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Abstract. The aggregation properties of heavy inertial particles in the elastic turbulence regime of an
Oldroyd-B fluid with periodic Kolmogorov mean flow are investigated by means of extensive numerical
simulations in two dimensions. Both the small- and large-scale features of the resulting inhomogeneous
particle distribution are examined, focusing on their connection with the properties of the advecting vis-
coelastic flow. We find that particles preferentially accumulate on thin highly elastic propagating structures
and that this effect is the largest for intermediate values of particle inertia. We provide a quantitative
characterization of this phenomenon that allows to relate it to the accumulation of particles in filamentary
highly strained flow regions producing clusters of correlation dimension close to 1. At larger scales, parti-
cles are found to undergo turbophoretic-like segregation. Indeed, our results indicate a close relationship
between the profiles of particle density and fluid velocity fluctuations. The large-scale inhomogeneity of
the particle distribution is interpreted in the framework of a model derived in the limit of small, but finite,
particle inertia. The qualitative characteristics of different observables are, to a good extent, independent
of the flow elasticity. When increased, the latter is found, however, to slightly reduce the globally averaged
degree of turbophoretic unmixing.

1 Introduction

Viscoelastic fluids are known to be characterized by
non-Newtonian behavior under appropriate conditions.
In particular, dilute polymer solutions may display non-
negligible elastic forces when the suspended polymeric
chains occur to be sufficiently stretched by fluid velocity
gradients. Remarkably, when the elasticity of the solution
overcomes a critical value such forces can trigger instabil-
ities that can eventually lead to irregular turbulent-like
flow, even in the absence of fluid inertia, namely in the
limit of vanishing Reynolds number. The latter dynami-
cal regime is known as elastic turbulence [1] and it has
been experimentally observed in different flow configura-
tions [1–5]. On the basis of its similarity with turbulent
fluid motion, elastic turbulence has been proposed as an
efficient system to enhance mixing in low Reynolds num-
ber flows [2]. Moreover, it has been shown that it can in-
crease heat transfer [6, 7] and promote emulsification [8].
Recently, it has also been argued that elastic turbulence
flows play a significant role in the increased oil displace-
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ment obtained in industrial processes employing dilute
polymer solutions to flood porous reservoir rocks [9].

Transport and mixing processes in fluids, however, of-
ten involve the presence of suspended finite-size impuri-
ties, like small and heavy solid particles. In view of mix-
ing applications in elastic turbulence flows, it then seems
necessary to accurately characterize how particle inertia
affects the concentration of the transported species. In-
deed, it is known that in turbulent flows the difference be-
tween the mass density of the impurities and that of the
carrier fluid typically induces unmixing effects. Namely, it
produces non-homogeneous particle distributions at small
scales, as well as at large ones when turbulence spatial
inhomogeneities are present (as, e.g., in a duct or in a
boundary-layer flow). Although both types of inhomo-
geneities can be simultaneously present, they correspond
to essentially different phenomena. While at small scales
they give rise to complex clustered distributions due to
the combined effect of small-scale turbulence and particle
inertia [10], at large scales they manifest in the accumula-
tion of particles in regions of minimal turbulent intensity,
whose locations are tightly related to the structure of the
mean flow (turbophoresis) [11–14].

Inertial particle dynamics have been studied in turbu-
lent flows of both Newtonian (see, e.g., [10, 15–17]) and
non-Newtonian (e.g., in [18, 19]) fluids. The present work
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reports an investigation of heavy inertial particle trans-
port at low Reynolds number, in a non-homogeneous flow
of elastic turbulence in two dimensions. Despite the poten-
tial of the latter for mixing in microfluidics, the dynamics
of particles in this regime are still quite unexplored, but
see [20]. Our goal is to study the statistical features of
particle aggregation at both small and large scales, and
to relate them to the behavior of the main observables
associated with the dynamics of the viscoelastic flow, as
polymer elongation and velocity fluctuations, and to flow
structures.

The paper is organized as follows. The model used to
describe the dynamics of heavy particles in a viscoelastic
flow that can develop elastic turbulence states is intro-
duced in sect. 2. In sect. 3 we present the results of numer-
ical simulations of this model. After briefly illustrating the
main properties of the flow fields (sect. 3.1), we report on
the properties of particle spatial distributions, separately
focusing on preferential concentration effects (sect. 3.2),
small-scale fractal clustering (sect. 3.3) and large-scale in-
homogeneities, i.e. turbophoresis (sect. 3.4). Conclusions
are presented in sect. 4.

2 Model of particle-laden viscoelastic flows

We consider the dynamics of a dilute polymer solution as
described by the Oldroyd-B model [21]:

∂tu + (u · ∇)u = −∇p

ρf
+ νsΔu +

2ηνs

τ
∇ · σ + f , (1)

∂tσ + (u · ∇)σ = (∇u)T · σ + σ · (∇u) − 2
σ − 1

τ
. (2)

In the above equations u is the incompressible velocity
field, the symmetric positive definite matrix σ represents
the normalized conformation tensor of polymer molecules
and 1 is the unit tensor corresponding to the equilib-
rium configuration of polymers attained in the absence
of flow (u = 0). The trace tr(σ) gives the local polymer
(square) elongation and τ is the largest polymer relax-
ation time. The fluid density is denoted ρf and the total
viscosity of the solution is ν = νs(1+η), with νs the kine-
matic viscosity of the solvent and η the zero-shear con-
tribution of polymers (which is proportional to polymer
concentration). The extra stress term 2ηνs

τ ∇ · σ accounts
for elastic forces providing a feedback mechanism on the
flow.

