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Abstract
The most common family of multi-celled organisms in the zooplankton is a
rather diversified group of crustaceans known with the name of copepods.
Among them the most numerous ones have a characteristic elongated body
shape. Copepods have a major role in the marine ecosystem because they are
the secondary producers in the ecological food-chain linking phytoplankton
cells (the primary producers) to fish larvae and even to large mammals such as
whales. Copepods are carried by marine currents in the same way suspension
of nearly neutrally buoyant particles are transported by the flow. However,
di�erently from material particles, copepods have the capability to swim and so
to add small-scale deviations to the - so called - passive trajectory. In this sense
phytoplancton (such as algae) can be thought as a suspension of small passive
particles, while zooplankton and in particular copepods may be viewed as kind
of (slightly larger and non spherical) active particles.
Copepods swimming behavior usually exhibits quick powerful jumps. Such an
aptness is used to escape from high shear regions, which may be caused either
by flow perturbations, produced by a large predator (i.e., fish larvae), or by the
inherent highly turbulent dynamics of the ocean. The research presented this
thesis is organized into three steps. First, recorded velocity tracks of copepods
displaying escape response jumps in still water are here analyzed and used to
define and tune a Lagrangian copepod (LC) model. Second, the model is further
employed to simulate the behavior of thousands of copepods in a fully devel-
oped hydrodynamic turbulent flow obtained by direct numerical simulation
of the Navier-Stokes equations. Third, numerical data analysis are performed
to quantify copepods’ dynamics in turbulence and make a comparison with
available experimental observations of copepods in turbulence.
Through this combined experimental and numerical study, we investigate
the small-scale distribution of copepods in a turbulent environment and its
dependency on the jump intensity, jump orientation, jump latency time and ge-
ometrical aspect ratio of the copepods. At last, possible ecological implications
of the observed clustering on encounter rates and mating success are provided.

Keywords: Lagrangian turbulence, Direct numerical simulation, Spec-
tral method, Fractal dimension, Copepod’s behavior
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Chapter 1

Introduction

Particulate flow modelling is a fundamental research in di�erent branches
of science and has attracted enormous interests in last decades. It is of
great importance in astronomy where formation of the planets are due
to the collision of small dust grains, also in atmospheric science where
aggregation and collision of small drops lead to rain. Another line of re-
search in simulation of particles motion suspended in fluid flows, is in
marine biology. Thousands of diversified species can be found in ocean
where their feeding and mating patterns and also the mutual e�ects of
species and oceanic flows need precise understanding of the dynamics of
these planktonic organisms.
The present study aims to better understand this latter subject by focusing
on special plankton species called copepod. The goal is to quantify cope-
pods’ dynamics in oceanic turbulent flows through a combined experi-
mental and numerical study. Turbulence is an important factor in the in-
teraction between suspended particles and the surrounding flows. Thus a
fundamental understanding of the two-phase flows and the physical pro-
cesses governing particle-turbulence interactions is needed which shed
new light on problems of biological/physical coupling.
Apart form the previous studies on the e�ect of turbulence on parti-
cle transport (Squires and Eaton, 1991; Wang and Maxey, 1993; Squires
and Yamazaki, 1995), many studies have been performed to characterize
copepods’ behavior in the aquatic environment (Strickler, 1975; Alcaraz
and Strickler, 1988; Yen and Fields, 1992; Fields and Yen, 1997), however
only few recent experimental studies (Waggett and Buskey, 2007; Yen,
Rasberry, and Webster, 2008; Moison et al., 2009; Michalec, Souissi, and
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Holzner, 2015; Michalec et al., 2015) considered copepods in turbulence
with density of copepods lower than the one that can be encountered in
the field.
In this study, we will introduce a Lagrangian Copepod (LC) model based
on experimental observations to mimic copepods’ behavior in turbulent
flows. In chapter 2 an introduction on copepods is given in order to under-
stand their geometrical shape, size, living environment, their locomotion
and also their interaction with the surrounding fluid from the point of
view of a physicist. Mechanism of the copepods’ jump, the component of
the fluid flow which copepods react to and the recent controversial stud-
ies on copepods’ dynamics are addressed in this chapter.
Chapter 3 will focus on hydrodynamic turbulence where governing equa-
tions of the fluid flows are introduced in the Eulerian framework. Homo-
geneous isotropic turbulence and basic theory of turbulence are briefly
discussed. Moreover the equations of motion of the particles are de-
scribed in detail from a Lagrangian point of view and direct numerical
simulation (DNS) of the Navier-Stokes equations using Fourier Pseudo-
spectral method is addressed in this chapter along with all the details of
the numerical methods used to perform this study.
Copepods’ trajectories from experiment, the experimental set-up and ex-
perimental data analysis are addressed in chapter 4 where key parame-
ters are quantified in copepods jumping behavior. The findings from this
chapter are used to define and develop a Lagrangian model for copepods’
dynamics in turbulent flows.
The interaction of turbulence with copepods and its possible impacts on
these microorganisms (growth rate, encounter rate and thin plankton
layer formation) are briefly discussed in chapter 5. Previous studies on
Lagrangian modeling of particles in fluid flows with focus on active swim-
mers/phytoplankton are given here, then based on our previous findings
the Lagrangian copepod (LC) model is developed and discussed in full
detail. The LC model is then tuned to be implemented in turbulence. As
a case study, the implementation of the LC model in Taylor-Green Vortex
(TGV) flow is presented at the end of chapter 5.
Copepods’ behavior is then simulated in turbulence using the LC model
and the results of the simulations are presented in chapter 6. Single point
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statistics show qualitative agreements with the available experimental ob-
servations of Michalec, Souissi, and Holzner (2015). More importantly,
small scale patchiness of copepods in turbulent flows as the main feature
of the LC model is addressed in this chapter. The e�ect of particle orien-
tational dynamics and jump latency time on the clustering are presented.
The encounter rate of copepods in the presence of turbulence is discussed
in chapter 7 where the influence of the clustering on the copepods’ contact
rate is assessed. A preliminary study of an Eulerian modeling of cope-
pods’ dynamics is described as a perspective and the main di�culties are
addressed in this chapter.
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Chapter 2

Copepods from the standpoint of
a physicist

A brief introduction on Plankton with focus on copepods will be given. Cope-
pods’ characteristics are described here and the main feature of copepods in their
interaction with fluid flow, especially turbulence are recognized. The necessary
parameters and unknowns which may play a role in numerical modeling of their
behaviour, are assessed.

2.1 Plankton’s life

Understanding the plankton’s life is essential to discover the entire ecosys-
tem. Plankton are a large number of organisms wandering in the currents.
They cover a wide range of size from microscopic viruses to krill and jel-
lyfish. Plankton is a word which refers to microorganisms having limited
swimming abilities and have drifting with the currents and flows of en-
vironment. Their living pattern is quite di�erent among species; some
of these microorganisms spend their entire life as plankton while others
only spend their larval stages as plankton. Phytoplankton and micro-Larval stage

The active immature
form of an insect bial plankton generally play an important role in the global carbon cycle.

This cycle captures the Sun’s energy and the atmosphere’s CO
2

at the sur-
face of the ocean and transfers the recycled materials throughout the food
web by larger and larger zooplankton (from micro scale to meso scale and
macro scale) and also stores it at the bottom of seas. There are basically
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two categories of plankton: zooplankton and phytoplankton. The di�er-
ences between them can be summarized as follows (Barnes and Hughes,
1999):

• Phytoplankton are plants, while zooplankton are animals.

• Phytoplankton is found on the surface of the water, where there is
a lot of sunlight. Zooplankton frequents often but not always, the
darker and cooler places in the waters.

• Any visible changes in the amount or type of phytoplankton in the
water indicates a change in ocean health.

• Phytoplankton release oxygen through the process of photosynthe-
sis.

It is interesting to know that Photosynthetic plankton organisms account
for almost half of global primary production and 90% of primary produc- Primary production

The synthesis of new
organic material from
inorganic molecules
such as H

2

O and CO
2

tion in marine ecosystems. Survival of larger zooplankton, fishes, and
marine mammals depends on these plankton. For instance, larval fish
production depends on matching/mismatching in time with larval food
production (i.e. plankton) which itself depends on natural factors (cur-
rent variation such as water temperature and nutrient availability). The
production can also be a�ected by man-made factors (e.g., river dams).
Plankton species composition is directly linked to the changes in climate,
which can change the feeding pattern of lager plankton such as larval fish
and ultimately the entire food web and ecosystem (Ray and McCormick-
Ray, 2004).
Understanding the plankton’s life at di�erent depths in the ocean allows
scientists to get a global view and better understanding of the marine
ecosystem from small to global scales.

2.2 What are Copepods?

Around two thousand years ago, scientists observed copepods, but
the word Copepod (Greek word for paddle-footed or oar-footed) was
introduced in 1830 by a french zoologist named Henri Milne Edwards
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(Damkaer, 2002). Copepods are aquatic, meaning that they can not
survive without water. This is the first law of their survival. They are also
referred as "insects of the sea". Hopefully they are not annoying as much
as real insects but they still can be harmful to human by eating fishes
infected by copepods. In this chapter the copepods will be studied mostly
in the physical point of view. Their habitats, size range, feeding pattern,
anatomy and their interaction with fluid flow will be addressed here.
Large number of literature is available on copepods (more than 57,000
publications (Morales, 2016)), however the following relevant informa-
tion which gives us a good vision to better quantify copepods’ dynamics
in physical point of view, is extracted from well-known resources, such
as A Mechanistic Approch to Plankon Ecology a book of Kiørboe (2008), The
copepodologist’s cabinet, The biographical and bibliographical history a book
of Damkaer (2002), review of Jiang and Osborn (2004) on copepods’ hy-
drodynamics and many journal articles such as Strickler (1975), Alcaraz
and Strickler (1988), Yen and Fields (1992), Fields and Yen (1997), Lenz
and Hartline (1999), Kiørboe, Saiz, and Visser (1999), Kiørboe and Visser
(1999), Lenz, Hower, and Hartline (2004), Duren and Videler (2003),
Buskey, Lenz, and Hartline (2002), Buskey and Hartline (2003), Woodson
et al. (2005), and Woodson et al. (2007). More resources and information
can be found on World Association of Copepodologists (Morales, 2016) and
website of The world of copepod (Walter and Boxshall, 2016).

2.2.1 Copepod’s habitat

Copepods are the most diversified and the largest group of crustaceans
that can be found in aquatic environment. They are a group of small zoo-
plankton who live almost everywhere there is a fresh water. They can be
found in ocean, sea, lake, rivers, or even in swamps, puddles and also un-
der the leaf fallen on wet forest. Plants growing near the seashores are
another habitat for copepods species. Some of copepods species are ac-
tive in open water while others can live in wet sands or muds. Many of
them swim near the surface of the ocean, however copepods can also be
found in deep waters around 10,000 meters, or even deeper in undersea
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caves. Some species live in extremely salty lakes on earth while some can
be found on the slopes of mountains at an elevation of 5,000 meters. Fig-
ure 2.1 shows ocean copepod diversity based on temperature, salinity and
Chlorophyll a of water (Rombouts et al., 2009). Chlorophyll a

A form of Chlorophyll
which is essential for
most photosynthetic
organisms

F����� �.�: World ocean copepod diversity. Vertical scale
bar represents log of taxonomic richness where taxonomy
means defining groups of biological organisms on the basis

of shared characteristics (Rombouts et al., 2009).

2.2.2 Copepod’s size, population density

These zooplankton (copepods) are visible by unequipped eyes. Their size
ranges from 0.2 mm to 10 mm but the typical length of copepods is 1- Size range

0.2 mm to 10 mm2 mm. There are di�erent biological classifications of copepods which
may not be interesting in physical point of view, however copepods are
found in over 250 families, 2,600 genera and the current number of ac-
cepted species is ⇠ 14,638 (Walter and Boxshall, 2016). A very detailed
and precise introduction on copepod’s classification and their evolution
can be found in Huys and Boxshall (1991). Because of their very small
size, copepods have no heart and blood vessels (there might be a group
with heart but no blood vessels). They absorb oxygen directly into their
body and for survival like other species in the world, copepods need to
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F����� �.�: Calanus glacialis, is kind of copepod with a size
of a pencil’s tip. Some adults species may be very short (0.2
mm) or very large (10 mm). Photo by Chris Linder, WHOI.

be fed. This is in fact the second law of survival. Green algae, bacteria,
rotifers, tiny insect larvae and other tiny plankton species can be a sourceRotifer

Small (50 � 1000 µm)
zooplankton that
exists in freshwater
and marine
environments

of food for the dominant forms of the marine plankton. Copepods may
attack larval fishes and even kill a fish when they come in large num-
ber. On average 1000 copepods can be found in 1 litre of water. The way
copepods capture their food at low Reynolds number was studied in de-
tail by Koehl and Strickler (1981). Copepods can be eaten by other cope-
pods. Fish, leopard frog, aquatic insects and other plankton eaters are
other predators of these multicellular animals. Copepods’ mass density
is assumed to be equal to the one of the fluid (1 mg mm�3) meaning that
they are considered to be neutrally buoyant (Kiørboe, Jiang, and Colin,
2010). The relationship of copepods in nature (their preys, predators andPopulation density

1000 species per 1 litre their shelter) is listed in table 2.1.

