by means of larger ones. In the case of a flow with

a “large” mean velocity U, fluctuations u0: u – U are almost

passively transported in space via the Galilean transforma-

tion x0(t)¼ xþUt. This property, dubbed Taylor frozen flow

hypothesis, is commonly used in experiments to remap the

hot-wire probe readings (which are done in time) to measure-

ments in space and is supposed to be valid as long as turbu-

lence levels are small ju0 =j jUj � 1ð Þ. In order to study the

temporal evolution of velocity differences at a given scale r
it is, hence, necessary to get rid of large-scale effects. This

can be done by “riding the flow”, i.e., stuck the origin of the

reference frame on the position of a fluid parcel moving in

the flow (see sketch in Fig. 1). Such reference frame, intro-

duced by Belinicher and L’vov,32 is called quasi-Lagrangian.

Because of this difficulty, measures of the quasi-Lagrangian

type have been performed only numerically at moderate

Reynolds and for small-scale quantities44 or at high Reyn-

olds in turbulence models, such as shell models (where

sweeping is absent33,35,36).

B. Numerical methods

In the present study, we measure multi-scale and multi-

time correlations in a quasi-Lagrangian reference frame

from fully resolved high-statistics three-dimensional direct

numerical simulations (DNS) of homogeneous and isotropic

turbulence. We evolve the incompressible Navier-Stokes

equations

@tuþ ðu � rÞu ¼ �rpþ �Duþ f; r � u ¼ 0; (1)

in a cubic three-periodic domain via a pseudo-spectral algo-

rithm and second order Adams-Bashforth time marching.22

The forcing f, defined as in Ref. 46, acts only on the first two

shells in Fourier space (|k| � 2) and keeps constant in time the

total (volume averaged) injected power, hf � uiV ¼ const. We

report data coming from a set of simulations with N3¼ 2563

and 5123, corresponding to Rek ’ 140 and 180, respectively

(see Table I for relevant parameters characterizing the flows).

The simulation, e.g., at Rek ’ 140 has been carried on for 40

Eulerian turnover times, T ¼ ð3=2Þu2
rms=�e. We also integrated

numerically Np ¼ 3:2 � 104 tracers evolving with the local

Eulerian velocity field _xðtÞ ¼ uðxðtÞ; tÞ. At fixed temporal

intervals, we evaluate the fluid velocity also at x(t)þ ri, with

i¼ 0,…, M (spatial distances from each tracer). The vectors

are chosen to be always along one fixed direction, r̂, and are

logarithmically spaced in the range between zero and half of

the box-size (we use M¼ 20), see Figure 1. Similar measure-

ments are done also at fixed positions uniformly spaced in the

fluid domain. These two set of data are denoted, respectively,

as quasi-Lagrangian (L) and Eulerian (E).

C. Notations and measurements

We focus our attention on the longitudinal increments of

velocity a displacement r

durð~x; tÞ ¼ uð~xþ r; tÞ � uð~x; tÞð Þ � r̂: (2)

Notice that we have adopted a unifying notation, for us ex can

represent either a fixed point in space ~x ¼ x0 or a point fol-

lowing a fluid particle: ~x ¼ xðtÞ ¼
Ð t

t0
uðxðtjx0; t0Þ; tÞ dtþ x0

(a trajectory passing from x0 at time t0). We distinguish

between the two cases by the superscript labels: duE
r ð~x; tÞ or

duL
r ð~x; tÞ. Note that duE

r

� �p
, with overbar denoting time aver-

age, is the usual Eulerian structure function of order p, fur-

thermore by means of ergodicity it can be proved that

duE
r

� �p ¼ duL
r

� �p
(therefore, for such a quantity E, L labels

will be dropped). We define the generic multi-scale, multi-

time correlation functions21

C
ðq;p�qÞ
R;r ½L;E�ðsÞ ¼

du
½L;E�
R ðtÞ

� �q
� du

½L;E�
r ðtþ sÞ

� �p�q

ðduRðtÞÞq � ðdurðtÞÞp�q
; (3)

where R and r denote separation vector fixed in space and

with different magnitude. Note that the L, E distinction must

be kept for the average of the multi-time product in the

numerator. Given the correlation functions, we can define an

FIG. 1. Sketch of the ri probes “riding the flow”, i.e., at fixed positions in a

reference frame moving stuck with a representative fluid particle x(t).