In this study we are interested in having a fluid veloc-
ity characterized by a non-homogenous mean flow and tur-
bulent fluctuations generated by elastic stresses only. For
this reason we choose the two-dimensional (2D) periodic
viscoelastic Kolmogorov flow. This has been previously
shown [22–24] to provide a simple and effective model able
to reproduce the basic phenomenology of elastic turbu-
lence. Using the Kolmogorov forcing f = (F cos(y/L), 0)
in eq. (1), one has a laminar fixed point corresponding
to the velocity field u(0) = (U0 cos(y/L), 0) and the con-
formation tensor components σ

(0)
11 = 1 + τ2U2

0
2L2 sin2(y/L),

σ
(0)
12 = σ

(0)
21 = − τU0

2L sin(y/L), σ
(0)
22 = 1, with F =

νU0/L2 [25]. From these expressions, characteristic length
and velocity scales L and U0, respectively, can be iden-
tified. As previously documented, the laminar flow be-
comes unstable [25] for sufficiently high values of elas-
ticity, even in the absence of fluid inertia, and eventu-
ally displays features typical of turbulent flows [22–24]. In
the elastic turbulence regime, the mean velocity and con-
formation tensor fields keep similar trigonometric func-
tional forms but with different amplitudes. Denoting U
the mean velocity amplitude in such states, we define the
Reynolds number as Re = UL/ν and the Weissenberg
number as Wi = Uτ/L, with their ratio giving the elas-
ticity El = Wi/Re of the flow.

We assume that small spherical particles heavier than
the fluid are laden in flows ruled by the dynamics de-
scribed above. The suspension of impurities is considered
to be dilute. The only force experienced by particles is
Stokes drag and we then do not take into account the
feedback effect of particles on the advecting fluid velocity
and interactions among particles. Under these hypotheses
the dynamics of each particle is described by the following
equations of motion [26] for their position x and velocity v:

ẋ = v, (3)

v̇ = − 1
τp

[v − u(x, t)] , (4)

where τp = 2a2
pρp

9νρf
is the Stokes time, accounting for parti-

cle inertia, ap the particle radius, ρp particle density (with
ρp � ρf ) and u(x, t) the advecting flow resulting from
eqs. (1) and (2). Particle inertia is typically parametrized
by the Stokes number St = τp/τf with τf a characteristic
flow time scale. Here we define τf ≡ τγ̇ in terms of the
strain rate exerted by the flow, so that St = τp/τγ̇ , with
τγ̇ = 1/γ̇ and γ̇ given by

γ̇ =
1

TL2
0

∫ T

0

dt

∫ L0

0

dy

∫ L0

0

dx
√

2[∇u + (∇u)T ]2,

(5)
where (. . .) represents an average over spatial coordinates
and time, L0 being the domain size in each direction.

3 Analysis and results

To explore the dynamics of inertial particles in elastic tur-
bulence we perform direct numerical simulations. Equa-
tions (1) and (2) are integrated using a pseudospectral
method on a grid of side L0 = 2π with periodic boundary
conditions at resolution 5122. Integration of viscoelastic
models is limited by instabilities associated with the loss
of positiveness of the conformation tensor [27]. These in-
stabilities are particularly relevant at high Wi values and
limit the possibility to numerically investigate the elastic
turbulence regime by direct implementation of the equa-
tions of motion. For this reason we adopt an algortithm
based on a Cholesky decomposition of the conformation
matrix ensuring symmetry and positive definiteness [28];
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to stabilize the code a small polymer diffusivity, corre-
sponding to a Schmidt number Sc � 103, was also added.
This approach allows us to reach sufficiently high elas-
ticity; however it imposes some limitations in terms of
resolution and computational time. We fix Re = 1 (us-
ing the value of U0 to obtain an a priori estimate of it),
which is smaller than the critical value

√
2 of the New-

tonian case, and we vary Wi in a range of values larger
than a critical one Wic ≈ 10 corresponding to the onset
of purely elastic instabilities [23]. In all simulations the
other parameters of the viscoelastic dynamics are U0 = 4,
L = 1/4, νs = 0.769, η = 0.3. The initial condition is
obtained by adding a small random perturbation to the
fixed point solution u(0), σ(0) and the system is evolved
in time until a statistically steady state is reached.

