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1 Introduction

This work is devoted to the study of the Rayleigh Bénard system using Lattice Boltzmann
method of simulation with Boussinesq approximation. Using this model, the study investigates
the 2D Rayleigh Bénard problem to determine the critical Rayleigh number for a Newtonian
fluid. This is determined by two techniques. The first technique is based on the plot between
Nusselt number and Rayleigh number whereas the second technique is based on the plot in-
volving the logarithm of the average horizontal velocity squared. In this study, a Poiseuille flow
is also examined to determine the effect on the maximum velocity with the change in Pressure
gradient. A combined effect of Poiseuille flow and buoyancy effects is used to study the relation
between the critical Rayleigh number and the Reynold’s number for a Newtonian fluid. Lastly,
using the Carreau-Yasuda model the phenomenon is simulated for a Non-Newtonian fluid and
the variation between the critical Rayleigh number and Reynold’s number is studied for a shear
thickening and a shear thinning fluid.

2 Formulation

Rayleigh Bénard convection is a fundamental phenomenon found in many atmospheric and
industrial applications. It is a type of natural convection occurring in a plane of fluid heated
from below in which the fluid develops a regular pattern of convection cells known as Bénard
cells. Due to the heating of the fluid the density at the bottom becomes lighter than at the
top. If the fluid is heated sufficiently large enough, then the top state becomes unstable and
convective motion occurs. The primary instability represents a transition from diffusive thermal
conduction to stationary time independent steady convection at a critical Rayleigh number.

The formulation for Rayleigh Bénard convection using Lattice Boltzmann method is ac-
complished by establishing 2 distribution functions for the flow and temperature fields. The
distribution functions f and g are defined as probability of particles at site x at time t moving
with particle velocity ci during the interval ∆t in each lattice direction i. The two distri-
bution functions follow the Lattice Boltzmann transport equations with the single relaxation
Bhatnagar-Gross-Krook (BGK) approximation i.e.

fi(x+ ci∆t, t+ ∆t)− fi(x, t) =
∆t[feqi (x, t)− fi(x, t)]

τν
+ J̇i (2.1)

for the flow field
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gi(x+ ci∆t, t+ ∆t)− gi(x, t) =
∆t[geqi (x, t)− gi(x, t)]

τD
(2.2)

for the temperature field
Where J̇i is the momentum input from the buoyant body force, τν and τD are the relaxation

times for flow and temperature LB equations respectively.
The kinematic viscosity ν is given by ν = c2s(τν − 0.5) and the thermal diffusivity κ is given

by κ = c2s(τD − 0.5). where cs = c/
√

3 is the speed of sound.
The flow properties are defined by :
Flow density:

ρ =
∑
i

fi (2.3)

Momentum flux:
ρuA =

∑
iA

ficiA (2.4)

Temperature:
θ =

∑
i

gi (2.5)

Using the Chapman-Enskog expansion, the continuity equation and the Navier-Stokes equa-
tions can be recovered exactly at the second-order approximation from the Lattice Boltzmann
equation of the flow field. Similarly, the convective-diffusion equation can be obtained from the
Lattice Boltzmann equation of the temperature field.

The boundary conditions are implemented using the bounce back condition for the Lattice
Boltzmann method along with the no slip condition on the walls. The viscous heat dissipation
is neglected for the incompressible flow to allow the use of the Lattice Boltzmann method.

The expression used for determining the Nusselt number is as follows:

Nu =
〈vyT 〉 − κ∂y〈T 〉

κ∆T/H
(2.6)

The Rayleigh number is calculated by the following expression:

Ra =
gβ∆TH3

νκ
(2.7)

where g is the acceleration due to gravity , β is the thermal expansion coefficient and H is
the distance between the plates.

In this study, Poiseuille flow is also examined which is used as a benchmark to check the
accuracy of the model. The planar Poiseuille flow is the steady flow between infinite parallel
plates. The symmetries of the numerical geometry reduce the incompressible Navier-Stokes
equation to

−∂xp+ ∂y(ν∂yux) = 0 (2.8)

Integrating this equation one gets

−∂xpy + C1 + ν∂yux = 0 (2.9)

By symmetry we have

C1 = ∂xp
H

2
(2.10)
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The velocity in the horizontal direction is a function of y. The expression for the velocity is
as follows:

ux(y) =
∇P (y(Ny)− y2)

2ν
(2.11)

By differentiating the above equation the expression for maximum velocity is as follows:

umax =
∇P (Ny)2

8ν
(2.12)

The non Newtonian part was simulated by using the Carreau-Yasuda model. This model is
a modification of the power law. The power law is as follows:

µs(γ̇) = kγ̇n−1 (2.13)

where n is the non-dimensional power-law index , k is a constant , µ is the viscosity and
γ̇ is the shear rate. In the limit n = 1 we recover the newtonian case with µs = k. The
cases n < 1 and n > 1 represent respectively the shear thinning and shear thickening fluids.
However, the power law fails to represent real fluids in the limits of small and high shear rate.
The Carreau-Yasuda model accounts for these flaws and is expressed as follows:

µs − µ∞
µ0 − µ∞

= (1 + (λγ̇)a)(n−1)/a (2.14)

where λ is a time constant, a is a dimensionless number, µ0 and µ∞ are the viscosities at
zero and infinite shear rate.

