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1 The Problem

Understanding the spatial distribution of finite-size massive particles, such
as heavy impurities, dust, droplets, neutrally buoyant particles or bubbles
suspended in incompressible, turbulent flows is a relevant issue in industrial
engineering and atmospheric physics. In a turbulent flow vortices act as cen-
trifuges ejecting particles heavier than the fluid and entrapping lighter ones
[1, 2]. This phenomenon produces on one side clusterization (also dubbed
preferential concentration) on the other segregation (de-mixing) of particle
species differing in size and densities.

Stated in a rather simplified form, i.e., assuming spherical, not-deformable
particles smaller than the smallest scale of turbulence and gravity negligible,
the equation of motion for a particle is [3]:

ẍ = β (∂tu + (u · ∂)u) − (ẋ − u) /τ. (1)

Here u = u(x(t), t) is the fluid velocity field described by the incompressible
Navier-Stokes (NS) equation, while the parameters β and τ account for the
physical properties of the particle. Specifically, β is a dimensionless number
connected to the ratio between the particle density (ρp) and the fluid one (ρf ),
defined as β ≡ 3ρf/(ρf +2ρp). τ instead is the typical particle response-time,
that is τ ≡ a2/(3βν), with, a, the particle radius and, ν, the fluid kinematic
viscosity. Equation (1) coupled to NS can be considered an accurate physical
model as long as the particle suspension is dilute, namely it is almost collision-
less and it does not exert feedback on the fluid, that is to say, it is passively
advected by the flow.
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Fig. 1. Slices 320×320×8 in size from a 5123 DNS. Both very heavy particles, β = 0
(top), and bubbles, β = 3 (bottom) at different Stokes numbers, St = 0.1, 1, 4.1 (left
to right) are reported. The underlying fluid flow field is the same in all cases. All
particles were injected homogeneously into the fluid domain roughly one large-eddy-
turnover-time before the snapshots.

2 A numerical study

We address the problem numerically. Here we present results from a series
of direct numerical simulations (DNS) where passive suspensions of particles
of variable density and size are tracked in a homogenous isotropic turbulent
flow. We track up to ∼500 sets of particles, corresponding to couples of values
in the parameter-space β-St, where St ≡ τ/τη stands for the Stokes number
and τη is the dissipative time-scale. The total number of particles per type
ranges between 105-106. Numerics are performed at different resolutions, 1283

and 5123, corresponding respectively to Reλ = 65-185, and extended in time
for few large-eddy-turnover times. As shown in fig.1, non-homogeneities in the
particle/bubble distributions, their dependence on the Stokes number and de-
mixing between different species are already evident from plain visualizations.

Correlation dimension and concentration conditioned to flow topology

To gain better insight into the small-scale features of clustering, we study the
probability, P2(r), that the distance between two particles is less than r. In the
small-distance limit such probability has a power law behavior, P2(r) ∼ rD2 .
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The exponent D2, called correlation dimension of the spatial distribution, can
be used as an estimator for the dimension of the set on which particles accu-
mulates. Whether particle distribute locally uniformly D2 equals the spatial
dimension 3. If instead D2 < 3 we say that particles accumulate onto a fractal
set.
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Fig. 2. (a) The correlation dimension D2 as a function of the density parameter
β and the Stokes number. Isolines are drawn at D2 = 1, 2. (b) The probability Pe

to find a particle in elliptic regions of the flow versus β and St. Note that for fluid
tracers (St = 0 particles) it is here Pe " 0.6, i.e., as expected elliptic regions in a
turbulent flow extend over larger volumes than strain regions.

We observe that both heavy and light particles at small St numbers con-
centrate on fractal sets, see fig.2(a), the minimum of D2 being around St $ 1.
Heavy particles always have D2 above 2, light particles instead reach even
D2 values below 1. Indeed, the extremely strong agglomeration occurring for
light particles produces here decimation of statistics and noisy D2 results
for (β ! 2). Nevertheless, we may conclude that at small-scales filament-like
clusters are expected for light particles while heavy particles agglomerate on
surface-shaped regions.

Segregation is addressed by looking at particle concentrations conditioned
to the local topology of the flow field. Vortical (also called elliptic) regions of
the flow are defined as the positions where the eigenvalues of the local strain
matrix (∂iuj) have imaginary parts [4]. The measure of the probability (Pe) to
find a particle, of given β-St value, in an elliptic region of the flow is reported
in fig.2(b). Heavy particles are lacking in vortical regions, while extremely
light particles concentrate almost completely in elliptic regions.
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