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Motivation : "
Ice melt ponds during Arctic summer, air view

Credits : D. Perovich,  ERDC   August 2011

See: Transition in the fractal geometry of Arctic melt ponds C. Hohenegger et al.  The Cryosphere, 6, 1157–1162, 2012



Motivation : "
" Ice-albedo feedback in the Arctic

Albedo: fraction of solar energy (shortwave radiation) reflected from the Earth back into space."
!
Ice & snow              high albedo                                                                        
!
water                   low albedo"
!
                                                  

Melt ponds"
formation

reduced "
albedo

increased"
Earth"

temperature

Ice-albedo a positive feedback :

Credits : O. Lecomte,  TECLIM

Melt pond-related physical processes and lifecycle

Stage I : Formation, late May – Mid-June

Sea ice

Snow cover
Melt pond

Eicken et al., 
2002

• Snow and sea ice surface melt feed melt ponds
• Lateral water transport – losses in cracks
• Impermeable ice => large hydraulic head, initiation of vertical drainage



Motivation : "
Melt ponds a subgrid scale problem

Credits: ICESCAPE mission, NASA,  July 12, 2011

Ponds are too small for  Global Sea Ice Models 
e.g. CICE Los Alamos, LIM Belgium , MIT model "
!
typical grid size ~ 10 x 10 Km  "
typical time step  ~ 6 hours 



Motivation : "
Dynamics of ice melt ponds

Stage 1 "
May  - June"

Formation"

Stage 2 "
June - July"

 Growth 
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Melt pond-related physical processes and lifecycle

Stage I : Formation, late May – Mid-June

Sea ice

Snow cover
Melt pond

Eicken et al., 
2002

• Snow and sea ice surface melt feed melt ponds
• Lateral water transport – losses in cracks
• Impermeable ice => large hydraulic head, initiation of vertical drainage

warmer, denser surface water  ~ 2o K

ice

Arctic melt ponds are upside-down RB systems

Eicken, H. et al. Tracer studies of pathways and rates of meltwater transport through arctic summer sea ice. J. Geophys. Res. C: Oceans, 107(10), SHE 22-1 - 
22-20. (2012)

ice

snow
water

~ 0 o K

hmax ~ 1 m



Heat transfer in melt ponds

where wice = ri/ro d represents a velocity of the ice surface
associated with ice growth or melting, huiToi and huiSoi
represent the subgrid heat and salinity boundary fluxes into
the pond near the ice edge, respectively, d is the ice melting
or growth rate, ri = 920 kg m!3 is the ice density, and QL =
L/cp, where L = 3.34 " 105 J Kg!1 is the latent heat of
fusion and cp = 4000 J (Kg !C)!1 is the specific heat of
water. Scaling equations (4) and (5) with u* as defined
above, and integrating vertically results in two nondimen-
sional functions

FT ¼ T xið Þ ! Tw
wiceQLð Þ=u*

; ð6Þ

FS ¼ S xið Þ ! Sw
wice Sw ! Sið Þ=u*

; ð7Þ

where T(xi) and S(xi) are the temperature and salinity at the
nearest grid point to the pond bottom or edge.
[19] Equations (6) and (7) can be combined and simpli-

fied by replacing the wall temperature with the freezing
temperature at Sw, or Tw = !mSw, where m = !0.054
yielding

mS2w þ T xið Þ ! mSi þ
FTQL

FS

! "

Sw ! T xið ÞSi þ
FTQL

FS
S xið Þ

! "

¼ 0:

ð8Þ

[20] For most ponds, the salinity is low (< 4 psu [Eicken
et al., 2002]), consequently the salinity of the pond water
does not have a large influence on the edge and bottom
melting rates.
[21] A schematic of a typical melt pond heat budget is

shown in Figure 1. Solar flux, Fr, is parameterized using a
radiative transfer equation developed using observations
from fresh water leads taken between 17 June and 4 August
during the SHEBA experiment [Pegau, 2002]. Radiative
fluxes are calculated using,

Fr zð Þ #¼ PmFrn 1! e!Kmz
# $

; ð9Þ

where Pm is the proportion of shortwave energy in the band
m, Frn is the net shortwave radiation at the sea surface, Km is
the diffuse extinction coefficient, and z is the depth below
the surface. Information on the band characteristics is
provided in Table 1. The use of four exponents is driven by
the need to resolve radiative heating in a very shallow
surface layer and to capture the rapid change with
wavelength in the absorption coefficient of water from less
than 0.1 to greater than 300 m!1. Accurate estimation of the
near infrared absorption requires expanding the number of
exponents in regions near the surface where absorption
coefficients change rapidly.
[22] Shortwave radiation reaching the pond bottom is

either reflected upward by the ice under the pond or
transmitted below the pond. Pond observations [Podgorny
and Grenfell, 1996] suggest that the bottom albedo ranges
from 0.7 to 0.2 depending on the thickness of the underly-
ing ice layer. Thinner underlying ice will typically transmit
more visible light because of less air bubbles and more brine
filled pockets. In the LES model, we set the pond bottom
albedo to 0.7. Longer-period experiments with the bulk
pond model employ a variable bottom albedo based on
observed values. Absorption of radiation reflected off the
bottom is parameterized using equation (9) as if the depth
were continuing to increase back to the surface,

Fr zð Þ "¼ PmabFr zbð Þ 1! e!Km zb!zð Þþzb½ (
% &

; ð10Þ

where Fr(zb) is the radiation intensity at the bottom of the
pond with depth zb, and ab is the pond bottom albedo. In
equation (10), the depth dependence of wavelength proper-
ties in the formula are retained.

