A Lagrangian model of Copepod dynamics: clustering by escape jumps in turbulence

Hamidreza ARDESHIRI

In collaboration with: E. Calzavarini, F. G. Schmitt, S. Souissi, F. Toschi

Université Lille 1 Sciences et Technologies (France) Flowing Matter 2016

Laboratoire de Mécanique de Lille - FRE 3723 Laboratoire d'Océanologie et de Géoscience - UMR 8187

Outline

Motivation

- Introduction to Copepods
- Experimental Data Analysis
- Lagrangian Copepod Model

Analysis

Conclusion & Perspective

Motivation

- Important link in the food web
- Most numerous crustaceans in the ocean
- Fishery Industry
 - Better understanding the oceanic life

What Are Copepods?

Time (ms)

Component of The Flow?

Experimental Jump Data Analysis

Lagrangian Copepod (LC) Model in a Flow

Model assumptions:

- Copepods as rigid, homogeneous, neutrally buoyant particle
- Same way of response to external flow disturbances
- A mechanical signal with a single-threshold
- Drag force (no gravity)

Modified Chlamydomonas Model

$$\dot{\mathbf{x}}(t) = \mathbf{u}(\mathbf{x}(t), t) + \boldsymbol{J}(t, t_i, t_e, \dot{\gamma}, \mathbf{p})$$

/	0		-	. \	Ľ
Parameter	Unit	Range		This study	
ν	m^2s^{-1}	$\sim 10^{-6}$		10 ⁻⁶	
ϵ	m^2s^{-3}	10^8	10-4	10 ⁻⁶	
η	m	$3 imes 10^{-3}$	$3 imes 10^{-4}$	10^{-3}	
$ au_\eta$	s	10	0.1	1	
u_η	ms^{-1}	$3 imes 10^{-4}$	3×10^{-3}	10^{-3}	
Re_{λ}	_	$\mathcal{O}(10^2)$		80	

 $\alpha \equiv l/d$

Shape effect

 $\tau_n \dot{\gamma}_T$

Dimensionless control parameters

 $u_J/u_\eta \qquad au_J/ au_\eta$

Properties of the ocean water

Numerical Method

Eulerian - Lagrangian

Tracers Copepods

Homogeneous Isotropic Turbulence

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p / \rho + \nu \Delta \mathbf{u} + \boldsymbol{f}$$

 $abla \cdot \mathbf{u} = 0$

Spectral Method

Clustering

$$\tau_{\eta} \dot{\gamma}_{T} = 0.35$$

 $\tau_\eta\,\dot{\gamma}_T\,{=}\,0.92$

 $\tau_{\eta} \dot{\gamma}_T = 1.77$

Jump intensity $u_J/u_\eta = 250$

Alert region : $\dot{\gamma} > \dot{\gamma}_T$ Comfort region : $\dot{\gamma} < \dot{\gamma}_T$

$$\langle T_{\dot{\gamma}>\dot{\gamma}}\rangle = \frac{1}{N_{tot}} \sum_{i=1}^{N_{tot}} \int_0^{T_{tot}} H(\dot{\gamma}_i(t) - \dot{\gamma}_T) dt$$

Correlation Dimension

3.1

3

2.9

2.8

2.7 2.6

2.5

2.4 2.3

450

10

PDF of Velocity

Particles Orientational Dynamics

Conclusion & Perspective

Conclusion:

- The LC model leads to clustering different from the one observed for motile algae (*e.g.* De Lillo et al.(PRL 2014)).
- Particle orientational dynamics has negligible impact of on the clustering
- Clustering happens in narrow range

Perspective:

- Model refinement (taking into account the memory effect)
- Modeling complex behaviour of copepods (considering the radius of perception)
- Tune the model with experimental data

Thank you!

What are copepods?

Copepods cultures at LOG Lab in Wimereux

Response to Stimulus

Acartia tonsa: The stimulus occurred 3 (ms) before the initiation of the escape response (dashed line)

Response parameters

Undinula vulgaris giesbrechti response

- L: latency to forward propulsion
- Pr: preparation
- R: rise
- P: force peaks
- D: kick (power strokes) duration
- T: termination

Component of the flow?

Thresholds

Siphon flow

- · longitudinal deformation
- acceleration

- · shear deformation
- acceleration
- vorticity

Oscillating chamber acceleration

Kiørboe et all., (1999)

Rotating cylinder

- acceleration
- vorticity

Copepods react to deformation rate

Direction of Escape?

Analysis

Quantifying spatial distribution of the copepods : Fractal dimension D₂

The Grassberger-Procaccia Algorithm:

$$\hat{C}(r) = \frac{2}{N(N-1)} \sum_{i < j} \theta(r - |\mathbf{x}_i - \mathbf{x}_j|) \qquad \theta(x) \text{ is Heaviside step function}$$

Monotonically decreasing like power law $C(r) \sim r^D$ as $r \to 0$

Probability to find a couple of particle whose distance is below r

$$D = \lim_{r \to 0} \frac{\log C(r)}{\log r}$$

Maxey JFM87, Squires & Eaton PF91, Fessler Eaton IJMF94

 $\tau_\eta\,\dot{\gamma}_T\,{=}\,0.35$

 $\tau_\eta\,\dot{\gamma}_T\,{=}\,0.92$

2D slice of thickness $\boldsymbol{\eta}$

<u>Movie</u>

 $\tau_\eta\,\dot{\gamma}_T\,{=}\,1.77$