Basal Melting Driven by Turbulent Thermal Convection

Enrico CALZAVARINI

Unité de Mécanique de Lille (UML), EA 7512, Université de Lille, France

with :

Babak RABBANIPOUR, Silvia HIRATA, Stefano BERTI

International Conference on Rayleigh-Bénard Turbulence 14-18 May 2018 University of Twente – Enschede – The Netherlands

Convective flows and phase change

Lava lakes

Persistent lava lake of Mount Nyiragongo

Magma cambers

Magma ocean

Arctic ICESCAPE mission, NASA, July 12, 2011

Thermal convection in Arctic ice melt ponds

Thermal convection in ponds is turbulent

 $\frac{\Delta T = 0.2 \ K}{H = 10 \ cm} \, \} \, Ra = 10^6 \quad \text{up to } Ra \sim 10^9 \text{ with } Pr \sim 10$

How does the heat-flux scale in a pond?

$$Nu\simeq 0.04~Ra^{1/3}$$
 Malkus (1954) scaling

Taylor & Feltham, "A model of melt pond evolution on sea ice", J. Geophys. Res. 109,(2004).

Lüthje, Mikael, et al. "Modeling the summertime evolution of sea-ice melt ponds." *J. Geophys. Res.* 111 (2006).

A model system

Basal melting driven by natural thermal convection (CM)

Equations for the model system

Boussinesq equations

$$\rho_0 \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \, \Delta \mathbf{u} + \rho_L \mathbf{g},$$
$$\nabla \cdot \mathbf{u} = \mathbf{0},$$
$$\rho_L = \rho_0 \left(1 - \beta (T - T_0) \right),$$
$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \kappa \, \Delta T,$$

+ Boundary conditions

Control parameters

0~

Reference scales

Dimensionelss form

length H_{max}	$\frac{\partial \mathbf{u}}{\partial \tilde{t}} + \tilde{\mathbf{u}} \cdot \boldsymbol{\nabla} \tilde{\mathbf{u}} = -\boldsymbol{\nabla} \tilde{p} + Pr \triangle \tilde{\mathbf{u}} + Ra_{max} Pr \hat{\tilde{\boldsymbol{z}}},$
time H_{max}^2/κ	$\nabla \cdot \tilde{\mathbf{u}} = 0,$ local liquid fraction
temperature $\Delta T = T_0 - T_m$	$\frac{\partial T}{\partial \tilde{t}} + \tilde{\mathbf{u}} \cdot \boldsymbol{\nabla} \tilde{T} = \kappa \Delta \tilde{T} - \frac{1}{St} \frac{\partial \phi_l}{\partial \tilde{t}}.$

Global heat budget

$$Nu_{eff}(t) = rac{\nabla(r)}{
ho_0 c_p \kappa rac{\Delta T}{H(t)}}$$
 International I

Q(t)

Ulvrová, Labrosse, et al. Phys. Earth and Planetary Interiors (2012)

$$Nu_{eff}^{in} = Nu_{eff}^{out} + \langle \phi_l \rangle^2 \langle \partial_{\tilde{t}} \tilde{T} \rangle_{V_l}$$

Conductive regime:

$$\begin{split} \mathbf{H}\left(t\right) &= 2\lambda\sqrt{\kappa t} \qquad \lambda\exp(\lambda^2)\,\operatorname{erf}\left(\lambda\right) = \frac{\operatorname{St}}{\sqrt{\pi}} \\ Nu_{eff}^{in} &= \frac{2\lambda^2}{St}\,e^{\lambda^2} \qquad Nu_{eff}^{out} = \frac{2\lambda^2}{St} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$$

Convective regime?