2.2.3 Anatomy of copepods

Copepods may di�er in shape but generally they possess shrimp-like
cylindrical body with four or five pairs of swimming legs, tail and the
antennae which are considered as the main parts of their body to swim
in fluid flow. Figure 2.3 illustrates di�erent forms of copepods and their
diversity. Detailed anatomy of a copepod is illustrated in figure 2.4. Male
and female of a the same copepod’s family might also have some di�er-
ences in their anatomy but what is important in the physical point of view
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PREY/FOOD PREDATOR SHELTER
Green Algae Creek Chub Greater Bladderwort

Amoeba Eastern Mosquitofish Long-leaf Pondweed
Euglena Eastern Lamp Mussel Common Duckweed

Paramecium Rotifer/American Eel Lizard’s Tail
Water Flea Ebony Jewelwing Common Cattail

Asian Tiger Mosquito Green Darner Common Reed
Copepod Golden Shiner Pickerelweed

Eastern Mosquitofish Greater Bladderwort Tussock Sedge
Creek Chub Largemouth Bass Buttonbush

Rotifer Three-lined Salamander Arrow Arum
Predatory Nematode Southern Leopard Frog Yellow Pond Lily
Brainworm Nematode American Toad

Flatworm Eastern Newt
Green Hydra Spring Peeper/Copepod

Northern Hog Sucker
Flatworm/Green Hydra

Fragile Forktail

T���� �.�: Relationship of copepods in nature; their
prey/food, predators and their shelter. Copepods can be

predators of other copepods species (Brandl, 2005).

is the general behaviour of these animals. For a detailed description of
copepod’s shape diversity and their anatomy comparison one can refer
to Boxshall (1985), Hausch, Shurin, and Matthews (2013), and Boxshall
(2004).

2.2.4 Copepod’s locomotion

Copepods use an array of mechanoreceptive hairs, called setae, on all
of their appendages to detect a disturbance in the surrounding environ-
ment. Their antennae possess most concentrated sensitive setae which
can act as a sensory organ to sense the changes in fluid flow. The dis-
turbance can be produced by the presence of predators (Trager, Achituv,
and Genin, 1994), foods (Yen and Strickler, 1996), mates (Duren, Stamhuis,
and Videler, 1998), by high turbulent regions in the flow (Fields and Yen,
1997) or by the changes in water quality due to dissolved chemical sub-
stances (Moore, Fields, and Yen, 1999) or even by changes in light energy
distribution (Fields et al., 2012).
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F����� �.�: Diversity of copepod’s shape. 1. Philichthys
xiphiae 2. Sarcotaces sp. 3. Calocalanus pavo 4. Farranula ros-
trata 5. Copilia vitrea 6. Paracalanus parvus 7. Clavella adunca
8. Copilia quadrata 9. Chondracanthus zei 10. Phyllothyreus cor-
nutus 11. Acanthocyclops vernalis 12. Sapphirina ovatolanceo-
lata 13. Chondracanthus ornatus 14. Corycaeus obtusus 15. Eu-
augaptilus filigerus 16. Monstrilla longispinosa 17. Sphyrion
lumpi 18. Caligus elongatus 19. Lernaeocera branchialis 20.

Oithona nana 21. Sapphirina auronitens (Bron et al., 2011).

The most important feature of copepods is their ability to exhibit a rapid
escape in the flow which is often dubbed as a jump. The escape may be
elicited by di�erent stimulus, such as photoic (PH), hydrodynamic (HY)
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F����� �.�: Anatomy of a parasitic copepod. Normally the
body consists of two main parts: the anterior (Prosome) and
posterior (Urosome). Each part contains several segments.

stimuli, etc. Due to this quick powerful jump, the hydrodynamics of
jumping copepods di�er significantly from the one of steady swimming
(foraging) copepods (Jiang and Kiørboe, 2011).
Strickler (1975), Alcaraz and Strickler (1988), and Duren and Videler
(2003) addressed how copepods use their swimming legs and antennae
to perform jumps. They discovered that a jump starts with power stroke
followed by return stroke where power stroke consists of the beating of
the first antennae and pairs of swimming legs and in the return stroke,
the legs move back to their initial position. Reaction time and force pro-
duction in power stroke were studied in Lenz and Hartline (1999) and
Lenz, Hower, and Hartline (2004) while Borazjani et al. (2010) numerically
investigated the role of the antennae in force production during jumps.
These authors showed that reversible motion of copepod’s antennae ei-
ther in rigid form or in deformable shape has large contribution to force
production while jumping. Figure 2.5 shows typical trend of force pro-
duction during a jump. This quantity is accompanied by several time pa-
rameters like latency, rise, preparation, etc which can be found in detail
in this figure. Up to now nothing has been reported on the deformation
of copepod’s shape while performing a jump.

Living in a fluid environment characterised by body-scale Reynolds
number up to 1000, copepods are subject to the physics of the flow field
both in viscous and inertial regime (Yen, 2000). Body-scale Reynolds
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F����� �.�: Force production of Undinula vulgaris giesbrechti
in response to sinusoidal stimulus as function of time. Jump
production is associated with several parameters: L latency
to forward propulsion; R rise; D kick duration; Pr prepara-
tion; P force peaks; T termination (Lenz and Hartline, 1999).

number (also called particle Reynolds number) in still water is defined
as:

Re =

vl
n

(2.1)

where v and l are animal’s velocity and length respectively and n is kine-Reynolds number
A dimensionless
quantity that is used
to help predict similar
flow patterns in
di�erent fluid flow
situations

matic viscosity of the carrier fluid.
Escape response of copepods which is followed by their interaction with
fluid flows is essential for survival of these microorganisms. Their re-
sponse to di�erent stimulus and also the threshold value to trigger the
jumps were assessed in several studies (Yen and Fields, 1992; Duren
and Videler, 2003; Buskey, Lenz, and Hartline, 2002; Buskey and Hart-
line, 2003; Fields and Yen, 1997; Woodson et al., 2005; Woodson et al.,
2007). Buskey, Lenz, and Hartline (2002) and Buskey and Hartline (2003)
recorded copepod’s swimming speed in the presence of light and hydro-
dynamic stimulus. An example of copepod’s response to disturbance can
be found in figure 2.6. Buskey, Lenz, and Hartline (2002) and Buskey
and Hartline (2003) observed that the nature of the disturbance is im-
portant and that copepods respond di�erently to di�erent stimulus. As
illustrated in figure 2.6, copepod’s velocity can reach high values like
⇠ 500 mms�1. This is huge compared to their foraging velocity (also
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called cruise) which is of the order of O(1) mm/s. This big swimming ve-
locity swings indicates that copepods can sense large range of fluid forces.
As mentioned before, copepods are a�ected either by viscosity (low body-
scale Reynolds number, considering n = 10

�6 m2

/s, l = O(1)mm and
v = O(1) mm/s, then Re ⇠ 1) or by inertia (Re > 100), thus the body-scale
Reynolds number of jumping copepods can be very large (Re ⇠ 1000)
compared to foraging copepods.
Copepods produce large acceleration during their jump. Acartia tonsa’s
acceleration in response to hydrodynamic signal is shown in figure 2.7.
Positive acceleration may associate to the power stroke when copepods
start their jumps while the return stroke (moving the swimming legs back
to initial position) leads to negative acceleration. He also reported that
male and female have lots of discrepancy in their escape response, such
as response latency time, jump speed, number of thrusts, jumps dura-
tion, etc. One can extract lots of information about copepods from table
2.2 which has listed these di�erences. Response latency time for the light
disturbance is much more than the hydrodynamic one, also males make
quick powerful jumps with more thrusts whilst females have less velocity
and acceleration but spend more time and go through more distance to
escape from the disturbance.

Male Female
Parameter PH HY PH HY
Response latency (ms) 62.2 3.6 68.2 3.5
Initial turn (deg) 74.1 82.1 41.3 45.9
Jump speed (mm s�1) 293 213 256 188
Maximum speed (mm s�1) 294 432 446 372
Max. acceleration (mm s�2) 128 163 93 112
Number of Thrusts 4.9 3.1 7.5 3.3
Minimum speed between thrusts (mm s�1) 147 166 130 133
Thrust duration (ms) 8.1 6.1 8.8 6.6
Jump duration (ms) 44.5 19.3 74.6 24.1
Distance jumped (mm) 8.6 4.2 12.5 4.6

T���� �.�: Comparison of mean escape response parameters
for adult males and adult females of Acartia tonsa stimulated
with photoic (PH) or hydrodynamic (HY) stimulus. Data

are from table 2 of Buskey and Hartline (2003).
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F����� �.�: Example of Acartia tonsa’s escape response to
photoic and hydrodynamic disturbances. Top: response
of adult male to hydrodynamic signal (Buskey, Lenz, and
Hartline, 2002). The stimulus occurred 3 ms before the ini-
tiation of the escape response (dashed line). Bottom: re-
sponse of adult female to light stimulus (Buskey and Hart-
line, 2003). The copepod was adapted to a light intensity of
100 µmol photons m�2s�1 and subjected to a 100% decrease
in light intensity. Dashed line represents the beginning of

light intensity decrease.
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F����� �.�: Acceleration of Acartia tonsa in response to hy-
drodynamic disturbances. Dashed line represents the be-

ginning of the stimulation (Buskey and Hartline, 2003).

Copepods escape from danger by exhibiting rapid jumps through the
locomotion of their swimming legs. E�ectiveness of this jump is associ-
ated to many parameters, i.e., how far from a disturbance or how fast a
copepod is and in which direction this organism escapes. Several studies
showed that copepods have di�erent jumping behavior confronting dif-
ferent stimulus (Buskey, Lenz, and Hartline, 2002; Buskey and Hartline,
2003). The jump direction of males and females also di�ers. Figure
2.8 represents di�erent jump direction of copepods male and female
(Acartia tonsa) in response to hydromechanical disturbance. Buskey,
Lenz, and Hartline (2002) revealed that escape often begins with rapid
reorientation from the source of the disturbance with maximum turning
rate of ⇠ 30

� ms�1 and the overall jump direction distribution is upward
or lateral.

2.2.5 Interaction with the flow

Basic question remains open here; what copepods sense facing the fluid
flow disturbance in order to execute this rapid jump escape and which
characteristics of the flow stimulate them to jump. The detected signals
by copepods are from velocity gradient, but one has to quantify all the
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F����� �.�: Experimental set up of Buskey, Lenz, and Hart-
line (2002). A trigger pulse stimulates a piezoelectric trans-
ducer to produce hydrodynamical disturbance. The same
pulse drives a camera. Jump direction of male (middle) and

female (left) Acartia tonsa is recorded.

quantities which are comprised of spatial gradient of the velocity com-
ponents in the fluid flow. These quantities can be shear rate, vorticity,
acceleration, etc. Many scientists tried to identify the component of the
flow which elicits escape response of copepods (Singarajah, 1969; Sin-
garajah, 1975; Landry, 1978; Landry and Gilbert, 1988; Fields and Yen,
1997; Fields and Yen, 1996; Haury, Kenyon, and Brooks, 1980). Among
them comprehensive studies of Kiørboe, Saiz, and Visser (1999), Kiørboe
and Visser (1999), Woodson et al. (2005), and Woodson et al. (2007) are of
great importance. In 1999, Kiørboe, Saiz, and Visser (1999) and Kiørboe
and Visser (1999) performed series of experiments, investigating the e�ect
of non uniform flow motion on copepods. In order to find the component
of the flow which copepods react the most to, the copepods were put into
a time dependent siphon flow, in an oscillating chamber, in a couette de-
vice, and finally in a rotating cylinder.
A suction device submerged in fluid, produces velocity gradient which is
a pure longitudinal deformation. It will accelerate the fluid flow but there
would be no vorticity and no shear deformation. By noting the distance at
which copepods (Acartia tonsa) react to the siphon flow, Kiørboe estimated
the response threshold for longitudinal deformation rate and accelera-
tion. Copepods were put in an oscillating chamber where they experience
only acceleration. In couette device which consists of two cylinders, one
inside the other, velocity gradient perpendicular to the direction of the
flow exists and by rotating one or both of the cylinders, copepods will face



18 Chapter 2. Copepods from the standpoint of a physicist

combination of pure shear deformation, vorticity and acceleration. Even-
tually to make copepods face pure vorticity, these animals were put in a
rotating cylinder. Fluid inside the cylinder can rotate as a solid body after
a short time, which generates only the vorticity inside the cylinder. The
conclusion of this study was that copepod’s species (Acartia tonsa) react to
the flow deformation rate. The threshold value of the deformation rate to
trigger a response is size dependent and is about ⇠ 0.4 s�1 for a copepod
with 1 mm in length in siphon flow. The threshold increases for smaller
copepods. Sensitivity to strain rate (velocity gradient) was reported to be
⇠ 0.025 s�1 by Woodson et al. (2005) and Woodson et al. (2007) by putting
copepods species (Acartia tonsa and Temora longicornis) in a plane jet flume
apparatus which mimics ocean characteristics.

a                         b

  c                         d

F����� �.�: Hydrodynamic devices used by Kiørboe to ex-
amine copepod’s (Acartia tonsa) response to di�erent com-
ponents of a fluid disturbance. a) Siphon flow with pure
longitudinal deformation and acceleration, b) Oscillating
chamber with acceleration, c) Couette device with shear de-
formation, acceleration and vorticity, d) Rotating cylinder

with acceleration and vorticity (Kiørboe, 2008).