Figure 1. Schematic of heat fluxes controlling melting of ice edge in an idealized melt pond. Fluxes are
the combined sensible, latent, and longwave, Ft; solar, Frn; sidewall, Fs; and bottom, Fb.

Table 1. Band Characteristics Used to Determine the Shortwave
Radiation Absorbed in a Freshwater Layera

Wavelength
Range

350–700 nm,
m = 1

700–900 nm,
m = 2

900–1100 nm,
m = 3

>1100 nm,
m = 4

Pm 0.481 0.194 0.123 0.202
Km 0.18 3.25 27.5 300

aP is a function of cloud conditions, and K is a function of material in the
water.
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A numerical study of melt ponds Eric D. Skyllingstad & Clayton A. Paulson  J. GEOPHYSICAL RESEARCH, 112, c08015, (2007)
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Radiative energy flux in ponds
The Beer -Lambert  law
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III. EXTERNAL SOURCE OF RADIATION (REVIEWED)

A layer of fluid is enclosed between two parallel square horizontal planes of lateral size L and gap H . The two
planes are kept at fix prescribed temperatures. Furthermore a mono-chromatic radiative source is impinging on the
fluid from the bottom. The planes are perfect transmitter of radiation.

A. Equations of motion and physical parameters

The equations of motion for the incompressible velocity field u(x, y, z) and the temperature field T (x, y, z) are:

∂tu+ (u · ∂)u = −
1

ρ0
∂p+ ν ∂2

u+ β(T − T0)gez, ∂ · u = 0 (36)

∂tT + (u · ∂)T = κ ∂2T +
1

ρ0cp
∂zFr(z) (37)

with

ν kinematic viscosity m2s−1

κ thermal diffusivity m2s−1

β thermal expansion coefficient K−1

g gravity acceleration m s−2

cp specific heat capacity at constant pressure J Kg−1K−1

ρ0 fluid density at temperature T0 Kg m−3.

where Fr(z) is the radiative flux. According to a simple model based on the Beer-Lambert law

Fr(z) = Fr,in(z) + Fr,out(z) (38)

Fr,in(z) = I0 (1− e−αz) (39)

Fr,out(z) = ab Fr,in(H)(1 − e−(2H−αz)) (40)

with

α absorption coefficient m−1

I0 Irradiance on the bottom plate W m−2

ab the upper plate albedo −

The boundary conditions (BC) are:

vertical (along z) u(x, y, 0) = u(x, y,H) = 0 , T (x, y, 0) = Tbot , T (x, y,H) = Ttop (41)

lateral (along x) u(0, y, z) = u(L, y, z) , T (0, y, z) = T (L, y, z) (42)

lateral (along y) u(x, 0, z) = u(x, L, z) , T (x, 0, z) = T (x, L, z) (43)

B. Dimensionless form

1. It is customary to define a modified pressure P ≡ p + ρ0βgT0z, such as to make the term with T0 disappear
from the equations of motion.

2. A temperature gap is defined ∆T ≡ Tbot − Ttop and the zero reference value for the temperature is chosen as
Tm = (Ttop+Tbot)/2. In such a way the temperature BC take the form T (x, y, 0) = ∆T/2 , T (x, y,H) = −∆T/2.

3. We introduce the dimensionless variables t̃ = t κ/H2, ∂̃ = ∂H , ũ ≡ u H/κ , T̃ ≡ T/∆T , ρ̃ = ρ/ρ0
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Irradiance
absorption coefficient

z

wall albedo

where wice = ri/ro d represents a velocity of the ice surface
associated with ice growth or melting, huiToi and huiSoi
represent the subgrid heat and salinity boundary fluxes into
the pond near the ice edge, respectively, d is the ice melting
or growth rate, ri = 920 kg m!3 is the ice density, and QL =
L/cp, where L = 3.34 " 105 J Kg!1 is the latent heat of
fusion and cp = 4000 J (Kg !C)!1 is the specific heat of
water. Scaling equations (4) and (5) with u* as defined
above, and integrating vertically results in two nondimen-
sional functions

FT ¼ T xið Þ ! Tw
wiceQLð Þ=u*

; ð6Þ

FS ¼ S xið Þ ! Sw
wice Sw ! Sið Þ=u*

; ð7Þ

where T(xi) and S(xi) are the temperature and salinity at the
nearest grid point to the pond bottom or edge.
[19] Equations (6) and (7) can be combined and simpli-

fied by replacing the wall temperature with the freezing
temperature at Sw, or Tw = !mSw, where m = !0.054
yielding

mS2w þ T xið Þ ! mSi þ
FTQL

FS

! "