3 Results and Discussion

The simple thermal Lattice Boltzmann model was implemented by considering natural con-
vection between the two plates by maintaining a temperature difference of 0.1. The gravity
in non dimensional terms was taken as 0.001. The relaxation times were taken as unity. The
Prandtl number for the simulations was also maintained constant at unity. The simulations
were performed by varying the value of the thermal expansion coefficient thus changing the
Rayleigh number.

The plot between Nusselt number and time for a Rayleigh number of 2250 is shown in figure
1. It shows a stable value upto the primary instability which represents a transition from
diffusive thermal conduction to stationary time independent steady convection at the critical
Rayleigh number. The velocity profile for fully developed Rayleigh Bénard cells is shown in
figure 2. The temperature profiles before and after the development of the Rayleigh Bénard
cells are shown in Figure 3 and 4 respectively.

The value of the critical Rayleigh Number was found out for a Newtonian fluid by measuring
the steady state value of the Nusselt number. The value of the thermal expansion coefficient
β was varied from 0.05 to 10 thus varying the Rayleigh number from 225 to 45000. At each
value of β the simulation was made to run for a time step equal to 200000 and the steady
state value of the Nusselt number was recorded.The critical Rayleigh number obtained by this
method was 1845. However, since the simulation would run for only a fixed time step this
method would not lead to an accurate value of the critical Rayleigh number as the more we
reach closer to the critical value the greater time it would take for development of the Bénard
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cells. An approximate emperical relation between the Nusselt number and Rayleigh number is
as follows :

Nu = 1.56(
Ra

Rac
)0.296 (3.1)

A comparison between the plot obtained between Nu and Ra and the emperical relation is
shown in Figure 5.

The second technique based on the average horizontal velocity was a more accurate tech-
nique. It involved finding out the slope of the graph between logarithm of average horizontal
velocity squared with time. It was observed that the critical Rayleigh number value is obtained
when the slope of this graph is zero. The value of slope is measured for 2 different resolutions.
First by keeping the elements in the X direction equal to 101 and in the Y direction equal to 50
and then doubling the value. The critical values obtained were 1720.35 and 1710.9 respectively.
It was also observed that doubling the value resulted in a more accurate value of the critical
Rayleigh number. A major advantage of this method was that only by measuring the slope for
a short period it could be determined whether the Rayleigh number is greater or less than the
critical value. Thus, reducing the overall time for simulation. The graph obtained between the
slope and Rayleigh number by this method is shown in Figure 6.

The simulation based on the Poiseuille flow was implemented to check the variation in the
velocity with a change in the pressure gradient.The maximum velocity was found out by fitting
a parabola to the velocity profile. The coefficients of the parabola were then used to determine
the maximum value of the velocity. A linear plot was obtained between the pressure gradient
and the maximum velocity. The plot between the maximum horizontal velocity and the pressure
gradient is shown in Figure 7.

The simulations involving combined Poiseuille flow and buoyancy effects for a Newtonian
fluid was accomplished by simultaneously implementing the Lattice Boltzmann code for the
Rayleigh Bénard simulation and the code for Poiseuille flow. This was used to study the
relation between the Reynold’s number and the critical Rayleigh number. An approximate
procedure was adopted for finding out this relation. The value of the Nusselt number was
recorded at a time step of 100000 for a particular Rayleigh number. This was then done for
other values of Rayleigh number and the critical Rayleigh number was determined when the
value of Nusselt number showed a deviation of the order of 10−3 from the initial steady value of
1. The Reynold’s number was obtained by using the maximum velocity. The expression used
for determining the Reynold’s number is as follows:

Re =
Umax(Ny)

ν
(3.2)

where ν = (1− 0.5)/3 = 1/6 is the kinematic viscosity in non dimensional terms.
Using this method an approximate plot between the critical Rayleigh number and the

Reynold’s number was obtained and is shown in Figure 8.
The simulation for the non Newtonian fluid is accomplished by simultaneously implementing

the non-Newtonian model, the Rayleigh Bénard simulation and the code for Poiseuille flow. The
simulation was done for values of n=0.1(shear thinning) and 2(shear thickening) and the plot
between the critical Rayleigh number and the Reynold’s number was obtained. The viscosity
at infinite shear is maintained at 1/5th of the viscosity at zero shear. The graph between the
critical Rayleigh number and Reynold’s number is shown in Figure 9.
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Figure 1: Nusselt number versus time for Ra=2250
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Figure 2: Velocity profile at time step 90000 at Ra=2250

5



’production/vel.20000’ u 1:2:5

 0  20  40  60  80  100  120
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Figure 3: Temperature profile at time step 20000 at Ra=2250
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Figure 4: Temperature profile at time step 90000 at Ra=2250
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Figure 5: Nusselt number versus Rayleigh number obtained by determining the steady state
value of Nusselt number for different Rayleigh numbers

7



-1.5e-05

-1e-05

-5e-06

 0

 5e-06

 1e-05

 1.5e-05

 1700  1710  1720  1730  1740  1750
Ra

log slope < vx
2 > for nx=202 ny=100

0
log slope < vx

2 > for nx=101 ny=50

Figure 6: slope of logarithm of average horizontal velocity squared with time versus Rayleigh
number
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Figure 7: Maximum horizontal velocity versus pressure gradient for a Poiseuille flow
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Figure 8: Critical Rayleigh number versus Reynold’s number for a Newtonian fluid
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Figure 9: Critical Rayleigh number versus Reynold’s number for a Newtonian and non Newto-
nian fluid
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