Kiørboe also reported (Kiørboe, 2008) that there are two threshold val-
ues of the deformation rate: the upper one, around 10 s�1, corresponds to
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either the presence of a predators or to a region where turbulence inten-
sity is high, and the lower one, 1 s�1, corresponds to regions in the flow
where turbulence intensity is lower or food abundance is not enough for
copepods. These tiny crustaceans find themselves at ease in regions in
between these two thresholds.

F����� �.��: Two threshold values of the deformation rate
to elicit escape response of organisms as a function of their

size (Kiørboe, 2008).

Although it was believed that copepods react to deformation rate for long
time, recently Webster, Young, and Yen (2015) examined the behavioral
response of Acartia tonsa and Temora longicornis in turbulent vortex. They
put copepods in Burger vortex apparatus (Fig. 2.11) which mimics flow
characteristics of isotropic turbulence with simple vortex model. What
he observed is interesting since Acartia tonsa reacts to vorticity but Temora
longicornis does not show any reaction to turbulent level variation. This
result may indicate that di�erent species react di�erently to fluid flow
and the component of the flow which can stimulate the response, is not
the same for di�erent species. However the fact that Acartia tonsa reacts to
vorticity is in contradiction to previous results of Kiørboe, Saiz, and Visser
(1999) and Kiørboe and Visser (1999) and also Woodson et al. (2005) and
Woodson et al. (2007).

In the last two decades many studies have been conducted to quantify the
dynamics of copepods. Most of them focused on their behaviour in still
water (Lee et al., 2011; Souissi et al., 2010; Schmitt and Seuront, 2008),
while less studies have studied the copepods dynamics in their natural
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F����� �.��: Experimental set up and schematic of the cam-
era and lighting arrangement (from side perspective), as
well as the region of interest (ROI) surrounding the Burg-

ers’ vortex (Webster, Young, and Yen, 2015).

living environment because of the di�culties of such experimental inves-
tigations. Few works have been devoted to the dynamics of copepods in
turbulent flows (Moison et al., 2009; Waggett and Buskey, 2007; Yen, Ras-
berry, and Webster, 2008; Michalec, Souissi, and Holzner, 2015; Michalec
et al., 2015). However, the densities of copepods used in these studies are
often lower than the maximum densities that can be encountered in the
field.
The experiment of Moison et al. (2009) cannot reproduce in laboratory
real turbulence conditions which is observed in-situ; however in order to
approach realistic situations where the intensity of turbulence can be vari-
able in time at a given location, their experiment has focused on the conse-
quences of alternation of hydro dynamically stable but very di�erent envi-
ronments. The conclusion is that copepods’ behavior are a�ected greatly
by turbulence. Waggett and Buskey (2007) performed similar study to
Kiørboe, Saiz, and Visser (1999) by putting copepods species (Paracalanus
parvus and Temora turbinata) in turbulent siphon flow and reported de-
formation rates of 6.16 s�1 and 3.93 s�1 for P. parvus and T. turbinata re-
spectively. Copepod species vary in their response threshold value but
several values reported for a single species (Acartia tonsa) is believed by
Waggett and Buskey (2007) to be due to the culture of copepods, since
wild copepods and cultured copepods respond to di�erent level of de-
formation rate. Yen, Rasberry, and Webster (2008) quantified copepods
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kinematics in laboratory turbulence. This study shows that copepods can
control their motion in low turbulent flows whilst at higher turbulence
intensity, their movement is dominated by fluid flow motion. 3D particle
tracking velocimetry (PTV) method was used by Michalec, Souissi, and
Holzner (2015) in homogeneous isotropic turbulence to reconstruct the
trajectories of Eurytemora a�nis. Their findings are in accordance with
the one of Yen, Rasberry, and Webster (2008), that copepods adjust their
behaviour and swimming e�ort according to the background flow. The
experimental set-up of their study is shown in figure 2.12.

F����� �.��: Sketch of the experimental set-up by Michalec,
Souissi, and Holzner (2015). Four cameras are located
around 50 cm away from the centre of the coordinate sys-
tem and are angled on an experimental volume (shown as
a dashed line cube) located in the middle of the aquar-
ium. Turbulence is generated via eight counter-rotating
discs located on the side of the aquarium and illumination
is provided by an infrared diode array mounted beneath the
aquarium. Trajectories of male species is shown in the right

side (Michalec, Souissi, and Holzner, 2015).

2.2.6 Copepod’s role in nature

Copepods can be free-living organisms or even be either direct or
intermediate host for parasites. Infected copepods may be dangerous for
human life. Human can receive these parasites by eating infected fishes,
or even by drinking water containing infected copepods. It has been
shown that copepods can be a carrier of cholera (Damkaer, 2002).
However copepods are not always dangerous. They can be beneficial to
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human life. They are important to global ecology and to the carbon cycle
(Frangoulis, Christou, and Hecq, 2005; Satapoomin, 1999; Jonasdottir
et al., 2015). Although copepods are not at the top of the food web,
they have a major role in the marine ecosystem because they are the
secondary producers in the ecological food web, linking phytoplankton
cells (the primary producers) to fish larvae and even to large mammals
such as whales. To picture the food web, phytoplankton are the primary
carbon producers on earth. Then in the second level, zooplankton feed
on phytoplankton while they will be eaten by larger organisms like
fishes. Copepods also consume the mosquito larvae, acting as control
mechanism for malaria (Walter and Boxshall, 2016). They are of great
importance in fishery industry. A central issue in breeding fish species, is
the external food supply. Most fishes prefer copepods to other zooplank-
ton species (i.e. rotifers) and they grow bigger in shorter time on a diet of
copepods (Theilacker and Kimball, 1984; Souissi, Souissi, and Hansen,
2014).
Moreover the aggregation of phytoplankton and zooplankton which
is known mostly as Thin Phytoplankton Layer (TPL), has drawn the Thin Layer

Aggregation of
planktonic
microorganisms in the
ocean

attention in last four decades (Dekshenieks et al., 2001; Benoit-Bird,
Cowles, and Wingard, 2009; Durham and Stocker, 2012). Planktonic mi-
croorganisms form a layer with a vertical thickness up to few centimeters
and a length of kilometers. This layer can change ocean light distribution,
which itself a�ects the feeding pattern and habitat of other species in the
ocean. This extraordinary concentration of di�erent species in aquatic
environment can also change the primary production and mating rate of
copepods.
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Chapter 3

Hydrodynamic Turbulence

Governing equations of fluid flows (Eulerian approach), also the equation of mo-
tion for particles (Lagrangian approach) are described in this chapter. The numer-
ical method employed to simulate the oceanic homogenous isotropic turbulence is
presented.

3.1 Eulerian point of view

As discussed in chapter 2, it is clear that the biggest habitat of this mi-
croorganisms are oceans where the flow field is rarely laminar but often
is turbulent. To describe the motion of fluids, there are two mathematical
representations of fluid flow. The first is the Eulerian approach, using a
fixed referential, where the fluid motion is studied in a specific location
through which the fluid passes over the time. Eulerian approach can be
used to have clearer idea of the fluid flow at one particular moment. One
can visualize the entire domain by means of streamlines, i.e., representing
tangent to the local velocity vector. The velocity field in Eulerian coordi-
nate system can be expressed as u(x(t), t), to be a function of space and
time. Other properties of fluid flow such as density, pressure, tempera-
ture, mass, etc can also be represented as a function of fixed position and
time as the one of the velocity.
The Lagrangian approach is another representation of fluid flows where
individual particles are followed over time and space: the referential is
moving with the fluid parcel. This is to be discussed later in more de-
tail.
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3.1.1 Governing equations of fluid flow

Oceanic mixed layers and intense oceanic currents are good examples of
turbulence. Almost all of the fluid flows in nature are turbulent and they
are characterised by dimensionless quantity which is termed Reynolds
number (Re). This number is defined as the ratio of inertial to viscous
forces,

Re =

uL
n

(3.1)

with fluid velocity amplitude u, characteristic length L and kinematic vis-
cosity n, which indicates how turbulent a flow is (Batchelor, 1967). When
inertial forces are dominant, chaotic eddies and instabilities are produced
and the flow becomes turbulent.
Continuum approach is used to describe the equations of motion where
the fluid is characterized by large number of individual molecules. Knud-
sen number which is a ratio of molecular mean free path l and physical Knudsen number

The ratio of the
molecular mean free
path length to a
representative
physical length scale

length scale Lphys,
Kn = l/Lphys (3.2)

shows to what extent the continuum mechanic formulation of fluid dy-
namics can be used.
The equations describing the motion of viscous fluids are the Navier-
Stokes equations, which can be obtained by applying the Newton’s second
law of motion for fluids and in incompressible condition can be written
as:

r(∂tu + u ·ru) = �rp + µDu + f (3.3)

where u(x(t), t) is the fluid velocity field, p(x(t), t) is the pressure, µ =

rn is the dynamic viscosity and r is the fluid density that is assumed to
be constant due to incompressibility. The f is the external forces which
are applied to the fluid (Batchelor, 1967). What causes turbulence is the
non-linear term in this equation (u ·ru), when it becomes large enough
compared to the viscous term (µDu). Continuity equation:

r · u = 0 (3.4)
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which implies the conservation of mass is always solved together with
Navier-Stokes equations, representing the conservation of momentum.
Because of the complexity of Navier-Stokes equations, finding an ana-
lytical solution of these equations has been an interesting challenge to
mathematicians over the past decades, however under certain limitations,
i.e., flow between two parallel plates, analytical solution of the equations
can be obtained. In more complex situations and geometries, the Navier-
Stokes equations have to be solved numerically.

3.1.2 Homogeneous and isotropic turbulence

High intermittency and irregular characteristics of turbulence make it
complicated so that it is not possible to solve the Navier-Stokes equations
analytically and after a century of concerted e�orts, there is no unique the-
ory of turbulence. Homogeneous Isotropic Turbulence (HIT) is the mostHomogeneous

Isotropic Turbulence
An idealized state
where the turbulent
flow has two
properties,
statistically isotropic
and statistically
homogeneous

idealized form of turbulence and the classic one which can be found in
nature at su�ciently small scales, however experiences show that behav-
ior of natural turbulence is not far from the idealized form.
First we clarify the terms homogeneous and isotropic, then we explain why
this kind of turbulence is interesting for researchers.
It is often convenient to express the velocity in turbulence as:

u(x, t) = hu(x, t)i + u

0
(x, t) (3.5)

This is called Reynolds decomposition (Tennekes and Lumley, 1972)
where hu(x, t)i implies mean value of velocity (mean velocity):

hu(x, t)i =

1

T

Z t+T

t
u(x, t)dt (3.6)

and u

0
(x, t) represents fluctuating components of the flow velocity where

hu0
(x, t)i = 0. Turbulent kinetic energy (TKE) which is a measure of theTurbulent kinetic

energy
The kinetic energy per
unit mass associated
with eddies in
turbulent flow

intensity of turbulence is written as:

K =

1

2

⇣
hu02i + hv02i + hw02i

⌘
(3.7)
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which can be produced by internal or external forces in fluid flows (Ten-
nekes and Lumley, 1972). Similarly mean kinetic energy (MKE) can be
defined by considering the mean velocity values instead of the fluctuat-
ing velocities.
A turbulent flow is statistically homogeneous if:

• Spatial gradient of any averaged quantity is zero.