Sw ! T xið ÞSi þ
FTQL

FS
S xið Þ

! "

¼ 0:

ð8Þ

[20] For most ponds, the salinity is low (< 4 psu [Eicken
et al., 2002]), consequently the salinity of the pond water
does not have a large influence on the edge and bottom
melting rates.
[21] A schematic of a typical melt pond heat budget is

shown in Figure 1. Solar flux, Fr, is parameterized using a
radiative transfer equation developed using observations
from fresh water leads taken between 17 June and 4 August
during the SHEBA experiment [Pegau, 2002]. Radiative
fluxes are calculated using,

Fr zð Þ #¼ PmFrn 1! e!Kmz
# $

; ð9Þ

where Pm is the proportion of shortwave energy in the band
m, Frn is the net shortwave radiation at the sea surface, Km is
the diffuse extinction coefficient, and z is the depth below
the surface. Information on the band characteristics is
provided in Table 1. The use of four exponents is driven by
the need to resolve radiative heating in a very shallow
surface layer and to capture the rapid change with
wavelength in the absorption coefficient of water from less
than 0.1 to greater than 300 m!1. Accurate estimation of the
near infrared absorption requires expanding the number of
exponents in regions near the surface where absorption
coefficients change rapidly.
[22] Shortwave radiation reaching the pond bottom is

either reflected upward by the ice under the pond or
transmitted below the pond. Pond observations [Podgorny
and Grenfell, 1996] suggest that the bottom albedo ranges
from 0.7 to 0.2 depending on the thickness of the underly-
ing ice layer. Thinner underlying ice will typically transmit
more visible light because of less air bubbles and more brine
filled pockets. In the LES model, we set the pond bottom
albedo to 0.7. Longer-period experiments with the bulk
pond model employ a variable bottom albedo based on
observed values. Absorption of radiation reflected off the
bottom is parameterized using equation (9) as if the depth
were continuing to increase back to the surface,

Fr zð Þ "¼ PmabFr zbð Þ 1! e!Km zb!zð Þþzb½ (
% &

; ð10Þ

where Fr(zb) is the radiation intensity at the bottom of the
pond with depth zb, and ab is the pond bottom albedo. In
equation (10), the depth dependence of wavelength proper-
ties in the formula are retained.

Figure 1. Schematic of heat fluxes controlling melting of ice edge in an idealized melt pond. Fluxes are
the combined sensible, latent, and longwave, Ft; solar, Frn; sidewall, Fs; and bottom, Fb.

Table 1. Band Characteristics Used to Determine the Shortwave
Radiation Absorbed in a Freshwater Layera

Wavelength
Range

350–700 nm,
m = 1

700–900 nm,
m = 2

900–1100 nm,
m = 3

>1100 nm,
m = 4

Pm 0.481 0.194 0.123 0.202
Km 0.18 3.25 27.5 300

aP is a function of cloud conditions, and K is a function of material in the
water.
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Bottom wall albedo

Irradiance at the top boundary



A very idealised model system

A bottom-up Rayleigh-Bénard system"
!
• reverted buoyancy"
• shortwave incoming radiation flux   "
• transparent boundaries"
• fixed temperature and no-slip on horizontal walls"
• periodicity on vertical walls 

º K

H

L
L

Cubic RB cell with monochromatic shortwave-radiation source
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and

vertical (along z̃) ũ(x̃, ỹ, 0) = ũ(x̃, ỹ, 1) = 0 , T̃ (x̃, ỹ, 0) = 1/2 , T̃ (x̃, ỹ, 1) = �1/2 (8)

lateral (along x̃) ũ(0, ỹ, z̃) = ũ(Ar, ỹ, z̃) , T̃ (0, ỹ, z̃) = T̃ (Ar, ỹ, z̃) (9)

lateral (along ỹ) ũ(x̃, 0, z̃) = ũ(x̃, Ar, z̃) , T̃ (x̃, 0, z̃) = T̃ (x̃, Ar, z̃) (10)

with

Pr = ⌫
 Prandtl number

Ra = � g�TH3

⌫ Rayleigh number

Er = ↵H Extinction ratio

Bo = I0H
⇢0cp�T Radiative over conductive flux ratio

Ar = L
H Aspect ratio

Rar = Ra Bo = � g I0 H4

⇢0cp⌫ 2 Radiant Rayleigh number

Therefore we can also write:

@t̃ũ+ (ũ · @̃)ũ = �@̃P̃ + Pr @̃2ũ+ Pr Ra T̃ez̃ (11)

@t̃T̃ + (ũ · @̃)T̃ = @̃2T̃ +
Rar
Ra

Er e�Erz̃ (12)

Note that if we define a new dimensionless temperature T̆ = Ra T̃ the system of equations becomes:

@t̃ũ+ (ũ · @̃)ũ = �@̃P̃ + Pr @̃2ũ+ Pr T̆ez̃ (13)

@t̃T̆ + (ũ · @̃)T̆ = @̃2T̆ +Rar Er e�Erz̃ (14)

This coincides with the adimensionalization adopted by Bo↵etta & Nield [], which has the advantage of not having a
singularity in the limit Ra ! 0.