Once the flow is in statistically stationary conditions,
it is seeded with an ensemble of inertial particles, initially
uniformly distributed in space and having randomly cho-
sen velocities. Particle dynamics, eqs. (3) and (4), are in-
tegrated by means of a standard Lagrangian approach us-
ing a second-order Runge-Kutta time-marching scheme;
the velocity at particle positions is obtained by bilinear
interpolation in space. Periodic boundary conditions are
imposed on particle positions. A rather large number of
Stokes time (τp) values is examined, allowing to explore al-
most three decades in St (for each considered flow, i.e. for
each Wi). In the results reported in the following sections
the number of particles is Np = 104 (tests with Np = 105

did not show any appreciable difference on the statistics
of single-particle observables).

3.1 Elastic turbulence flows

The transition from laminar to elastic turbulence states
of the system specified by eqs. (1) and (2) was previ-
ously studied in detail in [23]. Notice that in the elas-
tic turbulence regime the mean flow amplitude results to
be decreased (U < U0), and in the following Re and Wi
will be defined using the a posteriori measured value U .
Here we are interested in working in the regime corre-
sponding to Weissenberg numbers well above the thresh-
old value Wic; the highest Wi that we can safely reach
in the present conditions is Wi ≈ 25. For such values of
Wi the flow develops temporally and spatially irregular
fluctuations associated with chaotic and mixing dynamics
reminiscent of turbulence. From a statistical point of view,
these turbulent-like features are described by the spec-
tra of kinetic energy E(k) and of the polymer elongation,
which is proportional to that of elastic energy and is given
by the trace of the conformation tensor Σ(k) at wave num-
ber k. For both quantities we find power-law behaviors as
E(k) ∼ k−γ (fig. 1(a)) and Σ(k) ∼ k−δ (fig. 1(b)), indi-
cating a whole range of active scales. The kinetic energy
spectrum is characterized by an exponent 3.5 < γ < 3.6
larger than 3, pointing to smooth flow, and in reasonable
agreement with the value measured in (three-dimensional)
experiments (see, e.g., [1]) and with theoretical predic-
tions [29] based on a simplified model corresponding to
the large polymer elongation limit of Oldroyd-B model.

Fig. 1. Time averaged spectra of kinetic energy E(k) (a) and
trace of the conformation tensor Σ(k) at wave number k (b),
normalized by their maximum values, for different values of
Wi in the elastic turbulence regime. Inset of panel (a): tem-

porally averaged kinetic energy E = |u|2/2 normalized by its
laminar value ELAM = U2

0 /4. Inset of panel (b): temporally

and spatially averaged square polymer elongation Σ = tr(σ)

normalized by its laminar value ΣLAM = 2 + Wi2

4
.

The spectral exponent of Σ(k) is found to be δ ≈ 2, simi-
larly to what is observed in numerical simulations of vis-
coelastic turbulence at higher Re (and with finite exten-
sibility models of polymer dynamics) [30,31], and roughly
in agreement with experimental results [32].

In the insets of fig. 1(a) and fig. 1(b), respectively, we
report the behavior of global quantities, namely the (tem-
porally averaged) kinetic energy E = |u|2/2 and the (tem-
porally averaged) trace of the conformation tensor Σ =
tr(σ), normalized by their laminar values ELAM = U2

0 /4
and ΣLAM = 2+Wi2/4, as a function of the Weissenberg
number. In agreement with previous observations [22,23],
we find that while the kinetic energy decreases with Wi,
the square polymer elongation grows and this occurs faster
than in laminar conditions. This suggests that polymers
elongate by draining energy from the mean flow and,
once sufficiently stretched they are capable of modifying
the carrier flow through the term 2ηνs

τ ∇ · σ in eq. (1).
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Fig. 2. Particle distribution (black dots) for St = 0.016, St = 0.657 and St = 5.75 (from left to right) at a fixed instant of time in
statistically stationary conditions at Wi = 23.9 and Re = 0.664; the number of particles is Np = 104. The pseudocolor plots in the
upper and bottom panels, respectively, correspond to instantaneous snapshots of [tr(σ)](x, y) and vorticity ζ(x, y) = ∇×u(x, y)
at the same time for which particles are plotted. In the central panel, particles are plotted together with an ellipsoid-glyph
visualization of the polymer conformation tensor σ (with the ellipses’ axes directed as the eigenvectors of σ and their sizes
proportional to the corresponding eigenvalues).

The faster than laminar growth means that such elastic
coupling is very efficient in sustaining the stretching of
polymers.

3.2 Preferential concentration effects

We now discuss particle dynamics, starting from an analy-
sis of the statistical properties of their spatial distribution