TABLE I. DNS parameters: N is the number of grid points per spatial direction; dx¼ 2p=N and dt are the spatial and temporal discretization; � is the value of

kinematic viscosity; �e is the mean value of the energy dissipation rate. ttot is the total simulation time; Np is the total number of fluid tracers; M is the number

of probes at fixed distances from tracer particle; g ¼ ð�3=�eÞ1=4
and sg ¼ ð�=�eÞ1=2

are the Kolmogorov dissipative spatial and temporal scales,

urms ¼ huiuiiV=3
� �1=2

is the single-component root-mean-square velocity, k ¼ 15�u2
rms=�e

� �1=2
is the Taylor micro-scale, T ¼ ð3=2Þu2

rms=�e and L¼ urmsT are

the large-eddy-turnover temporal and spatial scales; Rek¼ urms k/� is the Taylor scale based Reynolds number.

N3 dx dt N �e ttot Np M g sg urms k L T Rek

2563 2.4 10–2 5 10–4 3 10–3 1.0 110 3.2 104 20 1.28 10–2 5.48 10–2 1.41 3.00 10–1 4.24 3.00 141

5123 1.2 10–2 4 10–4 2.05 10–3 0.9 12 1.024 105 20 9.89 10–3 4.77 10–2 1.40 2.58 10–1 4.56 3.26 176
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Eulerian and Lagrangian (integral) correlation time as

follows:21

T
ðq;p�qÞ
½L;E� ðR; rÞ ¼

ðþ1
0

C
ðq;p�qÞ
R;r ½L;E�ðsÞ ds: (4)

III. RESULTS

A. Single-scale multi-time correlation

We begin discussing the special case of a single-scale,

multi-time correlation, i.e., R¼ r. Dimensional inertial-range

scaling, durð Þp � ðe rÞp=3
, provides the following estimate for

the turnover time of inertial eddies of size r, T
ðq;p�qÞ
L ðrÞ � r=

durð Þp
� �1=p

� r2=3�e�1=3. On the contrary, the Eulerian corre-

lation time—due to sweeping effect—can be estimated by

means of the typical velocity difference of the largest eddy,

which is proportional to the mean square root velocity,

duL� urms. One has T
ðq;p�qÞ
E ðrÞ � r= duLð Þp

� �1=p
� r=urms. In

the r ! g limit both correlation times tend to the dissipative

scale sg. In Figure 2 (top inset), we show the behavior of

C
1;1ð Þ

r;r sð Þ for both Eulerian and quasi-Lagrangian velocity dif-

ferences and for separation scales r 2 2:4; 245½ �g. On the ab-

scissa, the time increment s is made dimensionless through

the Eulerian large eddy turnover time T (see Table I). We

clearly see that after a time� T all the correlations have

decreased at least of a factor 50, supporting the quality and

convergence of our simulations. The main panel of Figure 2

shows the integral correlation times both for the Eulerian and

quasi-Lagrangian case as computed from Eq. (4), in a time

integration window [0, T]. The behavior is in qualitative

agreement with the expected scaling, the Lagrangian case

being less steep than the Eulerian one; however, pure power-

law scaling seems to be hindered by finite Reynolds number

and system finite-size effects. To demonstrate this, we

introduce a parametrization for the second order spatial

velocity structure functions, with dissipative and large-scale

cut-off (see also Ref. 45): TnðrÞ ¼ c1ð1þ ðr=c2Þ2Þn=2

ð1þ ðr=c3Þ2Þ�n=2
with n¼ 2=3 and n¼ 1, respectively, for

the Lagrangian and Eulerian case. The parameters c1, c2, and

c3 represent the dissipative correlation time scale, the dissipa-

tive, and large cut-off scales, respectively. The good quality of

the fit, shown in Fig. 2 (main panel), supports our hypothesis.

Plotting the Lagrangian correlation time as a function of the

Eulerian one, a procedure similar to the extended self similar-

ity (ESS),47 does show a good scaling with slope 0.64 6 0.02

in the range [20, 200]g, consistent with 2=3 (Fig. 2, bottom

panels). This finding again supports the idea that the limited

scaling in Figure 2 is due to Reynolds number effects.