C. Conductive-radiative solution

When the fluid is at rest we obtain the solution

T̃ (z̃) = �z̃ +
1

2
+

Bo

Er

�
(1� e�Erz̃)� (1� e�Er)z̃

�
(15)

which corresponds in dimensional form to

T (z) = ��T

H
z + Tbot +

Q

↵

⇣
(1� e�↵z)� (1� e�↵H)

z

H

⌘
(16)

The maximum value of the temperature is T (z)max for Er =
see figure ??.
The global mean value is

hT̃ iV =
Bo

Er

✓
1

2
+

1

Er
e�Er � 1

Er
+

1

2
e�Er

◆
(17)

This function reaches a maximum hT̃ iV ' 0.07 Bo for Er = 2.688 ' e.

D. Mean global heat flux

In order to compute the mean heat flux along the vertical direction averaging is performed over time and horizontal
spatial directions,

h. . .i ⌘ lim
T!1

1

T L2

Z T

0

Z L

0

Z L

0
. . . dt dx dy,

A very idealised system
dimensionless form

Equations of motion

Control parameters
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with
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Er = αH Extinction ratio

Rar = Ra Bo = β g I0 H4

ρ0cpν κ2 Radiant Rayleigh number

Bo = I0H
ρ0cpκ∆T Radiative over conductive flux ratio

Pr = ν
κ Prandtl number

Ar = L
H Aspect ratio
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∂t̃ũ+ (ũ · ∂̃)ũ = −∂̃P̃ + Pr ∂̃2
ũ+ Pr Ra T̃ez̃ (49)

∂t̃T̃ + (ũ · ∂̃)T̃ = ∂̃2T̃ +
Rar
Ra

Er e−Erz̃ (50)

Note that if we define a new dimensionless temperature T̆ = Ra T̃ the system of equations becomes:

∂t̃ũ+ (ũ · ∂̃)ũ = −∂̃P̃ + Pr ∂̃2
ũ+ Pr T̆ez̃ (51)

∂t̃T̆ + (ũ · ∂̃)T̆ = ∂̃2T̆ +Rar Er e−Erz̃ (52)

This coincides with the adimensionalization adopted by Barletta & Nields [], which has the advantage of not having
a singularity in the limit Ra → 0.

C. Conductive-radiative solution

When the fluid is at rest we obtain the solution

T̃ (z̃) = −z̃ +
1

2
+

Rar
Ra Er

(

(1− e−Erz̃)− (1− e−Er)z̃
)

(53)

which corresponds in dimensional form to

T (z) = −
∆T

H
z + Tbot +

Q

κα

(

(1− e−αz)− (1− e−αH)
z

H

)

(54)

The maximum value of the temperature is T (z)max for Er =
see figure 2.
The global mean value is

⟨T̃ ⟩V =
Rar

Ra Er

(

1

2
+

1

Er
e−Er −

1

Er
+

1

2
e−Er

)

(55)

This function reaches a maximum ⟨T̃ ⟩V ≃ 0.07 Rar

Ra for Er = 2.688 ≃ e.
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FIG. 1: Several no-convective temperature profiles at increasing radiation intensity Bo and fixed Er.

in dimensionless units this is

h. . .i ⌘ lim
T̃!1

1

T̃ Ar2

Z T̃

0

Z Ar

0

Z Ar

0
. . . dt̃ dx̃ dỹ.

We apply the averaging to eq.(2)

@z

⇣
hũzT̃ i � @̃zhT̃ i � Bo(1� e�Erz̃)

⌘
= 0 (18)

therefore:

J̃ = const. = hũzT̃ i � @̃zhT̃ i � Bo(1� e�Erz̃) = Nu(z̃)� Bo(1� e�Erz̃) (19)

the quantity J̃ does not depend on the height z̃.
And by averaging over z̃

J̃ =

Z 1

0
Nu(z̃) dz̃ +Bo(

1

Er
� 1� e�Er

Er
) = Nu�Bo+

Bo

Er
(1� e�Er) (20)

or

J̃ = Nu+
Rar
Ra

✓
1� e�Er

Er
� 1

◆
(21)

In the di↵usive-radiative case

J̃d+r = 1�Bo+
Bo

Er
(1� e�Er) (22)

J̃

J̃d+r

=
Nu�Bo+ Bo

Er (1� e�Er)

1�Bo+ Bo
Er (1� e�Er)

(23)

Rar dependence 
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In the diffusive case

J̃c = 1 +
Rar
Ra

(

1− e−Er

Er
− 1

)

(61)

J̃

J̃c
=

⟨Nu⟩V + Rar

Ra

(

1−e−Er

Er − 1
)

1 + Rar

Ra

(

1−e−Er

Er − 1
) (62)

J̃(z̃) ≡ uzT − ∂zT = 1 +
Rar

Ra Er

(

1− e−Er
)

−
Rar
Ra

e−Er z + ⟨uzT ⟩V (63)

J̃(z̃) ≡ ũz̃T̃ − ∂z̃ T̃ = 1 +
Rar
Ra

(

1− e−Er

Er
− e−Er z̃

)

+ ⟨ũz̃T̃ ⟩V (64)

IV. MELTING

(

∂T̃

∂z̃

)

z̃=z̃m

=
1

Ste

dz̃m
dt̃

(65)

Ste =
cp ∆T

L
(66)

̸=
T̃top + T̃bot

2
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FIG. 2: Several no-convective temperature profiles at increasing radiation intensity Bo and fixed Er.