In other words, a flow is said to be homogeneous if the statistics of the
flow is independent of space. We call this translational invariance.
The term statistically isotropic is given to a flow when:

• Mean flow does not exist. Non-zero mean flow with orientation may
cause anisotropy in turbulence.

• Buoyancy and rotation are negligible, since these forces act as a bar-
rier against vertical motions which lead to anisotropy in turbulent
flows.

It is equivalent to say that homogeneous isotropic turbulence is a flow in
which statistics of the flow are temporally stationary or decaying from an
initial condition, uniform in space without a preferential direction and
also without any e�ects of boundaries. Note that homogeneous turbu-
lence is statistically invariant under translation, for example,

hu02
(x)i = hu02

(x + r)i 8r 2 R3 (3.8)

while isotropic turbulence is statistically invariant under rotation and re-
flection of the coordinate system, for instance,

hu02
(x)i = hv02(x)i = hw02

(x)i (3.9)

satisfies the statistical invariance under counter-clock wise rotation of 90

�.
In order to keep the flow isotropic under arbitrary rotations, the deriva-
tives of these quantities in corresponding normal directions need to be
equal as well.

∂hu02i
∂x

=

∂hv02i
∂y

=

∂hw02i
∂z

(3.10)
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One should bear in mind that isotropy requires homogeneity, but the op-
posite is not valid.
Homogeneity in space allows using periodic boundary conditions which
provides a condition to study the turbulence in a fraction of space, nev-
ertheless, to obtain real turbulence, the scale of the domain must be large
enough compared to the motion of interest (LBOX � l where l is the inte-
gral scale or size of the large eddies). In addition, mathematical descrip-
tion and the solution of the equations of motion of the fluid flows becomes
simpler by taking into account the homogeneous approximation. It is in-
deed simplified by considering isotropic approximation which together
with homogeneity allow some analysis of turbulence dynamics.
Fig. 3.1 represents the velocity magnitude for statistically homoge-
neous isotropic turbulence performed by direct numerical simulation
(DNS). !

!
!
! !

!

F����� �.�: DNS of statistically homogeneous isotropic tur-
bulence. Contours show the velocity magnitude at Rel ⇠
125. The solution domain is a cube of length L = 2p with

N3

= 512

3 grid points.

3.1.3 Energy cascade and Kolmogorov theory

More than 500 years ago Leonardo da Vinci, recognized turbulence. He
used a term turbolenze for this behavior of the fluid flow and observed that



28 Chapter 3. Hydrodynamic Turbulence

turbulence is composed by many eddies of di�erent size. The concept of
energy cascade was first introduced by Lewis F. Richardson (Richardson,
1922) in 1922 with his famous verse:

Big whirls have little whirls
that feed on their velocity,
And little whirls have lesser whirls
and so on to viscosity

and was developed by Kolmogorov in 1941 (Kolmogorov, 1991a; Kol-
mogorov, 1991b).

F����� �.�: Leonardo da Vinci’s drawing of turbulence
(Zollner, 2004).

The idea is that large scale eddies contain energy which is injected by an
external force. These eddies are unstable and eventually will break up into
smaller eddies and this process will be repeated for the smaller eddies. So
the energy will be transferred from large scale eddies to smaller ones until
it reaches to very small length scale where viscosity is able to dissipate
the kinetic energy into internal energy. The whole process is known as
turbulent cascade which is represented in the cartoon in figure 3.3.

In order to have steady state turbulence, energy must be added at large
scales, otherwise the total kinetic energy will gradually decay through the
cascade process.
Are there any universal aspects of turbulence? This is a question which
remained unanswered until 1941, when Kolmogorov made 3 hypothesis
on Richardson’s findings. He supposed that for very high Re number, the
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F����� �.�: Richardson’s turbulent cascade. Energy-
containing eddies break up into smaller eddies and energy

is transferred until it is dissipated by viscosity.

turbulent motions of eddies much smaller than energy-containing or forc-
ing scales, are statistically isotropic, in other words are independent of the
motions of large eddies. In reality the motions of large scale eddies (L),
can be inhomogeneous and anisotropic but in the cascade the information
is lost so that the motion of very small scale can be locally homogeneous
and isotropic.
The second hypothesis of Kolmogorov was that at very high Re number
the statistics of these small scale turbulent motions are independent from
large scales and characterized by the kinematic viscosity (n) and the aver-
age rate of dissipation of turbulence kinetic energy per unit mass (e). ByEnergy dissipation, e

The average rate of
dissipation of
turbulence kinetic
energy per unit mass

means of dimensionless analysis, Kolmogorov scales were introduced as
follows:

h =

✓
n3

e

◆
1/4

(3.11)

uh =

(

ne
)

1/4 (3.12)

th =

⇣n

e

⌘
1/2

(3.13)
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where h is Kolmogorov length scale, uh is Kolmogorov velocity scale and
th is Kolmogorov time scale.
Therefore, turbulence exists over a wide range of vortex size from L to h

(Inertial range). Energy injection takes place at large scales while energy
dissipation occurs at dissipative scale (Kolmogorov scale). When Re num-
ber is high, the two scales can di�er by several order of magnitude. What
happens at scales between these two (h ⌧ l ⌧ L) where l is larger than
dissipative scale and still smaller than large scales? From Kolmogorov’s
second hypothesis, viscosity cannot play a role in dissipating energy since
at this point, the scale of an eddy is much larger than h and in fact energy
is just transferred to smaller scales.
Third hypothesis of Kolmogorov was that the statistics of a scale in range
h ⌧ l ⌧ L, are determined by the rate of energy dissipation (e) and the
scale (l) itself. This intermediate region is called inertial range, since the
inertial forces are still dominant here compared to the viscous forces.
The rate at which energy (per unit mass) is passed down the energy cas-
cade from the largest eddies is:

P ⇠ u2

L/u
=

u3

L
(3.14)

In case of statistically steady conditions, this must match exactly the rate
of dissipation of energy at the smallest scales, otherwise there would be an
accumulation of energy at some intermediate scales (Paladin and Vulpi-
ani, 1987; Davidson, 2004). The rate of dissipation of energy at the small-
est scales is:

e ⇠ nS : S (3.15)

where S is the rate of strain associated with the smallest eddies (to be
discussed later), S ⇠ uh/h. This yields:

e ⇠ n(

u2

h

h2

) (3.16)
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Since the dissipation of turbulent energy e, must match the rate at which
energy enters the cascade, P, we have:

u3

L
⇠ n(

u2

h

h2

) (3.17)

We also know that Re based on uh and h is of order unity, therefore com-
bining these expressions we find:

h ⇠ LRe�3/4 (3.18)

Taylor-scale Reynolds number Rel is another dimensionless parameter
and analogous to eq. 3.1, it is written as Rel = urmsl/n (Taylor, 1938).Taylor Reynolds

number
A turbulence
Reynolds number
calculated based on
the Taylor microscale

Here urms indicates root mean square velocity fluctuation and is equal to
urms =

phu02i + hv02i + hw02i and

l =

hu2

i i1/2

h(∂ui/∂xi)2i1/2

(3.19)

here u2

i can be substituted by u2,v2 or either w2, according to eq. 3.9. It is
more common to use Rel instead of Re in turbulence research to compare
the strength of turbulent flows. Moreover Rel makes use of a scale which
is independent of the size of the domain.
Oboukov (1941) took advantage of Taylor’s introduction of Fourier trans-
forms and power spectra in turbulence and expressed length scales as
wave numbers by choosing k = 2p/l, so that energy is transferred to
large wave numbers where it is dissipated. Thus the time scale character-
istic of interaction at large wave numbers must be very much smaller than
the time scale of the energy-containing eddies.
Velocity correlation tensor for the turbulent velocity is defined in the fol-
lowing manner:

Rij(r) =

D
u

0
i(x)u

0
j(x + r)

E
(3.20)

Since the turbulent velocity field is homogeneous and isotropic (by as-
sumption), the correlation tensor is a function only of the distance r be-
tween the two points and not on their location x within the velocity field.
Because turbulence exists with a range of eddy sizes, it is frequently con-
venient to take the Fourier transform of the velocity field in order to
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consider the Fourier components of di�erent wavenumber. The Fourier
transform of the velocity correlation tensor is the energy spectrum tensor:

Fij(k) =

1

(2p)

3

Z
u

0
(r)e�ikrd3r (3.21)

The spectrum Fij(k) tells how much kinetic energy is contained in eddies
with wavenumber k (Davidson, 2004). In a homogeneous isotropic tur-
bulent flow, it is possible, and also useful, to define an energy spectrum
function E(k) such that:

E(k) = 2pk2 Â
i

Fii(k) (3.22)

The total turbulent kinetic energy per unit mass is then:

1

2

huiuii =

Z •

0

E(k)dk (3.23)

where < . > indicates an ensemble average and the rate of energy dissi-
pation can be written as:

e = 2n
Z •

0

k2E(k)dk (3.24)

Since the dimension of E(k) is L3T�2, one can write a relation between en-
ergy spectrum, rate of dissipation and wave number using dimensionless
analysis:

E(k) = Ce2/3k�5/3 (3.25)

where C is a constant (Davidson, 2004). This equation is known as
Kolomogorov-Obukhov’s 5/3 law, indicating the energy spectrum at sin-
gle wave number in the inertial range, which is also shown in figure
3.4.

3.2 Lagrangian point of view

Keeping track of individual particles in fluid flow and determining their
properties as they move in time, is another way of looking to the fluid
which is called Lagrangian approach. Fluid flow properties, for instance
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F����� �.�: Turbulent energy spectrum and Kolmogorov-
Obukhov’s 5/3 law.

velocity can be written as u(x

0

, t) where x

0

refers to the initial position
of a particle, or even simply by u(t), suggesting that one can obtain the
velocity of a particle at some time t, after the particle was released. The
trajectories of a followed particle is called pathline, on which the coor-
dinate system is installed and advances in time unlike the Eulerian ap-
proach where the coordinate system is fixed.
For steady flows where the velocity is just a function of space (u(x, t) =

u(x)), Eulerian and Lagrangian approaches are the same and it does not
matter if one follows a particle or watch the flow from a fixed position in
space through the time. Pathlines and streamlines are the same in this
special case.
It is possible to rewrite the equations which is written in Lagrangian
framework, in Eulerian frame of reference as well. Let us consider a prop-
erty like velocity which is u(x, t) or more precisely u(x(t), y(t), z(t), t),
since position of a particle changes in time. Rate of change of a quantity
for a point in Lagrangian frame of reference is shown as D/Dt and it is
called material derivative or substantial derivative which can be writtenMaterial derivative

The time derivative
for a moving fluid
particle
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as (Batchelor, 1967):

Du

Dt
=

∂u

∂t
+

∂u

∂x
∂x

∂t
+

∂u

∂y
∂y

∂t
+

∂u

∂z
∂z

∂t
Du

Dt
=

∂u

∂t
+ u ·ru

(3.26)

This equations relates Eulerian and Lagrangian approaches indicating
that Lagrangian rate of change is equal to Eulerian rate of change plus
convective rate of change of a quantity.
Lagrangian approach is of great importance in studies where transport
and dispersion of particles are point of interests, such as oceanography,
atmospheric science and dispersion of air pollutants, etc. It is also prac-
tical in experimental studies of fluid flows where properties of the flow
can be obtained by using tracer particles.

3.2.1 Tracers

Fluid tracers are Lagrangian particles which allow the flow to be followed
in a Lagrangian way. Tracking the evolution of the flow with time and
recording the history of an individual particle can be obtained by using
these particles which are also called passive tracers, e.g., polystyrene with
diameter of f = 10µm which is used in Particle Image Velocimetry (PIV) Particle Image

Velocimetry
A non-intrusive laser
optical measurement
technique for research
and diagnostics into
flow, turbulence,
microfluidics, spray
atomization and
combustion processes

methods.
Such particles in general are carried by the flow without having any e�ect
on the flow field, while the motion of inertial particles, to be discussed, is
a�ected by several forces and the flow field is subjected to changes due to
the interaction with inertial particles.
Therefore, tracers can be considered as same as the fluid elements with
the same density as that of the fluid (rp = r f ). These particles are ideally
point-like with the same velocity of the underlying fluid:

dx

dt
= v(t) = u(x(t), t) (3.27)

where x and v are position and velocity of tracers, respectively and u is
the fluid velocity.
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These non-inertial particles are of great importance in some experimental
techniques of fluid flows, so-called velocimetry techniques such as Par-
ticle Image Velocimetry (PIV) which is based on Eulerian approach and
Particle Tracking Velocimetry (PTV) which relies on Lagrangian method.
In these methods, very small particles, which follow the flow dynamics,
are used to quantify the velocity and direction of the flow. Stokes number
which is a ratio of the particle relaxation time to the time for fluid veloc-
ity change, can be used to define a criterion to characterize a fluid tracer.
Small Stokes numbers indicate that particle’s motion is tightly coupled
with fluid velocity whilst large Stokes number means that the response
time of a particle is longer than the time fluid needs to act on it, so the
particle is not a�ected by the fluid.