B. Intermittency and test of the bridge relations

It is well known that Eulerian statistics show intermit-

tent corrections to dimensional scaling. For example, for

structure function we have durð Þp � rfðpÞ where f(p) is a

nonlinear convex function of p.1 In 1997, in a seminal work

of L’vov, Podivilov and Procaccia21 provided a possible

framework to encompass the phenomenology associated

with intermittency also with temporal fluctuations. The idea

consists in noticing that for time correlations the structure of

the advection term of the Navier-Stokes equations suggests

the relation: T
ðq;p�qÞ
L ðrÞ � r= durð Þp = durð Þp�1

� �
� rzðpÞ

(Ref. 21). Using the scaling for the Eulerian quantities,

durð Þp � rfðpÞ one gets to the so-called bridge relations (BR)

connecting spatial and temporal properties

zðpÞ ¼ 1� fðpÞ þ fðp� 1Þ:

Similar idea has also been successfully applied to connect

the statistics of acceleration and velocity gradients.22 Plug-

ging the empirical values3,6 for the Eulerian exponents in the

previous expression, one predicts z(p)¼ 0.67, 0.74, 0.78,

0.80(60.01) for the orders p¼ 2, 4, 6, 8, respectively. In

FIG. 2. Top-inset: correlation functions of single-scale velocity differences

C
1;1ð Þ

r;r L;E½ � sð Þ as a function of the time delay s, in the (quasi-)Lagrangian (solid

line) and Eulerian (dashed line) frame of reference. Top-main panel: single-

scale integral correlation time T
ð1;1Þ
L ðrÞ (�) and T

ð1;1Þ
E ðrÞ (h) estimated from

Lagrangian and Eulerian C
ð1;1Þ
r;r ðsÞ correlations. The straight lines indicate

slopes 2=3 and 1. The fit using the function Tn(r) discussed in the text with

n¼ 2=3 (solid) and n¼ 1 (dashed line) are also shown. Vertical dotted line

reports the value k ’ 20g for which both correlation times are �sg. The

horizontal line shows the integral correlation time of longitudinal velocity

gradients T
ð1;1Þ
L ð0Þ ¼ 2:15sg along Lagrangian trajectories, which corresponds

to the small-scale (ultra-violet) limit, limr!0T
1;1ð Þ

L rð Þ. Bottom main panel:

extended self similarity plot: T
1;1ð Þ

L rð Þ vs. T
1;1ð Þ

E rð Þ and its local slope:

d log T
ð1;1Þ
L rð Þ=d log T

ð1;1Þ
E rð Þ (bottom inset). The inertial range behavior� r2=3

is reported in both panels.
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Figure 3 (main top panel) the different moments of the

Lagrangian integral times, i.e., T
q;p�qð Þ

L rð Þ (with p – q¼ 1),

are shown versus the scale r. A steepening of the scaling

properties with increasing p can be noticed. In order to

enhance the quality of the measurements, we resort to ESS

procedure by plotting a generic T
q;p�qð Þ

L rð Þ versus T
1;1ð Þ

L rð Þ
(see inset of Figure 3) in log-scale. It is now possible to

define local scaling exponents as

zrðpÞ ¼ d log T
ðq;p�qÞ
L ðrÞ=d log T

ð1;1Þ
L ðrÞ;

which according to the BR should scale as z(p)=z(2) for r in the

inertial range. The result of this local scaling exponent analysis

is shown in Fig. 3 (bottom panel) for the orders p¼ 4, 6. Notice

that the BR predicts the same scaling properties independently

of q. In our numerics, we find slightly different results for q¼ 1

or q¼ p – 1. The error bars in the bottom panel of Fig. 3 give a

quantitative estimate of the spread between the two results. In

the inertial range� [10, 100]g, we find some deviation from

the K41 values z(p)=z(2)¼ 1, consistent with the BR predic-

tions for p¼ 4, 6. We notice that the predicted intermittent cor-

rections are very small and error bars large. Higher statistics

and=or higher Reynolds number may help in giving stronger

confirmation to this evidence.

C. Multi-scale multi-time correlation

We now focus on the most general case of multi-scale

and multi-time correlation functions in the Lagrangian

frame. In particular, in the correlation function (3) we vary

the large scale R while the small scale r is kept fixed r ’ g.

Note that the velocity difference duR precedes in time, the

difference dur’g. We are, therefore, interested in the time it

takes for a velocity fluctuation to cascade down from a large

eddy (of size R) to the smallest one (of size �g). In Figure 4

(top panel), we show the correlations C
1;1ð Þ

R;r	 L sð Þ with

r*¼ 2.4g as defined from Eq. (3) (except for the fact that to

enhance the contrast instead of dur we used |dur|). The pres-

ence of a peak in C
1;1ð Þ

R;r	 L sð Þ for each given R, defines a time,

T
1;1ð Þ

peak Rð Þ, which increases for increasing values of R. The

presence of the peak can be directly associated with the time

lag, it takes the energy to go down through scales from R to

r*, i.e., a direct evidence of temporal properties of the

Richardson turbulent cascade.1 In the inset of the bottom

panel, we show the curves corresponding to C
1;1ð Þ

R;r	 L sð Þ, for

each different R at varying s.