D. Mean global heat flux

In order to compute the mean heat flux along the vertical direction averaging is performed over time and horizontal
spatial directions,

f ≡ lim
T →∞

1

T L2

∫ T

0

∫ L

0

∫ L

0
. . . dt dx dy,

in dimensionless units this is

⟨. . .⟩ ≡ lim
T̃ →∞

1

T̃ Ar2

∫ T̃

0

∫ Ar

0

∫ Ar

0
. . . dt̃ dx̃ dỹ.

We apply the averaging to eq.(2)

∂z
(

uzT (z)− ∂zT (z)− Fr(z)
)

= 0 (56)

∂z̃
(

ũzT̃ − ∂̃z T̃ − Bo(1− e−Erz̃)
)

= 0 (57)

therefore:

J̃ = Nu(z̃)− Bo(1− e−Erz̃) = const. (58)

the quantity J̃ does not depend on the height z̃.
And by averaging over z̃

J̃ =

∫ 1

0
Nu(z̃) dz̃ +Bo(

1

Er
− 1−

e−Er

Er
) = ⟨Nu⟩V −Bo+

Bo

Er
(1− e−Er) (59)

or

J̃ = ⟨Nu⟩V +
Rar
Ra

(

1− e−Er

Er
− 1

)

(60)

not constant
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IV. MELTING

κ

(

∂T

∂z

)

z=zm

=
1

St

dzm
dt

(65)
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in dimensionless units this is

h. . .i ⌘ lim
T̃!1

1

T̃ Ar2

Z T̃

0

Z Ar

0

Z Ar

0
. . . dt̃ dx̃ dỹ.

We apply the averaging to eq.(2)

@z

⇣
hũzT̃ i � @̃zhT̃ i � Bo(1� e�Erz̃)

⌘
= 0 (18)

therefore:

J̃ = const. = hũzT̃ i � @̃zhT̃ i � Bo(1� e�Erz̃) = Nu(z̃)� Bo(1� e�Erz̃) (19)

the quantity J̃ does not depend on the height z̃.
And by averaging over z̃

J̃ =

Z 1

0
Nu(z̃) dz̃ +Bo(

1

Er
� 1� e�Er

Er
) = Nu�Bo+

Bo

Er
(1� e�Er) (20)

or

J̃ = Nu+
Rar
Ra

✓
1� e�Er

Er
� 1

◆
(21)

In the di↵usive-radiative case

J̃d+r = 1�Bo+
Bo

Er
(1� e�Er) (22)

J̃

J̃d+r

=
Nu�Bo+ Bo

Er (1� e�Er)

1�Bo+ Bo
Er (1� e�Er)

(23)

Heat can flow out from both plates



Convective instability
From linear stability analysis  
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• Radiation always destabilises the system, even when stably stratified 
( ΔT < 0 ) 

• Optimal Er value ~ 6  
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More details in:"
!
Finite Volume vs. Streaming-based Lattice Boltzmann algorithm for fluid-dynamics simulations:  
a one-to-one accuracy and performance study 
Kalyan Shrestha, Gilmar Mompean, Enrico Calzavarini   ArXiv.org/abs/1505.03271

Numerical  simulations

Lattice Boltzmann"
 method"

2 implementations 
standard, efficient, regular grid

finite-volume , expensive, wall-stretched grid

Convective state
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Figure 11: Root-mean-square temperature profiles Trms, averaged over time and horizontal planes, as a function
of the cell height z up to the cell center height. In the inset, a zoomed in view of the lower 10% of the cell.

ones obtained by Kunnen et al. [47] for a three-dimensional (3D) simulation of a RB system
(Fig. 9) characterised by: Ra = 2.5 · 106, Pr = 1 and Ar = 2 (see also [48]). In this condition
the 3D system dynamics is already highly chaotic (or moderately turbulent). In [47] the authors
employed a direct numerical simulation based on a staggered finite-difference discretisation of
the Navier-Stokes - Boussinesq equation system. The grid they adopted has size (Nx, Ny, Nz) =
(128, 128, 64), it is uniform in the horizontal directions and has a sinh-type refinement (the
same as in (16)) in the vertical direction. Our benchmark is as follow, we perform two series of
simulations, one with the ST method and the other with the FV approach, the dimensionless
parameters for the two cases are the same as the ones of Kunnen et al., as well as the number
of grid points per direction. However, while the ST uses a uniform grid in the FV case we use
exactly the same grid as the one adopted in the finite-difference simulation [47]. The table 1
reports the numerical values of the parameters adopted for the two LB simulations. Note that
the large scale velocity U which is roughly proportional to the so called free-fall velocity, i.e.
U ∼