3.2.2 Inertial particles

Particles whose density di�ers from the fluid density (rp 6= r f , here r f is
the density of water), either less (e.g., bubbles) or more (e.g., sand grains),
will have additional component in their advection. Their velocity is dif-
ferent from the one of the fluid and their size, shape, friction (Stokes drag)
and interfacial properties are responsible for reveal hydrodynamic forces
that should be taken into account to quantify their dynamics.
The equation of the motion of particles is given by Newton’s second
law:

rpVp
dv

dt
= Â Fb + Fs (3.28)

where Vp stands for the volume (4/3pa3) of a particle with radius a, Fb

and Fs are body and surface forces respectively.

• Gravity force:
Gravitational force is a kind of body force which can be applied to a
particle and is given by:

Fgravity = rpVpg (3.29)
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• Drag force:
The di�erence between the velocity of a particle and of the under-
lying fluid causes the Drag force. The first theoretical approach to
this force was introduced by (Stokes, 1851). It is written as follows:

Fdrag = �CD
pa2

2

rp(v � u)|v � u| (3.30)

where CD depends on particle’s Re number. This coe�cient is cho-
sen to have the form:

CD =

24

Rep
(1 + 0.15 Re0.687

) (3.31)

which is a good approximation whenever Rep < 1000 (Schiller and
Neumann, 1933; Clift, Grace, and Weber, 1978).

• Added mass:
When a particle move through the fluid, certain amount of fluid
must move around the particle. In case, acceleration or decelera-
tion is imposed on the flow, additional fluid force will act on the
surface in contact with fluid. The added mass or virtual mass force
accounts for this displacement of the fluid around the particle and
is expressed by:

Fadded mass = r fVpCM

✓
Du

Dt
� dv

dt

◆
(3.32)

Taylor (1928) and Batchelor (1967) showed that added mass coe�-
cient for a sphere is CM = 1/2 and is independent of Re number of
the particle. Here Du/Dt represents the material derivative of the
fluid velocity at the position of particles, in other words along the
path of fluid element and dv/dt is time derivative of particles’ La-
grangian velocity.
Acceleration of fluid element (r fVp

Du

Dt ) which represents the force
acted on particles by the undisturbed flow, and Archimedes buoyant
force (�r fVpg), should be taken into account as extra forces exerted
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on the particles. These forces are mathematically obtained by ap-
plying the force of fluid flows on particles as:

Z

Sp
s · ndS =

Z

Vp
rsdV =

Z

Vp
r f

✓
Du

Dt
� g

◆
= r fVp

✓
Du

Dt
� g

◆

(3.33)
where s is the stress tensor which can be written as :

sij = �r f pdij + µ f (∂iuj + ∂jui) (3.34)

• Lift force:
Another component of the force exerted by fluid flow on particles is
termed lift force that is perpendicular to the relative particle to fluid
velocity due to the presence of vorticity. This force has the form:

Fli f t = �CLr fVp(v � u) ⇥ w (3.35)

in which w is the flow vorticity and is equal to the curl of velocity
(w = r⇥ u). CL is the lift coe�cient which can vary according to
Re number (Auton, 1987).

• History force:
This force is drag that is caused by unsteady motion of particle in
a viscous medium. Time lag exists for surrounding fluid to adapt
to the new condition created by particles’ motion through the flow.
This force for small spherical particles is expressed as:

Fhistory = �6pa2µ f

Z t

0

d(v � u)

dt

dt

pn(t � t)

1/2

(3.36)

There are other kinds of forces like Brownian force which is applied to
very small particles where their motion is a�ected by the discrete nature
of molecular motion of the fluid and Thermophoresis due to the non-
uniformity of the temperature profile of the carrier fluid, which are ne-
glected here.
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Adding the contribution of these forces, the equation of motion of parti-
cles can be written as follow:

rpVp
dv

dt
= (rp � r f )Vpg + r fVpCM(

Du

Dt
� dv

dt
)

� CD
pa2

2

rp(v � u)|v � u| + r fVp
Du

Dt

� CLr fVp(v � u) ⇥ w � 6pa2µ f

Z t

0

d(v � u)

dt

dt

pn(t � t)

1/2

(3.37)

which can be simplified for heavy particles (rp/r f � 1) to drag and grav-
ity forces while for light particles (rp/r f ⇠ 0), inertial forces are also im-
portant. The above equation was developed firstly by Maxey and Riley
(1983), Gatignol (1983), and Auton, Hunt, and M.Prud’Homme (1988) and
is complicated to be solved. A commonly used version of this equation for
passively advected finite size particles is:

dv

dt
= b

D
Dt

[u(x(t), t)] � 1

tp
[v(t) � u(t)] (3.38)

where b = 3r f /(2rp + r f ) is the density ratio and tp = a2

/(3bn) is the
stokes time of the particle. Note that this equation is valid for small Rep.
Dynamics of inertial particles have been studied extensively in the past ei-
ther numerically (Salazar et al., 2008; Squires and Eaton, 1991; Balkovsky,
Falkovich, and Fouxon, 2001; Mazzitelli, Lohse, and Toschi, 2003b; Mazz-
itelli, Lohse, and Toschi, 2003a; Bec et al., 2006; Cencini et al., 2006;
Calzavarini et al., 2008a; Calzavarini et al., 2008b) or experimentally
(Eaton and Fessler, 1994; Salazar et al., 2008; Saw et al., 2008; Yang and
Shy, 2005; Voth et al., 2001) and the most important phenomenon ob-
served in these studies which is the direct result of the simplified equation
3.38, is preferential concentration of inertial particles. This means that
particles with di�erent density than the fluid density, tend not to remain
uniformly distributed even in homogeneously isotropic turbulent flows.
It has been shown that light particles (b = 3) are trapped by vortices in
the flow (Toschi and Bodenschatz, 2009) while heavy particles (b = 0)
accumulate in low vorticity regions (Squires and Eaton, 1991; Wang and
Maxey, 1993). Another quantity which plays a key role in the strength
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of preferential concentration of particles is Stokes number (St = tp/th),
where th is Kolmogorov time scale. As defined previously, it is a good
control parameter to describes particles’ motion in the flow. A particle
with a low Stokes number follows fluid streamlines (perfect advection),Stokes number

A dimensionless
number characterising
the relaxation time of
a particle with respect
to typical fluctuation
velocity in a flow

while a particle with a large Stokes number is dominated by its inertia
and continues along its initial trajectory. Acceleration statistics of the in-
ertial particles and their dependancy on Stokes number have been studies
previously in Bec et al. (2006), Ayyalasomayajula et al. (2006), Ayyalaso-
mayajula, Warhaft, and Collins (2008), Volk et al. (2008), Qureshi et al.
(2008), and Zamansky, Vinkovic, and Gorokhovski (2011).

a                                              b                                             c

F����� �.�: Snapshots of particle distributions in a turbulent
flow field at St = 0.6 for (a) b = 3 (bubbles), (b) b = 1

(tracers) and (c) b = 0 (heavy particles) from (Calzavarini
et al., 2008a).

3.2.3 Active particles

As mentioned previously, microorganisms can drift in fluid flows. These
features allow them to swim with di�erent velocity rather than the fluid
velocity, hence they are called active particles. Apart from all the forces ex-
erted on passive particles, physicist have proposed a simple model for mi-
croorganism’s motility (Kessler, 1985; Pedley and Kessler, 1992) in which
their trajectories can be obtained by integrating the following equation:

dx

dt
= u[x(t), t)] + vsp (3.39)

where p is the orientation vector. This equation indicates that active parti-
cles can swim with fluid velocity plus a slipping velocity (vs) in a direction
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of p. This model is dubbed as Chlamydomonas model (Kessler, 1985; Ped-
ley and Kessler, 1992).
In general, particles can orient inside the flow due to the velocity gradient,
strain and deformation rate in particular. One can also consider the e�ect
of gravity in the evolution of p. This is to be discussed in more detail in
chapter 5.

3.3 Simulation of hydrodynamic turbulence

3.3.1 DNS: principles

Growth of computational power in the last decades, has attracted enor-
mous attentions into numerical simulation of turbulent flows. The general
classifications of numerical methods that are used to perform simulation
of turbulence are direct numerical simulation (DNS), large-eddy simula-
tion (LES) and Reynolds-averaged Navier-Stokes (RANS).
DNS is the most accurate approach to solve the governing equations of
the fluid flows. All the spatial and temporal scales of the flow are re-
solved from integral scale (L) to dissipative scales (h), without any scale
modeling, so that complex behavior of turbulence can be reproduced in
very detail. Of course the computational cost increases as Reynolds num-
ber increases in DNS, because the inertial range depends on Re number
and its wideness means that DNS should resolve larger range of scales of
the flow. This implies that one needs very fine resolution when Re num-
ber becomes high, therefore the method is limited to not very high turbu-
lent flows. The largest Reynolds number which was achieved by DNS is
around 5200 with 4096

3 grid points conducted in 2015 by (Lee and Moser,
2015).
On the opposite, Large Eddy Simulation (LES) is a very useful approach
for high-Reynolds number flows. In this technique, the scales larger than
mesh size are resolved and the e�ects of non-resolved small scales are
taken in to account using many models. Another way to perform nu-
merical simulation of turbulence is to average all the stochastic turbulent
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fluctuations and solve only the averaged equations, which gives approx-
imate time-averaged solutions to the Navier-Stokes equations. However
this formulation is not closed. One needs a closure, e.g., k � e or k � w

methods in which extra equations are needed. Figure 3.6 represents the
di�erences between the methods in terms of computational cost, degree
of freedom and model influence. However due to the nonlinear character
of Navier-Stokes equations, the modeled term either in LES or in averaged
model, is not properly modeled. These models have thus strong limita-
tions (Pope, 2000; Schmitt, 2007).
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F����� �.�: Schematic view of comparison of direct nu-
merical simulation, large-eddy simulation and Reynolds-
averaged Navier-Stokes simulation adapted from Sagaut,

Deck, and Terracol (2006).

The simplest realization to study the intrinsic nature of turbulence by
means of DNS, is a periodic box where isotropic homogeneous turbulent
can be achieved under periodic boundary conditions. Such a flow is in
accordance with Kolmogorov’s hypothesis that at small scales, statistics
are locally isotropic and homogeneous while it may not be the case for
large scales in box turbulence. We have already seen from eq. 3.18 that
the Kolmogorov microscale is h ⇠ LRe�3/4, where L is the size of large
eddies. It is easy to estimate the number of points at which velocity must
be calculated to resolve every eddy in turbulence (Paladin and Vulpiani,
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1987; Davidson, 2004). When Re is large, h is small, however the maxi-
mum allowed size of grid spacing in DNS is:

Dx ⇠ h ⇠ LRe�3/4 (3.40)

The number of data points required at any instant for a three-dimensional
simulation is then:

N ⇠
✓

LBOX
Dx

◆
3

⇠
✓

LBOX
L

◆
3

Re9/4 (3.41)

Here LBOX is the size of the computational domain. The factor Re9/4 is
referred to as the number of degrees of freedom of the turbulence (Landau
and Lifshitz, 1959). It is now evident that:

N � Re9/4 (3.42)

Moreover time resolution also depends on the Reynolds number. In or-
der to solve the Navier-Stokes equations, they need to be integrated in
time. The maximum permissible time step in a simulation, is of the order
of Dt ⇠ Dx/uh ⇠ h/uh since, in order to maintain numerical stability
and accuracy, we cannot let a fluid particle move by more than one grid
spacing in each time step. If T is the total duration of the simulation then
the minimum number of time steps needed to complete the simulation is:

Nt ⇠ T
Dt

⇠ T
h/uh

⇠ T
l/uh

Re3/4 (3.43)

As can be seen the computational cost of direct numerical simulation is
very high even for low Reynolds number flows. However, DNS is the best
tool to obtain very accurate information out of the turbulent flows which
are extremely di�cult to be done experimentally. This is the reason, DNS
is often called numerical experiment and can be used as a benchmark for
development of other numerical approaches such as LES.
This is also the reason why we perform our simulations by means of DNS.
Copepod’s size is of the order of dissipative scales in ocean. If we are in-
terested in copepods’ dynamics in turbulent flows, we need to be able to
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capture the Kolmogorov scale and study their interactions with microor-
ganisms. In addition, experimental study of copepods in turbulent situa-
tion at laboratory which mimics oceanic turbulence is almost impossible
at the moment. DNS can provide this experiment, numerically.