in relation with the main dynamical features of the vis-
coelastic fluid flow. Throughout all this study τγ̇ ≈ 0.1
and the polymer relaxation time τ is typically larger than
both τγ̇ and τp. As is evident from fig. 2 (where Wi = 23.9
and St increases from left to right), due to their inertia,
particles non-homogeneously distribute in space. Let us
remark, here, that Lagrangian tracers (i.e., non-inertial
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particles for which St = 0) evolve according to ẋ = u
(with ∇·u = 0) and, consequently, homogeneously sample
the flow field over sufficiently long times. In the presence
of inertia, the non-homogeneous character of the particle
distribution appears to vary non-monotonically with St,
with a maximum for intermediate values of this parameter.
This is in agreement with intuitive expectations: for very
small St one should recover tracer dynamics, while for very
large St particle dynamics should be essentially insensitive
to the flow. In fig. 2 both small-scale inhomogeneities and
larger-scale modulations of the particle distributions are
seen. A striking feature is, however, the accumulation of
particles along thin filamentary structures characterized
by large polymer elongations, i.e. large values of tr(σ) (see
upper panel of fig. 2). Such highly elastic filaments, prop-
agating along the mean flow direction, are associated with
the stretching of polymers by the largest gradients of the
mean velocity field [23]. Similar wavy patterns also char-
acterize the vorticity field ζ = ∇×u (see bottom panel of
fig. 2), due to the coupling between polymeric and veloc-
ity dynamics. The strong correlation between the spatial
organization of the particle distribution and that of the
polymer conformation tensor field is further evidenced by
plotting the latter by means of an ellipsoid representa-
tion of the local (in space) principal elongations (central
line of fig. 2, where the ellipses’ axes are oriented as the
eigenvectors of σ and their sizes are proportional to the
corresponding eigenvalues).

In order to quantitatively assess this point, we com-
puted the trace of the conformation tensor tr(σ), averaged
over the whole space domain and a long time history, expe-
rienced by inertial particles as a function of Stokes and for
different values of Wi. The curves reported in fig. 3 have
a non-monotonic behavior, with a maximum of tr(σ) for
St ≈ 1. Their qualitative features are generic with respect
to the value of the Weissenberg number. Indeed, as shown
in the inset of fig. 3, after rescaling tr(σ) with the same
quantity tr(σ)St=0 computed for tracers in the same flow
(for each Wi) we obtain a good collapse of the data, indi-
cating the Wi independence of this observable. These re-
sults demonstrate that when inertia is increased, and not
too large, particles have an increasing tendency to con-
centrate where polymers are highly stretched. Moreover,
as it is clear from the inset of the figure, independently
of St, inertial particles experience larger values of tr(σ)
than fluid-flow Lagrangian tracers.

To understand the phenomenology described above,
one has to relate elastic filaments to the velocity field that
transports particles. A hint in this sense comes from in-
spection of ellipsoid-glyph visualizations of the polymer
conformation tensor (fig. 2). In these plots, the presence
of regions of recirculating motion is more evident, with
elastic filamentary stuctures playing the role of flow sepa-
ratrices (as also observed in numerical simulations of vis-
coelastic cellular flows [33]). Some details on the forma-
tion of vortices in this elastic turbulence flow can be found
in [23]. Here, instead, we want to focus on their impact on
particle dynamics. In fact, several previous studies (see,
e.g., [10,34,35]) have demonstrated that small and heavy

Fig. 3. Average trace of the conformation tensor tr(σ) expe-
rienced by particles as a function of St and for different Weis-
senberg numbers. Here temporal averages are performed over
50 snapshots of tr(σ) (and simultaneous particle distributions)
corresponding to different instants of time separated by an in-
terval larger than the typical flow time scale. The inset shows
the same after rescaling tr(σ) with its value computed using

Lagrangian tracers tr(σ)St=0.

inertial particles migrate to strain dominated flow regions
because they are expelled from vortical regions by cen-
trifugal forces. At least in the small St limit, this can be
explained as follows. From a Taylor expansion of eq. (4)
at first order in τp one has v � u− τp(∂tu + u ·∇u) [34].
Then, for the divergence of the particle velocity one ob-
tains

∇ · v = −τp tr
[
∇u · (∇u)T

]
, (6)

using the incompressibility of the velocity field u. Decom-
posing the fluid velocity gradient ∇u into its symmetric
S and anti-symmetric part Ω, we then have

∇ · v = 2τpQ, (7)

where, up to a prefactor redefinition,

Q =
1
2
(ΩijΩij − SijSij) (8)

is the Okubo-Weiss parameter [36,37]. In the above equa-
tion Sij and Ωij , respectively, indicate the elements of
the rate-of-strain (S) and rate-of-rotation (Ω) tensors,
and summation over repeated indices is assumed. Particles
concentrate due to (weak) compressibility of their velocity,
that is where ∇ · v < 0. From eq. (7) it is seen that this
condition translates into negative values of Q, meaning
that particles are expected to preferentially sample strain
dominated regions (using eq. (8)).

Figure 4 shows the spatially and temporally averaged
Okubo-Weiss parameter measured at particle positions
versus St and for different Weissenberg numbers. The re-
sults support the above argument and provide a quantita-
tive confirmation of what observed from fig. 2. Indeed, Q is
found to be always negative, which suggests that particles
are ejected from recirculating regions to get more concen-
trated in regions dominated by strain, where polymers are
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Fig. 4. Average Okubo-Weiss parameter Q experienced by
particles as a function of St. Here temporal averages are per-
formed over 50 snapshots of Q (and simultaneous particle dis-
tributions) corresponding to different instants of time sepa-
rated by an interval larger than the typical flow time scale.
Left inset: normalized Okubo-Weiss parameter Q/Qrms

St=0 as a
function of St, where Qrms

St=0 is the root-mean-square value of
Q experienced by Lagrangian tracers. Right inset: probability
that a particle is in strain dominated regions P (Q < 0) as a
function of Stokes.