√
βg∆TH is the same in both simulations. It is a good practice in LB simulations to always

keep control of the large-scale velocity in order to prevent it to take too large values: it is worth
reminding that in order to reproduce the incompressible fluid-dynamics the condition U ≪ 1 is
required (a commonly accepted rule of thumb in LB practice is U ≃ 0.1). In order to reach a
good convergence of the statistical observables in the system the RB simulations are carried on
for a total time (ttot) which spans over several large eddy turnover times (T ). We estimate that
ttot ≃ 12 T for both FV and ST simulations, with T computed from the zero-crossing time value
of the autocorrelation function of the total kinetic energy.

In the figures 10 and 11 we show a comparison of the vertical mean temperature profile (Tm)
(averaged over horizontal planes and time) and of the vertical root-mean-square temperature

16

LB FINITE-VOLUME
LB STANDARD

http://arxiv.org/find/physics/1/au:+Shrestha_K/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+Mompean_G/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+Calzavarini_E/0/1/0/all/0/1
http://ArXiv.org/abs/1505.03271


Steady Convection
Close to onset   
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Effect of absorption depth  (Er) 
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Mean global temperature  vs. Ra
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Combining Eq. (9) with Eq. (8) and recalling that in the conductive case one has

−T
′(c)
T = 1 +

Bo

Er

[

1− e−Er − Er e−Er
]

(10)

T
′(c)
B = −1−

Bo

Er

[

1− Er − e−Er
]

(11)

(12)

the convective vertical heat flux can also be expressed as follows:

⟨uzT ⟩ = −T
′

T + T
′(c)
T = −T

′

B + T
′(c)
B , (13)

so that

⟨uzT ⟩ = −
T

′

T + T
′

B

2
+

T
′(c)
T + T

′(c)
B

2
(14)

or, equivalently,

⟨uzT ⟩ = −
1

2

[(

T
′

T − T
′(c)
T

)

+
(

T
′

B − T
′(c)
B

)]

. (15)

The horizontally averaged convective and conductive fluxes can be related by averaging Eq. (2) over [0, L]2× [zB , z]
and time to find

uzT (z) = T
′

(z)− T
′

B +Bo
(

1− e−Er z
)

. (16)

Averaging J = uzT − ∂zT over the horizontal and time and applying Eqs. (16,8,14) gives

J = ⟨uzT ⟩+ 1−Bo

[

3

2

(

1 + e−Er
)

−
1

Er

(

1− e−Er
)

]

−Bo e−Er z. (17)

We observe that evaluating J(z) at the boundaries we have:

JB − JT +Bo
(

1− e−Er
)

= 0, (18)

that is equivalent to Eq. (8) since JB = −T
′

B and JT = −T
′

T .

C. Mean temperature

To obtain the mean temperature we can integrate z2 · (2), which yields

⟨T ⟩ =
Bo

Er2

[

e−Er

(

1 + Er +
Er2

2

)

− 1

]

−
T

′

T + 1

2
− ⟨zuzT ⟩. (19)

In the conductive case, the mean temperature then is

⟨T (c)⟩ =
Bo

Er2

[

e−Er

(

1 +
Er

2

)

+
Er

2
− 1

]

, (20)

as it can be also verified by integrating over z the conductive profile

T̃ (c)(z) = −z +
1

2
+

Bo

Er

[(

1− e−Er z
)

−
(

1− e−Er
)

z
]

. (21)

Using Eq. (21) and Eq. (9) it is possible to rewrite Eq. (19) in the following form:

⟨T ⟩ = ⟨T (c)⟩ −

〈(

z −
1

2

)

uzT

〉

. (22)

The above relation links the mean temperature to its expression in the conductive case, given by Eq. (20). Using
⟨uzT ⟩ ≥ 0 (see Eq. (25)) we have

⟨T ⟩ ≤ ⟨T (c)⟩ − ⟨zuzT ⟩ . (23)

D. Goluskin, E.A. Spiegel, Convection driven by internal heating, Phys. Lett. A 377, 83–92 (2012).
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• becomes negligible as turbulence (Ra) increases at Rar/Ra = const  and Er = const.



Consequences for heat flux in ponds
Increasing pond depth  h             Ra ~ h3    ,  Rar ~ h4   ,  Er ~ h 
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Consequences for heat flux in ponds
Increasing pond depth  h             Ra ~ h3    ,  Rar ~ h4   ,  Er ~ h 
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Summary & Perspectives
• An optimal extinction ratio (Er) exists. "

• Radiation heating increases the heat flux but becomes negligible as 
turbulence (Ra) increases and Rar/Ra = const  and Er = const."