3.3.2 Numerical methods

Direct numerical simulation is used to solve the Navier-Stokes equations
in box turbulence. There are several numerical methods such as finite
di�erence methods (FDM), finite volume methods (FVM), finite element
method (FEM) and also spectral methods to perform DNS. In the follow-
ing, a brief introduction on spectral methods and di�erences between the
available techniques is given to see why this method has been of great im-
portance to engineers in the last decades and why we choose this method.
The basic principle of spectral methods and detailed numerical tech-
niques used here to simulate the box turbulence will be addressed in this
section.

Spectral Methods vs Physical space methods

Finite di�erence method is the oldest numerical technique which is based
on the application of Taylor expansion to approximate the derivative of a
function by local argument (u0 ⇠ u(x + h) � u(x � h)/2h where h is grid
spacing) (Lomax, Pulliam, and Zingg, 1999). The strategy in FDM is to
use a square network of lines dubbed as mesh which can be applied to
a wide range of geometries and approximate the solution according to
the available gird points. Accuracy depends on the order of approxima-
tion, which in turns depends on the number of grid points. To obtain
higher accuracy, higher order approximation is needed and accordingly
more points should be used to calculate derivatives (Lomax, Pulliam, and
Zingg, 1999).
Finite volume methods have become popular in CFD as a result, primarily,
of two advantages. First they ensure that the discretization is conserva-
tive, i.e., mass, momentum and energy are conserved in a discrete sense.
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While this property can usually be obtained using a finite di�erence for-
mulation, it is obtained naturally from a finite volume formulation. Sec-
ond finite volume methods do not require a coordinate transformation
in order to be applied on irregular meshes. As a result they can be ap-
plied on unstructured meshes consisting of arbitrary polyhedra in three
dimensions or arbitrary polygons in two dimensions. This increased flexi-
bility can be used to a great advantage in generating grids about arbitrary
geometries(Lomax, Pulliam, and Zingg, 1999). The basic concept in the
Finite element methods is the subdivision of the computational domain
into disjoint (non-overlapping) components of simple geometry called fi-
nite elements or elements for short. The response of each element is ex-
pressed in terms of a finite number of degrees of freedom characterized
as the value of an unknown function, or functions, at a set of nodal points.
The response of the mathematical model is then considered to be approxi-
mated by that of the discrete model obtained by connecting or assembling
the collection of all elements (Reddy, 2005). Compared to FEM, in spec-
tral methods only one global function is used to be valid over the entire
computational domain. Key factors to choose among these techniques,
are the complexity of the domain and the needed level of accuracy, where
spectral methods have the great advantage of being most accurate and
cost e�ective methods for simple geometries compared to physical space
techniques.
In general all these methods are considered as a development of method
of weighted residuals (MWR). The method of weighted residuals employs
trial functions1 as basis functions for a truncated series expansion of the
solution, and test functions2. The use of test functions is to minimize the
residual which is formed by the substitution of the approximate solu-
tion into the partial di�erential equations (PDE), to be sure that the ap-
proximate solution satisfies the di�erential equations (Canuto et al., 2007;
Boyd, 2001). The choice of trial and test functions, distinguishes the spec-
tral methods from physical space techniques mentioned here. This is to
be discussed in the following.

1It is also called approximating functions or expansion functions.
2It is also known as weight functions.
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Basic principle of spectral methods

The idea behind the spectral methods is to approximate the solution of
partial di�erential equation as a sum of smooth basis functions (Canuto
et al., 2007; Boyd, 2001).

u(x) =

N

Â
n=0

˜unfn(x) (3.44)

where the fn(x) are polynomials or trigonometric functions and ˜un are
unknown coe�cients. The goal in spectral method as a method of
weighted residuals (MWR) is to minimize the residual by using test func-
tions. The choice of the test functions distinguishes between the three
most commonly used spectral schemes, namely Galerkien, Collocation
and Tau methods (Fornberg, 1996). Another classification is based on the
choice of trial functions. In general trial functions should satisfy three
requirements (Canuto et al., 2007):

1. Convergence: the approximation ÂN
n=0

˜unfn(x) should converge
rapidly to u(x).

2. Derivation: given the coe�cients ˜un, one can easily determine ˜u0
n

such that
d

dx

(

N

Â
n=0

˜unfn(x)) =

N

Â
n=0

˜u0
nfn(x) (3.45)

3. Transformation: reconstruction of the solution (u(x)) at nodes from
the expansion coe�cient ( ˜un) should be easy.

Therefore, for periodic problems, trigonometric expansions (Fourier se-
ries) which fulfil the requirements can be chosen while the first two con-
ditions are satisfied obviously and the third condition is possible through
the invention of the Fast Fourier Transform (FFT) algorithm, which was
developed by Cooley and Tukey (1965). In fact spectral methods became
popular and more practical when innovate algorithm of FFT replaced dis-
crete Fourier Transform (DFT). The di�erence is that computational com-
plexity of FFT is of the order of O(N log(N)) while it is of O(N2

) for DFT.
For non-periodic problems trigonometric expansions fail to satisfy the
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conditions, hence orthogonal polynomials such as Legendre and Cheby-
shev are taken as basis functions. Here, we focus on periodic box turbu-
lence and implement Fourier pseudo-spectral method. For more informa-
tion on several types of spectral methods one can refer to Fornberg (1996),
Canuto et al. (2007), Hussaini and Zang (1987), and Boyd (2001).

Fourier Pseudo-spectral method for the Navier-Stokes equations

Here we try to write the formulation of Navier-Stokes equations in a pe-
riodic box. Velocity field is expanded by means of Fourier series as basis
functions and can be expressed as:

u(x, t) = Â
k

eik·x
ˆu(k, t) (3.46)

with periodic boundary condition of u(x + L, t) = u(x, t) for all x. As
mentioned at the beginning of this chapter, this imposed boundary con-
dition can a�ect the real turbulence situation. In order to attenuate the
e�ect of this artificial boundary condition L should be large compared to
the integral length scale. Wave vectors are defined as:

k

j

=

2p

L
(j

1

, j
2

, j
3

) ja = �N/2, . . . N/2 (3.47)

N is the number of grid points and Fourier modes are read as eik·x
=

eikj
1

x
1eikj

2

x
2eikj

3

x
3 . Since the Fourier modes eik·x are non-random and fixed

in time, Fourier coe�cients should be time dependent. Applying Fourier
operator ˆFk{} to the Navier-Stokes equation :

∂uj

∂t
+ uj

∂ul
∂xl

= �1

r

∂p
∂xj

+ n
∂2uj

∂xj∂xj
+ f (3.48)

leads to set of ordinary di�erential equations (ODE) for the coe�cients:

d ˆuj

dt
+

ˆFk{uj
∂ul
∂xl

} = �ikj ˆp + nk2

ˆuj + ˆf (3.49)

One of the important issue here, is the way the pressure term should be
treated. Normally Poisson equation is used to obtain the pressure field,
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however one can introduce a projector operator which ensures the com-
pressibility of the velocity field (u) without computing the pressure i.e.,
without solving the Poisson equation. This is in fact the big advantage of
the spectral methods (Pope, 2000).
These equations can be solved by taking the inverse Fourier transform.
The non-linear advection term in the spectral space gives the convolution,
which increases the complexity of the transfer operation. To overcome
this problem, derivative of velocity field is evaluated in Fourier space,
then the result is transferred to the real space to perform the multiplica-
tion and eventually the product is taken to Fourier space. This evalua-
tion of the spectral convolution in physical space is usually called Pseudo-
spectral evaluation of the nonlinear terms. Aliasing error is a problem
which is linked to the computation of the non-linear advection term and
can be handled by filtering the top one-third of the wavenumbers (Orszag,
1971). There are several methods in order to control the aliasing error
which are out of the scope of this thesis. More information can be found
in Phillips (1959), Cooley and Tukey (1965), Jr and Orszag (1971), Choi,
Dongarra, and Walker (1995), and Bowman and Roberts (2011).
Navier-Stokes and continuity equations are given by:

∂tu + u ·ru = �rp/r + nDu + f (3.50)

and
r · u = 0 (3.51)

Note that the f is the forcing which is applied on large scales to sustain the
statistically stationary turbulence. It should be solenoidal which means
that it has to satisfy the incompressibility r · f = 0. In DNS there are two
kinds of forcing. One has the following form in Fourier space:

f (k, t) =

eu(k, t)
Â

k

low

|u(k, t)|2 (3.52)

where e is the energy input rate and k

low

refers to low wave numbers or
their equivalent of large scales. This can be obtained by multiplying the
Navier-Stokes equations by the velocity field and make the average which
yields to a constant energy injection rate (Lamorgese, Caughey, and Pope,
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2005). Another type of the forcing is to multiply the velocity in Fourier
space u(k) at each time step, by a constant which ensures the energy con-
tain at large scales to be constant, where the decay is consistent with the
k�5/3 law (Chen et al., 1993). The latter is used in this study.
Moreover, In this study, we considered a vector-potential form of the
Navier-Stokes equation by taking:

u(x, t) = r⇥ b(x, t) (3.53)

substituting this in eq. 3.51 gives:

r · u = r · (r⇥ b) (3.54)

where the divergence of a curl of a vector (r · (r ⇥ b) = 0) is always
zero, therefore the incompressibility is always satisfied and there is no
need for pressure term in the Navier-Stokes equation. Eq. 3.50 in the
vector potential form is:

∂(r⇥ b)

∂t
+ u ·ru = nD(r⇥ b) + f (3.55)

Taking into account that D(r⇥ b) = r⇥ (Db), eq. 3.55 can be rewritten
as:

r⇥ ∂b

∂t
+ u ·ru = nD(r⇥ b) + f (3.56)

we then take the curl (r⇥) of the full equation and use r⇥ (r⇥ b) =

r(r · b) � Db,

r
✓
r · ∂b

∂t

◆
� D

∂b

∂t
+ r⇥

(

u ·ru

)

= nr
(

r · Db

)

� nDDb + r⇥ f

(3.57)
It is known that from vector calculus identities, (r · Db) = D(r · b), so
the eq. 3.57 is:

r
✓

∂

∂t
(

r · b

)

◆
�D

∂b

∂t
+r⇥

(

u ·ru

)

= nr
(

D
(

r · b

))

� nDDb +r⇥ f

(3.58)
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now we choose r · b = 0. Notice that this condition does not a�ect u,
therefore eq. 3.58 becomes:

�D
∂b

∂t
+ r⇥

(

u ·ru

)

= �nDDb + r⇥ f (3.59)

by taking the inverse laplacian operator D�1 and multiplying the eq. 3.59
by �1, the final form of the Navier-Stokes equation with the condition of
r · b = 0 is:

∂b

∂t
� D�1

[

r⇥
(

u ·ru

)]

= nDb � D�1

(

r⇥ f

)

(3.60)

Similar to the eq. 3.49, pseudo-spectral method can be applied to eq. 3.60
where the pressure term is removed from the equations by taking the
vector-potential form of the velocity field. The vector b(x, t) is expanded
in a discrete Fourier series in each direction on an equispaced grid and
its equations are advanced in time by the second-order Adams-Bashforth
scheme.

3.3.3 Summary

A Direct Numerical Simulation (DNS) approach was used to solve the in-
compressible Navier-Stokes equations (eq. 3.50 and 3.51) in homogeneous
and isotropic conditions by means of the pseudo-spectral method, based
on vector potential formulation:

∂b

∂t
� D�1

[

r⇥
(

u ·ru

)]

= nDb � D�1

(

r⇥ f

)

(3.61)

The solution domain is a cube of length L = 2p with N3

= 128

3 grid
points, subject to periodic boundary conditions. Aliasing error is con-
trolled by omitting the wavenumber larger than k = 2/3 ⇥ (2pN/L).
In isotropic turbulence, the dissipation rate is equal to:

e = 2nS : S = 15n

*✓
∂ui
∂xi

◆
2

+
(3.62)
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Here S represents the symmetric part of the gradient of the velocity field.
Eq. 3.19 can relate l to e by:

e = 15n
u2

l2

(3.63)

therefore, substituting into the definition of Rel, Taylor Reynolds num-
ber of the flow is Rel =

p
15u2

rms/(ne)1/2 (Tennekes and Lumley, 1972),
which in our simulations is ⇡ 80. The accuracy of the solution in time is
guaranteed by the small Courant number C = urmsDt/Dx ⇡ 1/30, with
Dx = L/N the mesh size. kmaxh > 1.4, in which kmax = N/3 and h is
the Kolmogorov length scale, assures that small scales structures are well
resolved.
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Chapter 4

Analysis of copepods’ trajectories
from experiments

Aquaculture of two copepod species Acartia tonsa and Eurytemora a�nis,
are described in this section. By means of high speed camera, their trajectories
are recorded and statistical data analysis are performed in order to quantify their
dynamics in still water.