The scaling behavior of the peak time T
1;1ð Þ

peak Rð Þ � R2=3,

shown in Fig. 4 (bottom panel), is in agreement with what

has been measured for Fourier-space based quantities by

Wan et al.38

FIG. 3. Test of dynamic multiscaling. Top panel: T
q;p�qð Þ

L rð Þ vs. r=g, with

p¼ 2, 4, 6, 8, and q¼ p – 1. Inset top panel: ESS-like plot of T
q;p�qð Þ

L rð Þ vs.

T
1;1ð Þ

L rð Þ for p¼ 4, 6, q¼ p – 1. Bottom panel: local scaling exponents, zr(p),

for p¼ 4, 6 and q¼ p – 1, 1. Central values are computed as the mean

between q¼ p – 1 or q¼ 1 for each p value. Error bars give the dispersion

between the two choices. Horizontal lines represent from bottom to top,

respectively, the dimensional prediction z(p)=z(2)¼ 1, 8p denoted as K41,

and the BR values z(4)=z(2)¼ 0.74=0.67 and z(6)=z(2)¼ 0.78=0.67.

FIG. 4. (Color online) Top panel: C
1;1ð Þ

R;r	 L sð Þ for fixed r*¼ 2.4g at changing

R 2 r	 : 120g½ �. The solid line is a guide to the eyes connecting the peak for

each given R. Inset bottom panel: cut of C
1;1ð Þ

R;r	 L sð Þ plot at increasing R (from

bottom to top) as a function of s. Symbol (�) marks the position of the maxi-

mal correlation value (denoted as T
1;1ð Þ

peak Rð Þ), which increases for increasing

values of R. Bottom panel: comparison between T
1;1ð Þ

peak Rð Þ and T
1;1ð Þ

L Rð Þ
�T
ð1;1Þ
L r	ð Þ. The inertial scaling R2=3 is also drawn for comparison.
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Also in Fig. 4 (bottom panel) a comparison of T
ð1;1Þ
peak ðRÞ

with T
ð1;1Þ
L ðRÞ � T

ð1;1Þ
L ðr	Þ (as computed for Fig. 2) is shown.

It is remarkable to note that the amplitude and scaling of

T
ð1;1Þ
peak ðRÞ-coming from the multi-scale correlation function—

is close and compatible with T
ð1;1Þ
L ðRÞ � T

ð1;1Þ
L ðr	Þ—coming

from the single-scale correlation functions. This finding pro-

vides a clean confirmation that energy is transferred down-

scale in the quasi-Lagrangian reference frame with a tempo-

ral dynamics consistent with what estimated from K41

theory.

IV. CONCLUSIONS

We presented an investigation of multi-scale and multi-

time velocity correlations in hydrodynamic turbulence in

Eulerian and quasi-Lagrangian reference frame. Our main

results are the following: (1) We have demonstrated that

quasi-Lagrangian measurement are able to remove the

sweeping effect. The integral correlation times in the Euler-

ian and Lagrangian frame are shown to scale differently. (2)

Lagrangian properties possess a dynamical multi-scaling,

i.e., different correlation functions decorrelated with differ-

ent characteristic time scales. (3) Bridge relations connecting

single-time multi-scale exponents with multi-time single-

scale exponents are valid, within numerical accuracy. (4)

The locality in space and time of the energy cascade is sup-

ported by studying the delayed peak in multi-time and multi-

scale correlations. Temporal fluctuations becomes larger and

larger by going to smaller and smaller scales, a phenomenon

that may even affect numerical stability criteria for time

marching, similarly to an effect concerning spatial resolution

induced by spatial intermittency.43 Some issues similar to

the ones here discussed have also been addressed in a recent

numerical study38 where evidences of the Lagrangian nature

of the turbulent energy cascade have been demonstrated by

studying the correlation between energy dissipation and local

energy fluxes in the quasi-Lagrangian frame. While the

method followed in Ref. 38 requires a knowledge of the

three-dimensional velocity field, the approach proposed in

the present manuscript needs only the knowledge of the ve-

locity at just a few points along a Lagrangian trajectory: a

measurements which may be already accessible in current

particle tracking experimental set-ups.
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