Global heat flux: convection

 $Nu_{eff}(Ra_{eff}, Pr, St) = ?$

$$\begin{split} Nu_{eff}^{out} \sim Ra_{eff}^{\alpha} \ Pr^{\delta} \ St^{\gamma} & \longrightarrow \quad \left\langle \phi_l \right\rangle \sim \tilde{t}^{\frac{1}{2-3\alpha}} \ Pr^{\frac{\delta}{2-3\alpha}} \ St^{\frac{\gamma+1}{2-3\alpha}} \\ & \uparrow \\ & \text{global} \\ & \text{liquid fraction} \end{split}$$

Conductive case and St small

 $\alpha = \delta = \gamma = 0 \qquad \longrightarrow \qquad \langle \phi_l \rangle \sim \tilde{t}^{1/2} \ S t^{1/2}$

RB Ultimate regime

$$\alpha = 1/2$$
 and $\delta = 1/2$

constant melt front speed $\tilde{v}_m = \frac{d}{dt} \langle \phi_l \rangle = const$

constant melt front acceleration $\widetilde{a}_m = \frac{d^2}{dt^2} \langle \phi_l \rangle = const$

DNS results: convective melting in 2D

9

Nusselt vs Rayleigh (2D)

Nu_{eff}^{in} inflowing heat flux

- Delayed onset compared to RB and rapid growth (Kim, Lee , Choi 2008) (Vasil & Proctor JFM 2011)
- Nu_{eff} > Nu @RB (~20%) but vanish at large Ra
- Consistent with *Ulvrova et al. (2012)* (although different conditions: Pr = 7, St =1.1, free-slip walls + adiabatic lateral walls)

Reynolds vs Rayleigh (2D)

Ra_{eff}

Convective melting in 3D

Nusselt vs Rayleigh (3D)

Ra^{1/3} compensated

• Nu_{eff} $_{3}D > Nu_{eff} _{2}D$

same trend as in 2D-3D RB system (E.P. van der Poel et al. JFM 2013)

- $Nu_{eff} 3D > Nu @RB 3D$ (max increase 47% but transient effect)
- Ra exponent < 1/3

Interface shape analysis (1)

2D

$$Ra_{max} = 1.5 \times 10^7, Pr = 10, St = 1$$

Interface shape analysis (2)

Longitudinal correlation length $L_c vs Ra_{eff}$

Height standard deviation $vs \operatorname{Ra}_{eff}$

Asymptotic aspect ratio of flows patterns = 1

Higher roughness in 3D

Interface shape analysis (3)

Very small roughness,

ineffective on Nu modulation

(Zhu, Stevens, Verzicco, Lohse, PRL 119, 154501 (2017)

Effect of Stefan number

- At small-*Ra St* affects the convection onset: goes to RB (Ra_c = 1708) for *St* -> 0
- At high-*Ra* only St weakly increase the heat flux: $Nu \sim St^{0.05}$

1. **RB phenomenology is valid :** RB heat flux captures the correct order of magnitude and asymptotic scaling for Nu_{eff} in Convective Melting

Why? $u_{rms} >> v_m$

Nu_{eff} > Nu_{RB} for moderate Ra -> not yet fully understood

 $Nu_{eff} \sim Ra_{eff}^{\alpha}$ with $\alpha < 1/3 \rightarrow$ front speed $v_m(t) \sim t^{<0}$ weakly decreases with time

- 2. **Small roughness**, and interface shape controlled by large-scale structures Ar=1
- 3. Weak Nu dependence on Stefan for St=[0.1,100]

 $Nu \sim Ra_{eff}^{\alpha} St^0 \rightarrow Marcon St$ implies front speed $v_m \sim St$

Basal melting driven by turbulent thermal convection B. Rabbanipour Esfahani, S. C. Hirata, S. Berti and E. Calzavarini arXiv:1801.03694 - in press on Phys. Rev. Fluids (2018)

Perspectives

For more realistic modelling of melt ponds:

- Radiative heating (non-homogeneous volume term)
- Effect of wind stress
- Convection in a cavity and measure of vertical/lateral heat fluxes

- Simulating the merging of multiple melting cavities