4.1 Copepod species

Females and males of the species Eurytemora a�nis and Acartia tonsa were
filmed by Ibtissem Benkeddad in May 2015 during Master 1 internship
in Wimereux. An aquarium was used with a high speed camera, in or-
der to extract trajectories, velocities and accelerations. We have used Mrs.
Benkeddad’s measurements in this thesis, thus the experimental condi-
tions are here described. For more information, one refers to her Master
1 report (Benkeddad, 2015).
Copepods originated from the Seine river estuary (France) are maintained
in the laboratory of Oceanology and Geoscience (LOG) under optimal
conditions for several generations. They are fed using red algae species
Rhodomonas baltica, which is rich in lipid and can stimulate copepod’sRhodomonas

A genus of algae growth rate. Red algae species are also cultivated in the same laboratory
and feeding process occurs twice in a week in order to keep copepods
active. Rhodomonas baltica is kept in special containers (Figure 4.1), hav-
ing oxygen continuously, under light (photoperiod 12h/12h) and with aPhotoperiod

12h/12h
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temperature of 18 � 19

�
C. Temprature

18 � 19

�
C

F����� �.�: Culture of Rhodomonas baltica in container con-
served in incubator at temperature of 18 � 19

�
C with oxy-

genation and photoperiod 12h/12h (Benkeddad, 2015).

Copepod species are also kept in special containers in similar conditions
except for its salinity (Figure 4.2 and 4.3). The separation of species is ap- Salinity

The dissolved salt
content of a body of
water

plied even to copepod’s gender meaning that females and males of cope-
pods are conserved separately in several containers. The salinity of water
for species Eurytemora a�nis and Acartia tonsa is 15 psu and 30 psu respec- PSU

Practical salinity unit,
1 psu = 1 g/kgtively. One should keep in mind that Rhodomonas baltica needs the same

surveillance as copepods. They should be fed with vitamins and minerals
twice in a week. After reaching the optimal growth level, preparation will
be done, which means that water of each container is filtered and poured
into special device for centrifuge. When centrifuge process in done (1
minute), it will be diluted with water.

4.2 Experimental set up

To start the experiment, large individuals of male and female of Eu-
rytemora a�nis, or even egg-bearing (ovigerous) females are taken
randomly to have adult species in the aquarium. The experimental set up
which is made specifically for this project, is a shallow-depth aquarium,
63 ⇥ 53 ⇥ 6 mm3 in length, height and depth respectively as shown in Aquarium size

63 ⇥ 53 ⇥ 6 mm3 in
length, height and
depth



4.2. Experimental set up 53

F����� �.�: Culture of copepod species E. a�nis in container
conserved in incubator at temperature of 18 � 19

�
C with

oxygenation and photoperiod 12h/12h. Salinity of water is
15 psu (Benkeddad, 2015).

F����� �.�: Culture of copepod species A. tonsa in container
at ambient temperature with same photoperiod as for E. a�-
nis species. Salinity of water is 30 psu (Benkeddad, 2015).
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figure 4.4. The background is dark so that copepods will be visible. The
water is kept still and at temperature of (18 ± 1)

�
C and salinity of 15 psu

for E. a�nis. Each individual is introduced one at a time in the aquarium
and their dynamics are filmed. The same procedure is performed for A.
Tonsa with di�erent salinity. A total of 28 individuals are analysed here
(14 males and 14 females).

F����� �.�: Experimental set up made of Acrylic with total
volume of 8 ml and dimension of 63⇥ 53⇥ 6 mm3 in length,

height and depth respectively (Benkeddad, 2015).

In order to stimulate copepods, two light sources on the lateral side
(53 ⇥ 6 mm2) of the aquarium are used (Figure 4.5). The species tend to
attract lights (positive phototaxis), so a copepod in the aquarium tends Phototaxis

A kind of taxis, or
locomotory
movement, that
occurs when a whole
organism moves
towards or away from
stimulus of light

to jump preferentially along the horizontal direction by switching on just
one of the light sources. The light is switched on and o� manually in a
non-monotonic way where the switching time of the lights is much more
larger than the jump frequency of the copepod species. The copepod’s
dynamics in a vertical plane are recorded by a high speed camera (1000
frames/second) as shown in figure 4.5 and 4.6 and the single trajectory
is extracted by means of a particle tracking velocimetry software (TEMA
Motion by Image Systems). The resolution of camera is 512 ⇥ 384 pixel
(45.3 ⇥ 34 mm) and with limitation on capacity, recording up to 25 sec-
onds is possible. Here trajectories of 14 � 22 s for E. a�nis and 10 � 22 s
for A. Tonsa are recorded. Figure 4.7 shows copepods in the aquarium
captured by the high speed camera.
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F����� �.�: Light sources are located at the lateral side of
the aquarium with high speed camera in front to capture

copepods statistics (Benkeddad, 2015).

F����� �.�: Phantom high speed camera is capable of cap-
turing 1000 frames per seconds. The resolution of the cam-
era is 512⇥ 384 pixel and it is connected to a software called
Phantom Camera Control application (PCC) (Benkeddad,

2015).
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F����� �.�: Copepod species in the experimental set-up cap-
tured by the high speed camera.

Copepod species are conserved in micro-tubes, after recording was done
to identify their gender and calculate their size using a microscope (Fig-
ure 4.8, 4.8 and 4.10). During recording each species shows a specific be-
havior, e.g., ovigerous females are very active when stimulated and indi-
viduals of the species A. tonsa prefer to swim at the walls, which creates
problem for recordings. Thus the number of replicates per individual
will depend on these behaviors: Ten replicates per individual for E. a�-
nis against five replicates per individual for A. tonsa, because many times
the individuals of the latter were not found during the experiment, which
leads to the reduced duration of video footage unlike E. a�nis.

With the help of particle tracking velocimetry software (TEMA), cope-
pod’s individuals are followed image by image. This software can ex-
tract hundreds of trajectories, velocity and acceleration of copepods in
real time. The only point is to convert the pixel into millimetre which
can be obtained from the resolution of the camera (512⇥ 384 pixel (45.3⇥
34 mm)) and is 1 pixel = 0.0885 mm. The output of this software can be
used as the base of our data analysis in next section.



4.2. Experimental set up 57

F����� �.�: Labelled micro-tubes containing copepod
species for identification (Benkeddad, 2015).

F����� �.�: Olympus microscope connected to a software
to calculate the size and identify the gender of copepod

species (Benkeddad, 2015).
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F����� �.��: Length measurement of male E. a�nis (top left),
ovigerous female E. a�nis (top right), male A. tonsa (bottom
left) and female A. tonsa (bottom right) (Benkeddad, 2015).

4.3 Experimental Data Analysis

All of the experiments described in sections 4.1 and 4.2, were performed
by I. Benkeddad. The authors contribution here is in the analysis of the
measurements.
Recorded velocity track of copepods’ trajectories will be analysed here.
A typical copepod velocity signal as a function of time is shown in fig-
ure 4.11. We see extremely abrupt spikes (jumps) alternating to calm,
nearly immobile phases. These jumps are the response of copepods to the
changes in light distribution. To see what is exactly happening during a
jump, one can zoom in on the signal. Figure 4.12 represents how larger
the jump amplitude velocity of a copepod is compared to the calm phase
and how this velocity changes during escape response of copepods. High
speed camera captures this behaviour (the growing and the decaying of
velocity) precisely which was impossible in previous studies on copepods.
Scientists were able to observe only the spikes and not the decaying be-
haviour of copepods in their past analysis.
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F����� �.��: The copepod (E. a�nis) velocity relative to tem-
poral sequence with multiple jumps occurred in response to

stimulus.
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F����� �.��: Response behaviour of copepod in response to
light stimulus. Change of velocity amplitude of a copepod

while jumping is shown here.
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In order to see if the velocity signal of the jump events share some com-
mon features, we zoom in on the signal and superpose several jumps by
a shift taking as reference their peak position. In figure 4.13 we can ap-
preciate that almost all of the jumps, after a steep rise, display a similar
decay. We associate such a decay to a purely hydrodynamical e�ect. It
can be interpreted as a drag-induced decay of an instantaneous accelera-
tion.
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F����� �.��: A sample of jump intensity superposition for
copepod species E. a�nis. Several jumps superposed by a
shift, taking as reference time that are associated with their
peak position. Almost all of the jumps decay exponentially.

Note that spikes are identified based on a threshold on the time-averaged
velocity of the copepods over all copepod’s trajectory. We then average
the dataset of jumps in order to obtain an averaged shape of jump.
This is shown in figure 4.14, from which we can deduce the average
jump velocity amplitude uJ = 0.0836 m/s and the mean decaying time
tJ = 8.073 ms. We also see that for long time the velocity reaches a E. A�nis

Jump velocity
amplitude:
uJ = 0.0836 m/s,
Jump decaying time:
tJ = 8.073 ms

very low plateau at 5.3 ⇥ 10

�3 m/s ⇠ 1/20 uJ , which we are tempted to
associate to a weak random wandering behaviour of the copepod.
The same behavioral response occurs for species A. tonsa as shown in
figure 4.15. A. tonsa has slightly higher jump amplitude (uJ = 0.0838 m/s)
and less decaying time (tJ = 7.351 ms) compared to E. a�nis. Level of A. tonsa

Jump velocity
amplitude:
uJ = 0.0838 m/s,
Jump decaying time:
tJ = 7.351 ms

plateau and wandering behavior here (2.92 ⇥ 10

�3 m/s ⇠ 1/30 uJ) is
even much lower than the case for copepod species E. a�nis.
Probability distribution function (PDF) of jump intensity (Fig. 4.16)
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shows that most of copepod’s jumps occur with amplitude of ⇠ 0.07 m/s
while the probability of jumps with higher amplitude is low. Lots of
events have very low amplitude which implies that these events can be
associated to the wandering behavior of copepods and can be neglected
by the threshold on the time-averaged velocity of the copepods, since
their amplitude is very small compared to the maximum amplitude of
jumps.
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(-t/τJ), uJ = 0.083599, τJ = 8.0727
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(-t/τJ) + noise, noise = 0.0053202

Average shape

F����� �.��: Average shape of jump velocity for copepod
species E. a�nis. Blue line: mean value. Purple line: Fitted
exponential function uJe�t/tJ where uJ is the jump intensity
and tJ is the decaying time of the jump. Green line: Same

fit with the addition of a noise velocity o�set.