highly elongated. Also in this case, the effect is maximum
(i.e. Q is minimum) for St ≈ 1. The effect of varying Wi
is found to be quite weak. In the left inset of fig. 4 we
show the behavior, versus St, of Okubo-Weiss parameter
rescaled with its root-mean-square (rms) value computed
for tracers Qrms

St=0 (since Q = 0 for Lagrangian tracers
and, equivalently, for the Eulerian fluid flow, from numer-
ical simulations). After rescaling, the results are only very
weakly dependent on Wi. We end this section by com-
menting on the right inset of fig. 4. The plot presents the
probability P (Q < 0) that a particle is in a strain domi-
nated region, which is computed as the ratio between the
number of particles at positions where Q < 0 and the total
number of particles, as a function of St. The probability
P (Q < 0) generally takes values larger than the one real-
ized in the limit of very small St. Despite not large, such an
increase of P (Q < 0) indicates that inertial particles are
more concentrated than tracers in regions where Q < 0.
Finally, we observe that the effect is, again, maximum for
St ≈ 1 and weakly dependent on Wi.

3.3 Correlation dimension of small-scale clusters

The previous analysis allowed us to reveal some relations
between the inhomogeneities of the particle distribution
and flow structures. The fine scale properties of parti-
cle clustering are, however, a more general consequence
of the contraction of volumes in the phase space of the
dissipative system of eqs. (3) and (4) [15]. In both lami-
nar unsteady and turbulent flows, it has been shown that
the motion of inertial particles at small scales is highly
non-trivial and, at sufficiently large times, it occurs on a
fractal set [15, 38]. A possibility to quantitatively charac-
terize clustering is then to measure the fractal dimension

Fig. 5. Correlation dimension D2 of particle distributions as
a function of St and for different Weissenberg numbers; uncer-
tainties are of the order of point size. Small-scale clustering is
maximum for St ∼ 1, where D2 has a minimum. The relative
difference between the values obtained for Wi = 19.1 and the
corresponding ones for Wi = 24.9 is not larger than 0.15. The
inset shows the same in log-linear scale; the solid line corre-
sponds to a − bSt2 with a = 1.98 and b = 7.74 after averaging
the values of the fitted parameters obtained for each Wi.

of the projection, in physical space, of the attractor of
the dynamics. When this is smaller than the dimension
of the full physical space, particle pairs are more likely
separated by small distances. Within this framework, a
common indicator is the correlation dimension D2 [39],
which is defined as

D2 = lim
r→0

log[C(r)]
log(r)

, (9)

with the correlation sum C(r) given by

C(r) = lim
Np→∞

2
Np(Np − 1)

Np∑
i,j>i

Θ(r − |xi − xj |),

where Θ is the Heaviside step function and xi and xj are
the positions of particles belonging to pair (i, j). Equa-
tion (9) then means that, for small r, the probability to
find particle pairs separated by a distance less than r scales
as C(r) ∼ rD2 .

The behavior of D2 as a function of the Stokes num-
ber for different values of Wi is presented in fig. 5. It
is seen that the correlation dimension decreases from a
value, which is realized in the limit of very small St, close
to D2 = 2 (corresponding to tracers homogeneously filling
the whole space domain) to attain a minimum value of
D2 ≈ 1 for St ≈ 1. We remark that for very low particle
inertia, the decrease of D2 is quadratic in St (see inset
of fig. 5), as it typically happens in correlated flows [40].
For even larger values of the Stokes number, D2 grows to
approach again the space filling value of 2 (expected for
large inertia particles that are insensitive to the flow) in
the limit of very large St. We find that the correlation di-
mension is weakly dependent on the Weissenberg number,
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for the values of Wi explored here. The maximum rela-
tive difference, for fixed St, is found to not exceed 0.15.
We can therefore conclude that small-scale clustering is a
generic and quite effective phenomenon in elastic turbu-
lence flows, producing, at its maximum, particle accumu-
lation on quasi one-dimensional fractal sets. Our results
are qualitatively similar to previous ones obtained in sim-
ulations of 2D smooth random flows [41].

3.4 Elastically driven turbophoresis

In this section we investigate the large-scale properties
of the particle spatial distribution. Here, a motivation is
provided by the observation that some form of modula-
tion along the mean-shear direction (y) is already ap-
parent from the visualizations of fig. 2. To analyze how
this is related to the flow features, we introduce the par-
ticle number density field ρ(x, t) and focus on the profiles
along the direction of inhomogeneity y of both ρ and flow
statistics. For each considered quantity, the y-profile is
obtained by averaging over the mean-flow direction x and
time, which leaves a function of y only. We indicate pro-
files with 〈(. . .)〉. Note that this type of average is related
to the global one introduced in sect. 2 by

(. . .) =
1
L0

∫ L0

0

〈(. . .)〉dy.