• However the pond grows (h larger), relative importance of radiation can not 
be overlooked

• Better explore the Nu(Ra,Rar,Er) relation"

• Implement more refined boundary conditions (imposed 
temperature flux, radiative bc, upper wind shear, etc.) "

• Introducing bottom ice melting effect



Melting

2

and

vertical (along z̃) ũ(x̃, ỹ, 0) = ũ(x̃, ỹ, 1) = 0 , T̃ (x̃, ỹ, 0) = 1/2 , T̃ (x̃, ỹ, 1) = �1/2 (8)

lateral (along x̃) ũ(0, ỹ, z̃) = ũ(Ar, ỹ, z̃) , T̃ (0, ỹ, z̃) = T̃ (Ar, ỹ, z̃) (9)

lateral (along ỹ) ũ(x̃, 0, z̃) = ũ(x̃, Ar, z̃) , T̃ (x̃, 0, z̃) = T̃ (x̃, Ar, z̃) (10)

with

Pr = ⌫
 Prandtl number

Ra = � g�TH3

⌫ Rayleigh number

Er = ↵H Extinction ratio

Bo = I0H
⇢0cp�T Radiative over conductive flux ratio

Ar = L
H Aspect ratio

Rar = Ra Bo = � g I0 H4

⇢0cp⌫ 2 Radiant Rayleigh number

Therefore we can also write:

@t̃ũ+ (ũ · @̃)ũ = �@̃P̃ + Pr @̃2ũ+ Pr Ra T̃ez̃ (11)

@t̃T̃ + (ũ · @̃)T̃ = @̃2T̃ +
Rar
Ra

Er e�Erz̃ (12)

Note that if we define a new dimensionless temperature T̆ = Ra T̃ the system of equations becomes:

@t̃ũ+ (ũ · @̃)ũ = �@̃P̃ + Pr @̃2ũ+ Pr T̆ez̃ (13)

@t̃T̆ + (ũ · @̃)T̆ = @̃2T̆ +Rar Er e�Erz̃ (14)

This coincides with the adimensionalization adopted by Bo↵etta & Nield [], which has the advantage of not having a
singularity in the limit Ra ! 0.

C. Conductive-radiative solution

When the fluid is at rest we obtain the solution

T̃ (z̃) = �z̃ +
1

2
+

Bo

Er

�
(1� e�Erz̃)� (1� e�Er)z̃

�
(15)

which corresponds in dimensional form to

T (z) = ��T

H
z + Tbot +

Q

↵

⇣
(1� e�↵z)� (1� e�↵H)

z

H

⌘
(16)

The maximum value of the temperature is T (z)max for Er =
see figure ??.
The global mean value is

hT̃ iV =
Bo

Er

✓
1

2
+

1

Er
e�Er � 1

Er
+

1

2
e�Er

◆
(17)

This function reaches a maximum hT̃ iV ' 0.07 Bo for Er = 2.688 ' e.

D. Mean global heat flux

In order to compute the mean heat flux along the vertical direction averaging is performed over time and horizontal
spatial directions,

h. . .i ⌘ lim
T!1

1

T L2

Z T
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Z L

0

Z L

0
. . . dt dx dy,

melting"
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In the diffusive case

J̃c = 1 +
Rar
Ra

(

1− e−Er

Er
− 1

)

(61)

J̃

J̃c
=

⟨Nu⟩V + Rar

Ra

(

1−e−Er

Er − 1
)

1 + Rar

Ra

(

1−e−Er

Er − 1
) (62)

J̃(z̃) ≡ uzT − ∂zT = 1 +
Rar

Ra Er

(

1− e−Er
)

−
Rar
Ra

e−Er z + ⟨uzT ⟩V (63)

J̃(z̃) ≡ ũz̃T̃ − ∂z̃ T̃ = 1 +
Rar
Ra

(

1− e−Er

Er
− e−Er z̃

)

+ ⟨ũz̃T̃ ⟩V (64)

IV. MELTING

(

∂T̃

∂z̃

)

z̃=z̃m

=
1

Ste

dz̃m
dt̃

(65)

Ste =
cp ∆T

L
(66)
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+ ⟨ũz̃T̃ ⟩V (64)

IV. MELTING

(

∂T̃

∂z̃

)

z̃=z̃m

=
1

Ste

dz̃m
dt̃

(65)

Ste =
cp ∆T

L
(66)

1984, and reference therein). These can be divided into two main
groups: moving mesh front tracking methods and fixed grid
numerical techniques. The former group solves different governing
equations in each of the phases and latent heat effects enter via the
heat balance boundary condition at the melting/freezing front. The
latter group uses a static mesh and the same differential equations
are applied in both phases. The position of the phase interface is
then recovered from the temperature solution and the phase
diagram.

The goal of this paper is to propose, implement and critically
test suitable numerical tools for simulating a solidifying/melting
system whose dynamics is closely coupled with convection in
the melt. We start from two different codes that solve motion in
a fluid: the finite element open source code Elmer (CSC – IT Center
for Science, 2010), in which we use the formulation for a moving
grid method, and the finite volume code StagYY (Tackley, 1993,
1996, 2008), in which we implemented the dynamic treatment of
melting/solidification on a fixed grid.