Figure 6 presents the profiles of ρ (panel (a)) for three
different Stokes numbers, as well as those of several flow
related quantities (panels (b) and (c)), in a state of elas-
tic turbulence (with Wi = 23.9 and Re = 0.664). All
profiles are normalized by their, uniform, global average
value to stress the deviations from it. We remark that
〈uy〉(y) = 0 with very good accuracy in the numerics, as
expected from symmetry considerations. We also note that
the shown results are obtained by further averaging them
over one forcing wavelength � = LL0 = π/2. Comparing
panels (a) and (b) of the figure, we see that, consistently
with the previous analysis, particles are maximally con-
centrated where the longitudinally averaged Okubo-Weiss
parameter 〈Q〉(y) is minimum. Remark that here 〈Q〉(y)
is normalized by Qrms

St=0 due to the fact that QSt=0 = 0.
Nevertheless, in such regions of minimal 〈Q〉(y), the profile
of the trace of the conformation tensor 〈tr(σ)〉(y) is now
found to be minimum too. This apparently contradicts the
observation made in sect. 3.2 that particles aggregate in
regions of highly elongated polymers. This contradiction
is solved by considering that profiles result from a spa-
tial averaging procedure. Indeed, all information about
the spatial structure along the longitudinal direction is
lost in them, which are functions of the transversal di-
rection only. This particularly applies to the information
about the extent of vortices along x, from which parti-
cles are expelled, and about the orientation, with respect
to x, of the separatrices, by which particles tend to be at-
tracted and that colocate with high polymer elongation re-
gions. While the profile 〈Q〉(y) receives contributions only
from the transverse fluctuating component of the velocity

Fig. 6. (a) Particle number density profiles 〈ρ〉(y)/ρ, normal-
ized by the global mean uniform density (ρ = 1/L0), for three
different Stokes numbers. (b) Normalized profile of the trace

of the conformation tensor 〈tr(σ)〉(y)/tr(σ) (blue dashed line,
left axis) and of Okubo-Weiss parameter 〈Q〉(y)/Qrms

St=0 (red
solid line, right axis). (c) Normalized profiles of the longitu-
dinal velocity 〈ux〉(y)/ux, where ux = U , (dashed blue line,
left axis) and of the fluctuations of the shear-normal kinetic
energy 〈u′2

y 〉(y)/u′2
y (red solid line, right axis) of the fluid flow.

The plots in (a)–(c) refer to statistically stationary conditions
for Wi = 23.9, Re = 0.664. All the shown profiles are further
averaged over the wavelength defining the periodicity of the
mean flow � = LL0 = π/2.
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field, indeed 〈Q〉(y) = −∂2
y〈u′2

y 〉(y) (with prime indicat-
ing the fluctuation), the trace of the conformation ten-
sor is dominated by the contribution of the mean flow,
〈ux〉(y), to polymer stretching and 〈tr(σ)〉(y)/tr(σ) �
〈σ11〉(y)/σ11.

From the above discussion it should be clear that the
large-scale inhomogeneities of ρ cannot be explained di-
rectly in terms of the averaged profiles. In fact, they are
a manifestation of the turbophoresis phenomenon. In a
nutshell, this corresponds to the migration of inertial par-
ticles from regions of high to regions of low eddy diffusiv-
ity that occurs in turbulent flows with non-homogeneous
mean flow. Turbophoresis has been mainly studied in wall-
bounded flows, because of their relevance for industrial
and environmental applications related to particle deposi-
tion [11,42,43]. Interestingly, using the three-dimensional
(3D) Newtonian turbulent Kolmogorov flow it was re-
cently shown that turbophoretic segregation is indepen-
dent of the presence of walls [13] (this was also con-
firmed in simulations employing a random inhomogeneous
forcing [14]). Also in that case particles accumulate in
regions of minimum turbulent diffusivity, but the spa-
tial distribution of the latter with respect to the mean
flow differs from the one found in geometrically confined
flows [13].

The theoretical understanding of turbophoresis relies
on statistical approaches. Models available in the litera-
ture are typically derived either from the Fokker-Planck
equation obeyed by the probability density to find a par-
ticle at position x with velocity v at time t (as in [44]),
or on the application of a decomposition into mean and
fluctuating components, in the spirit of Reynolds averag-
ing, in fluid momentum and particle mass conservation
equations (as in [42]). Here we follow the second approach
which, in spite of its more heuristic character, is per-
haps more physically transparent; after a proper corre-
spondence is made, both models provide the same results
for what concerns the present discussion. We then write
f(x, t) = 〈f〉(y) + f ′(x, t) for each quantity of interest
f(x, t), where the prime indicates the fluctuation. Defin-
ing as J = ρv the flux associated with the number density
of particles, we have

〈Jy〉(y) = 〈ρ〉(y)〈vy〉(y) + 〈ρ′v′
y〉(y) (10)

for its component in the direction of inhomogeneity y. As
is often done [42, 45] we adopt a gradient diffusion model
for the second term on the right-hand side of eq. (10):

〈ρ′v′
y〉(y) = −Dp

d
dy

〈ρ〉(y), (11)

where Dp is the diffusion coefficient of the inertial parti-
cles. This is typically assumed to be close to that of fluid
tracers (i.e., the eddy diffusion coefficient) Df , which is
completely justified only in the limit of vanishingly small
Stokes number. Estimating Df dimensionally, one has:

Dp ≈ Df ≈ τc〈u′2
y 〉(y), (12)

where τc is a correlation time associated with the fluid
flow. We expect it to be proportional to τγ̇ (eq. (5)), so

that τγ̇/τc = a with a some constant of order 1. Still in
the limit of τp → 0, using v � u − τp(∂tu + u · ∇u), the
turbophoretic velocity in eq. (10) can be expressed as

〈vy〉(y) = −τp
d
dy

〈u′2
y 〉(y). (13)

Inserting eq. (11), with (12), and eq. (13) into eq. (10),
for the fluxless steady state (i.e. 〈Jy〉(y) = 0) we finally
obtain:

〈ρ〉(y) ∼ 〈u′2
y 〉−α(y), (14)

giving the relation between the inhomogeneities of the par-
ticle distribution and those of fluid velocity fluctuations.
In this expression the exponent α = τp/τc = aSt controls
the amplitude and shape of the spatial modulation of the
particle density transversal profile.

The numerical results, shown in fig. 7, are in quite
good agreement with the expectation of eq. (14), provid-
ing quantitative support to the claim that the large-scale
inhomogeneities of the particle distribution are controlled
by a turbophoretic mechanism. The small asymmetries
observable in 〈ρ〉(y) are due to the very slow convergence
of particle statistics. As in fig. 6, the results shown here
are obtained by further averaging profiles over one forcing
wavelength. The exponent α, measured by a fitting proce-
dure, is found to increase with the Stokes number and to
approach α � 1 for St ≈ 1 or larger (fig. 8). The growth of
α with St means that the amplitude of large-scale modu-
lations of 〈ρ〉(y), and hence the importance of turbophore-
sis, grows with increasing particle inertia. For the smallest
values of St, α is found to linearly grow with St, with a
value of the fitted proportionality constant a = 4.4 (see
the dashed black line in fig. 8). Hence, in this range of
small particle inertia the numerical results are commen-
surate with the model prediction α ∼ St valid in the limit
of vanishingly small St. For larger St, the data are no
longer described by this linear relation, with α tending to
saturate to 1. To account for this behavior we follow [42]
and [46], where it was suggested that the shear-normal
particle kinetic energy is different from the fluid one, be-
ing proportional to it through a St-dependent coefficient
κ. The turbophoretic velocity in eq. (13) should then be
modified as follows:

〈vy〉(y) = −κτp
d
dy

〈u′2
y 〉(y), (15)

where κ = 1/(1 + τp/τc) [42]. Reasoning as before, we
obtain a fluxless steady solution like the one in eq. (14)
but with

α =
aSt

1 + aSt
. (16)

Remark that, from this, α � aSt for St � 0 and α → 1 for
very large St. This modified Stokes dependence captures
quite well the behavior of the exponent α in a consider-
ably broader range of St extending to unity and beyond,
as shown in fig. 8 (solid black line, with a = 4.4 as for the
linear behavior). For even larger values of St we were un-
able to obtain satisfactorily converged particle statistics.
We note that these results weakly depend on Wi.
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Fig. 7. Comparison of normalized particle number density
profiles 〈ρ〉(y)/ρ (red points) with the normalized profiles of

transversal velocity fluctuations 〈u′2
y 〉−α(y)/〈u′2

y 〉−α(y) (black
solid line) for Wi = 23.9, Re = 0.664 and different values
of St (increasing from top to bottom). The values of the ex-
ponents obtained from a best fit are α = 0.229 ± 0.029 (a),
α = 0.839 ± 0.149 (b), α = 1 ± 0.309 (c). The inset in (a) is a
zoom around 〈ρ〉(y)/ρ = 1. All the shown profiles are further
averaged over the wavelength defining the periodicity of the
mean flow � = LL0 = π/2.

Fig. 8. Exponent α as a function of St and for different Weis-
senberg numbers. The black dashed line represents the linear
prediction in the limit of small St. The black solid line repre-
sents the modified non-linear prediction; a = 4.4 is obtained
by a best fit.

Fig. 9. Root-mean-square (rms) relative deviation χ of 〈ρ〉
from the mean uniform distribution ρ as a function of St and
for different Weissenberg numbers. Here temporal averages are
performed over 80 independent realizations corresponding to
different instants of time separated by an interval larger than
the typical flow time scale. The inset shows the parameter
χ〈u′2

y 〉−1 computed from the rms relative deviation of 〈u′2
y 〉−1

from the mean uniform value 〈u′2
y 〉−1, i.e. σ〈u′2

y 〉−1/〈u′2
y 〉−1, as

a function of Wi.