These numerical tools are subsequently applied to benchmark
test cases. We present a detailed comparison of heat flow, phase
change front tracking and the nature of convection. The applicabil-
ity of the different approaches is carefully analyzed and discussed.

In addition, we present a qualitative comparison of the three-
dimensional numerical results with experimental work of Davis
et al. (1984).

Finally, we focus on the thermal evolution of the magma ocean
solidifying in the deep mantle during early Earth’s history. We de-
rive scaling relations for the heat transfer and apply these scalings
to the BMO.

2. Physical model

In this section we describe the physics of a pure substance
undergoing a crystallization/melting phase change. A Newtonian
incompressible liquid in a domain X 2 R2 changes phase at a fixed
temperature TM. In the molten region, density differences due to
temperature gradients induce convection through a buoyancy
force term.

The basic set of conservation equations for mass and momen-
tum in the Boussinesq approximation holds in the liquid:

r ! v ¼ 0; ð1Þ
1
Pr

Dv
Dt
¼ %rpþr ! g rv þ ðrvÞT

! "! "
þ RaTez; ð2Þ

written in a dimensionless form. Length is scaled by the vertical
thickness of the whole domain L, velocity vector v by j=L, with
j the thermal diffusivity, time t by the diffusion time L2=j and
pressure p by jgL=L2 with gL the dynamic viscosity of the liquid.
ez is a unit vector along a vertical direction pointing upward and
g the dimensionless viscosity scaled by gL. The solid is consid-
ered to be a non deformable medium with zero velocity
everywhere.

The definition of the total time derivative D'
Dt depends on the

chosen reference frame. For the Eulerian description of motion
D'
Dt ¼

@'
@t þ ðvrÞ', which reduces to D'

Dt ¼
d'
dt when using the Lagrang-

ian description of motion.
There are two dimensionless numbers appearing from the nor-

malization of the conservation equations. The first one is the Pra-
ndtl number Pr, which is the ratio between momentum diffusion
and thermal diffusion,

Pr ¼ gL

q0j
; ð3Þ

where q0 is the density at the temperature of the coldest wall. The
second is the Rayleigh number, which relates the driving forces to
the resistive mechanisms,

Ra ¼ gaL3q0DTt

jgL
; ð4Þ

where g is the gravitational acceleration and a is the thermal expan-
sion coefficient. DT t ¼ T 0C % T 0H is the total super-isentropic temper-
ature difference between the hot (T 0 ¼ T 0H) and the cold (T 0 ¼ T 0C)
boundaries (prime denotes physical dimension).

The third governing equation applying to liquid and solid, en-
ergy conservation without any volumetric heat source, is written
as

DT
Dt
¼ r2T: ð5Þ

The temperature field T is scaled as T ¼ ðT 0 % T 0CÞ=ðT
0
H % T 0CÞ. Normal-

ized temperature T is thus bounded by 0 and 1 in the computational
cavity.

Thermodynamical properties (thermal diffusivity j, heat capac-
ity at constant pressure CP, thermal conductivity k) are considered
to be constant and independent of temperature, and are the same
for the liquid and solid. Density is also taken to be constant and the
same for both phases following the Boussinesq approximation
(density variations due to temperature gradients are only consid-
ered in the buoyancy term).

At the phase change interface, the following conditions must be
verified. There are three requirements on temperature: continuity
of temperature that is equal to the melting temperature, ½T)þ% ¼ 0,
and T ¼ TM, and a jump in the heat flux corresponding to the re-
lease or consumption of latent heat L (Crank, 1984; Davis, 2001),

½rT ! n)þ% ¼ Stu ! n: ð6Þ

The brackets ½ )þ% indicate the jump of a given quantity over the
phase interface. u ¼ ðux;uzÞ is the velocity of the phase change
boundary and n ¼ ðnx; nzÞ its unit normal vector pointing toward
the liquid, cf. Fig. 1. The Stefan number St is

St ¼ L

CPDTt
: ð7Þ

It compares the latent heat to the specific heat CP. The larger St, the
more important latent heat effects are and thus the slower the
interface moves.

In terms of velocity constraints, the melting front is a no-slip
boundary, i.e. for a unit tangent vector t, the condition v ! t ¼ 0
must be fulfilled. The next condition results from mass balance
allowing the density change over the phase transition. Suppose
that the geometry of the solidifying system is as in Fig. 1, with
the position of the interface described by the function z ¼ hðx; tÞ.
Then the vertical velocity of the interface, uz, must satisfy (Davis,
2001)

Dquz ¼ qL vz % vx
@h
@x

# $
; ð8Þ

where Dq is the difference between the densities of solid and liquid,
Dq ¼ qS % qL, and vx and vz are the horizontal and vertical

z
x
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T H

T C

Solid

Liquid

T M

   Phase
   interface

 κ , ηL

n

h(x,t)

Fig. 1. Schematic picture of a convecting liquid layer that solidifies/melts. The layer
is heated from below and cooled from above so that the upper part is frozen and the
phase transformation remains in the computing domain.
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Thanks!

www.ecalzavarini.info/research/projects/melt-ponds

More infos at: 
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