To quantitatively assess the overall effect of tur-
bophoresis, as in [13], we measure the rms relative de-
viation of the mean particle density profile 〈ρ〉(y) from
the uniform distribution ρ = 1/L0, defined as

χ ≡
σ〈ρ〉(y)

ρ
=

[
1
L0

∫ L0

0

(
1 − 〈ρ〉(y)

ρ

)2

dy

] 1
2

, (17)

where σ〈ρ〉(y) is the standard deviation of 〈ρ〉(y). The
global parameter χ as a function of Stokes for different
Wi numbers is presented in fig. 9. Consistently with the
behavior of α, we find that χ grows with St and eventually
reaches an approximately constant value for St ≥ 1. In the
limit of St → ∞, we would expect χ to be a decreasing
function of St, due to the fact that, practically, very heavy
particles should not interact with the flow field. However,
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this point could not be verified within this study, due to fi-
nite statistics associated with the difficulty to attain large
enough Stokes numbers. The approximately constant be-
havior of χ for St ≥ 1 appears nevertheless reasonable
from its definition, considering that in the same range of
Stokes numbers the exponent α characterizing 〈ρ〉(y) is at
a plateau value.

Finally, we observe that χ displays some dependency
on Wi, which becomes more evident as St increases. In-
deed, as seen from fig. 9, χ decreases with increasing Wi,
suggesting that the large-scale accumulation of particles
(quantified by χ) decreases with increasing polymer elas-
ticity. This trend can be possibly connected to the changes
in 〈u′2

y 〉(y) at growing Wi, which correspond to an in-
crease of its mean accompanied by a weak reduction of its
peak-to-peak excursions. Indeed, if we focus on the region
St = O(1) where the effect of varying Wi is most im-
portant, and we substitute 〈ρ〉(y) with 〈u′2

y 〉−1(y) (notice
that α � 1 for St = O(1)) in the expression of χ, we then
should have a decrease of its plateau value with Wi. As
shown in the inset of fig. 9, the computation of χ〈u′2

y 〉−1 ,
i.e. the one based on 〈u′2

y 〉−1(y) confirms this expectation.

4 Conclusions

The small- and large-scale inhomogeneities of the distri-
bution of heavy inertial particles passively transported by
a 2D elastic turbulence flow with (Kolmogorov) sinusoidal
mean shear [22,23,25] have been investigated by means of
direct numerical simulations.

A strong correlation bewteen the particle distribution
and the polymer (square) elongation field was detected,
with large particle concentrations occurring along thin
highly elastic filamentary structures. Since the interac-
tion between polymers and particles is not direct in the
adopted model dynamics, but rather mediated by the fluid
flow, it has been possible to interpret such a phenomenon
in terms of the preferential concentration of particles out-
side vortices, in strain-dominated regions where, in turn,
polymers are efficiently stretched. The statistical features
of small-scale clustering were further addressed measuring
the correlation dimension of the fractal sets on which par-
ticles accumulate, i.e. the scaling exponent of the prob-
ability density to find particle pairs at small distances.
The analysis revealed particularly effective clustering for
Stokes numbers of order unity, for which D2 decreases
to approximately 1, pointing to the aggregation of par-
ticles on almost one-dimensional structures. The consid-
ered statistics display only rather weak dependence on the
Weissenberg number, in the range of parameters explored.

At large scales, a turbophoretic mechanism associated
with the gradients of eddy diffusivity was found to be re-
sponsible of segregation, as in Newtonian fluids at high
Reynolds number [11–14]. Indeed, the particle spatial dis-
tribution is strongly linked to the structure of the mean
and fluctuating components of the fluid velocity, with
maxima in correspondence to the minima of the shear-
normal (elastic) turbulence intensity. A detailed analysis

allowed us to measure the exponent characterizing the
relation between the mean particle density profile and
turbulence intensity in the direction transversal to the
mean flow. Differently from the case of the 3D Newto-
nian turbulent Kolmogorov flow, this exponent was found
to depend on particle inertia, i.e. on the Stokes number.
Such a dependence resulted to be non-linear in St and
could be explained by adapting previous theoretical ap-
proaches [42, 44] to construct a simple model by means
of a Reynolds averaging procedure. A similar non-linear
dependence is also reflected in the overall intensity of the
turbophoresis phenomenon, quantified by the global pa-
rameter χ accounting for the rms deviation of the parti-
cle distribution, relative to the uniform one. This quan-
tity shows some negative dependence on the Weissenberg
number, suggesting a reduction of segregation for larger
values of Wi, a feature that is likely related to the progres-
sively (with growing Wi) less inhomogeneous character of
transversal fluid velocity fluctuations.

These results were obtained adopting the constant vis-
cosity Oldroyd-B model of viscoelasticity. Despite it is
known that linear elasticity models, such as Oldroyd-B,
typically underestimate the experimentally measured elas-
tic stresses [47], it has been argued that the main features
of elastic turbulence are quite independent of the rheolog-
ical model details [22, 24, 29, 33]. Nevertheless, the effect
of the latter on particle dynamics might not be unim-
portant. In particular, rheological models accounting for
shear-dependent viscosity effects (such as FENE models)
could bring in additional dynamical couplings between the
flow and the particles [48]. One could indeed expect that,
e.g., in a shear-thinning fluid the varying effective viscos-
ity would reduce the drag force experienced by the parti-
cles in the regions of the flow where polymers are maxi-
mally stretched, and this might in turn affect the particle
unmixing properties. It is a subject that deserves future
investigations in order to assess to what extent the phe-
nomenology described in this paper would apply.
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