The probability density function of time di�erence of successive jumps
can be obtained by considering the absolute di�erence among the peak
velocity amplitudes of two successive jumps. Let us say Dv = vpeak(i +

1) � vpeak(i), then Dt is the di�erence of time of these two events. This
PDF suggests that the distribution of jumps in time in the experimental
dataset does not follow an exponential distribution suggesting the exis-
tence of a memory e�ect. Poisson process is a name which is given toPoisson process

A type of random
mathematical object
that consists of points
randomly located on a
mathematical space

renewal process where the events are independent. In probability, the
unique property of such a distribution of non negative numbers, is their
memorylessness. For instance let us consider X the waiting time to the
next event in a Poisson process, then memorylessness is a property of the
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F����� �.��: Average shape of jump velocity for copepod
species A. tonsa. Blue line: mean value. Purple line: Fitted
exponential function uJe�t/tJ where uJ is the jump intensity
and tJ is the decaying time of the jump. Green line: Same

fit with the addition of a noise velocity o�set.
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following form:

Pr(X > m + n | X > m) = Pr(X > n) (4.1)

this suggests that, given that the arrival has not occurred by time m, the
distribution of the remaining waiting time (given by n in eq. 4.1) is the
same as the original waiting time distribution (right hand side of eq. 4.1).
In very simpler words, an event can occur independently from previous
events. Figure 4.17 represents the PDF of time between successive jumps
in logarithmic scale, showing no exponential behavior, which means
that copepod’s jump occurrence depends on previous events. It is also
evident that the time between most of the jumps is very small indicating
that the jumps occur very quickly in time. This quantity is ⇠ 1 ms for E.
a�nis and ⇠ 7 ms for A. tonsa as can be seen in figure 4.17.
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F����� �.��: Probability density function of time between
successive jumps of copepod species E. a�nis and A. tonsa.
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4.4 Summary

Our analysis revealed that copepods species react abruptly to the stimu-
lus, however, their velocity decreases with lower rate in time, the interest-
ing behavior which was captured by the aid of the high speed camera. It
was also observed that copepods’ jump velocity share common features;
they decay exponentially with almost the same pattern. Considering a
copepod with initial velocity v(0) = V which has obtained due to an ac-
celeration at no-flow condition u = 0, then eq. 3.38 becomes:

dv

dt
= � 1

tp
v(t) (4.2)

The solution of this equation clearly indicates the stokes drag decreases
copepod’s velocity v(t) = Ve�t/tp . These results have been published in
Ardeshiri et al. (2016) which is also given in Appendix A.
Furthermore, the PDF of time di�erence of successive jumps, suggested
the existence of a memory e�ect for both copepod species E. a�nis and
A. tonsa, however, it is not easy to obtain a functional behavior from this
PDF. One may need more data and di�erent type of stimulus in order to
make a robust conclusion for copepods’ behavior in still water.
These analysis are considered as the basis of the Lagrangian model which
will be discussed later, despite the fact that the recorded data belong to
copepods’ behavior in still water. We believe that turbulence can a�ects
the jump intensity but the decaying time associate to a purely hydrody-
namical e�ect (Stokes drag of copepods). The e�ect of these parameters
on copepods’ behavior in turbulent flows will be discussed in the next
chapters.
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Chapter 5

Development of a Lagrangian
model for copepods’ dynamics

The e�ect of turbulence on copepods’ behavior is discussed in this chapter, as a
motivation to quantify their dynamics. Previous studies on active particles are re-
viewed and eventually our Lagrangian Copepod model in turbulent flows is intro-
duced based on copepods’ characteristics which were discussed previously.

5.1 Copepods in Turbulence

Turbulence is now widely recognized to have major impact on plankton’s
life i.e., in micro-scales where predator-prey encounter rate, planktonic
growth, mating rate and feeding pattern are a�ected to a great extent,
whereas eddies in turbulence can shape large-scale distribution of the
plankton. Here the goal is to provide more explanation on the e�ect of
turbulence on copepods and vice versa.

E�ect of Turbulence on copepods’ growth Copepods like other plank-
tonic species, rely on nutrient uptake to survive and grow. This process
reduces the concentration boundary layer, a layer which is generated byConcentration

boundary layer
A layer which is
generated when
nutrient uptake
reduces the nutrient
concentration at the
cell surface

decreasing the amount of nutrient and flow at the surface of the plank-
tonic species (Kiørboe, 2008; Nishihara and Ackerman, 2009). Studies
shows that turbulence can enhance nutrient uptake and increase cope-
pods’ (plankton) growth (Karp-Boss, Boss, and Jumars, 1996; Kiørboe,
Ploug, and Thygesen, 2001) by reducing the thickness of the nutrient con-
centration boundary layer (Arin et al., 2002; Peters et al., 2006). In general,
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plankton species feel the turbulence di�erently based on their size rela-
tive to the Kolmogorov length scale h. Karp-Boss, Boss, and Jumars (1996)
found that a size of 60 µm is required for significantly increased nutrient
uptake in turbulence, although this threshold is sensitive to turbulence
intensity. Copepods’ size range fits in this condition, so that turbulence
has great impact on their growth rate. Not only the size, but many other
parameters such as shape, physiology and environmental nutrient con-
ditions can influence the nutrient uptake, hence the growth of copepods.
Given that the interaction between turbulence and copepods’ growth de-
pend strongly on all this factors, it is a natural conclusion that environ-
mental conditions can a�ect local community composition and size struc-
ture of species (Margalef, 1997).

Copepods’ encounter rate In addition to a�ecting the community com-
position, copepods’ growth and nutrient uptake, turbulence changes the
sedimentation rates (Ruiz, as, and Peters, 2004; Ross, 2006) and a�ects
the grazing pattern of copepods by enhancing the encounter rate (Roth-
schild and Osborn, 1988). Gerritsen and Strikler (1977) introduced the
encounter rate for the first time in a laminar flow and many other authors
(Rothschild and Osborn, 1988; Evans, 1989; Dower, Miller, and Leggett,
1997; Visser and MacKenzie, 1998; Seuront, Schmitt, and Lagadeuc, 2001)
improved this theory and included the contribution of turbulence. Al-
though turbulence increases the contact rates, on the other hand it can
negatively a�ect ingestion (MacKenzie et al., 1994; Dolan et al., 2003) by
decreasing the time of contact. High level of turbulence can directly a�ect
copepods’ ability to sense and capture their prey by interfering with hy-
dromechanical signals copepods receive to locate prey. Finally, whereas
increased encounter rates can enhance foraging rate for copepods, these
copepods can experience increased contact rate with their predators, thus
higher risk of mortality may balance the increased foraging rate (Visser,
Mariani, and Pigolotti, 2009). Since laboratory experiments may interfere
with organism behaviour, either predator or prey, it is di�cult to charac-
terize the real behavior and interaction of copepods. Although the e�ects
of turbulence on encounter rates are studied mostly for the predator-prey
interaction, this can be applied to any process that depends on the contact
between particles i.e., aggregate formation, copepods’ mating, etc. Figure
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5.1, illustrates the interaction of turbulence with plankton.
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F����� �.�: Schematic diagram illustrating potential im-
pacts of turbulence on small-scale plankton processes and
interactions between the small-scale plankton processes.

Figure is adapted from (Jennifer et al., 2012).

Thin Plankton Layers The distribution of Plankton in the ocean is highly
heterogeneous over length-scales ranging from thousands of kilometers
down to few centimeters. Plankton can be patchy in their vertical dis-
tribution in the water column on meter scales normally less than 5 m
thick (Dekshenieks et al., 2001; Benoit-Bird, Cowles, and Wingard, 2009;
Durham and Stocker, 2012). Small scale patchiness likely arises from in-
teractions of plankton with small-scale chemical or hydrodynamics gradi-
ents (Durham, Climent, and Stocker, 2011; Seymour, Marcos, and Stocker,
2009; Gallager, Yamazaki, and Davis, 2004; Waters, Mitchell, and Sey-
mour, 2003) whilst at large scales, growth rates favored by mesoscale
processes such as nutrient upwelling and front formation (Gallager, Ya-
mazaki, and Davis, 2008) lead to heterogeneity. This pervasive hetero-
geneity can a�ect the mean abundance of both phytoplankton and their
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predators through their nonlinear interaction. Thin plankton layer is
a particular form of this patchiness and occurs when large numbers of
photosynthetic microorganisms are found within a small depth interval.
This layers have a thickness of several centimeters to few meters, so they
present strong vertical concentration gradients and are extending in sev-
eral kilometers in the horizontal direction (Dekshenieks et al., 2001). Ex- Thin plankton layer

A layer with several
kilometers in length
and up to few meters
in width

perimental observation of such a layer which is widespread is shown in
Fig. 5.2. Multiple layers comprising distinct phytoplankton species can
occupy di�erent depths in the same water column. The depth is corre-
lated with strong gradients in fluid density (stratification) and vertical
shear (Rines et al., 2010).

1. INTRODUCTION

The distribution of phytoplankton in the ocean is highly heterogeneous, or patchy, over length
scales ranging from thousands of kilometers down to a few centimeters. At large scales, het-
erogeneity is primarily driven by locally enhanced growth rates, favored by mesoscale processes
such as nutrient upwelling and front formation (Lévy 2008). At the smallest scales, patchiness
likely arises from interactions of plankton with small-scale chemical or hydrodynamic gradients
(Durham et al. 2011, Gallager et al. 2004, Seymour et al. 2009, Waters et al. 2003). This pervasive
heterogeneity can affect the mean abundance of both phytoplankton and their predators through
their nonlinear interaction (Steele 1974) and may contribute to sustaining the high diversity of
plankton (Hutchinson 1961) via habitat partitioning (Bracco et al. 2000).

A particularly dramatic form of patchiness occurs when large numbers of photosynthetic mi-
croorganisms are found within a small depth interval. These formations are known as thin phyto-
plankton layers and have received considerable attention from oceanographers and mathematical
modelers, recently culminating in an intensive multi-investigator effort, known as the Layered
Organization in the Coastal Ocean project, that took place in Monterey Bay, California, during
2005 and 2006 and was reviewed in an editorial by Sullivan et al. (2010b). Thin layers are tempo-
rally coherent aggregations of phytoplankton, typically several centimeters to a few meters thick
and often extending for kilometers in the horizontal direction (Dekshenieks et al. 2001, Moline
et al. 2010). They are widespread in the coastal ocean, with one study in Monterey Bay report-
ing thin layers occurring up to 87% of the time (Sullivan et al. 2010a). At times, multiple layers
comprising distinct phytoplankton species can occupy different depths in the same water column
(Rines et al. 2010).

In what was perhaps the first observation of thin phytoplankton layers (Figure 1a), Strickland
(1968) noted that standard sampling techniques could lead to substantial errors in the measurement
of both the depth-integrated chlorophyll abundance and the concentration of chlorophyll at a given
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Figure 1

Technological advances over the past four decades have greatly improved our ability to characterize the spatial distribution of
phytoplankton. (a) Thin layers observed in 1967 off La Jolla, California. The black line shows the continuous vertical chlorophyll
concentration profile measured using a submersible pump and a ship-based fluorometer. The red dashed line shows the profile
obtained using values from discrete depths, mimicking what would be obtained from bottle casts. This study revealed that the vertical
distribution of phytoplankton often contains fine-scale spatial variability that eluded quantification by traditional sampling techniques.
(b) Thin layers of chlorophyll (Chl), likely dominated by the flagellate Akashiwo sanguinea, observed at night in Monterey Bay using an
autonomous underwater vehicle. (c) Concurrent measurements revealing that the upper portion of the water column was depleted of
nitrate. Layers formed at night, as a result of downward vertical migration to the nutricline. Phytoplankton cells aggregated at the
3-µM nitrate isocline (white line in panels b and c). Panel a adapted with permission from Strickland (1968), copyright c� 1968 by the
American Society of Limnology and Oceanography Inc.; panels b and c adapted with permission from Ryan et al. (2010), copyright c�
2010 by Elsevier B.V.
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F����� �.�: Thin phytoplankton layers observed in 1967 o�
La Jolla, California. The black line shows the continuous
vertical chlorophyll concentration profile measured using a
submersible pump and a ship-based fluorometer. The red
dashed line shows the profile obtained using values from
discrete depths, mimicking what would be obtained from
bottle casts. This study revealed that the vertical distribu-
tion of phytoplankton often contains fine-scale spatial vari-
ability that eluded quantification by traditional sampling
techniques. (b) Thin layers of chlorophyll (Chl), likely dom-
inated by the flagellate Akashiwo sanguinea, observed at
night in Monterey Bay using an autonomous underwater
vehicle. (c) Concurrent measurements revealing that the
upper portion of the water column was depleted of nitrate.
Layers formed at night, as a result of downward vertical mi-
gration to the nutricline. Phytoplankton cells aggregated at
the 3 µM nitrate isocline (white line in panels b and c). Panel
a from Strickland (1968), b and c from Durham and Stocker

(2012).

There are several mechanisms which describe the formation and persis-
tence of thin layers, i.e.,
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• straining which transforms initial horizontal phytoplankton het-
erogeneity into a thin layer, by progressively tilting a phytoplankton
patch.

• convergent swimming in which species’ motility are guided to-
ward desirable conditions like nutrient concentration or daylight in-
tensity, etc.

• buoyancy which applies on organisms whose density di�ers from
that of the carrier fluid, results accumulation of plankton at their
depth of neutral buoyancy.

• gyrotactic trapping which is to be discussed mathematically, is the
interaction of the vertical migration of motile plankton species with
shear rate, which results in tumbling of the microorganisms and
trapping them in depth in a form of thin layer.

• in situ growth results formation of thin layer where growth rate is
enhanced, for instance in region with highly nutrient concentration
and suitable light intensities.

• intrusion which transports waters comprising high plankton con-
centration into adjacent waters containing lower concentrations,
leads to layer formation.

These mechanisms are illustrated in Fig. 5.3. Notice that the most abun-
dant form of plankton is copepod, so one can estimate the e�ect of thin
layer formation on copepods’ encounter rate, mating and feeding pat-
tern. Planktonic species can have mutual influence on turbulence such
as changing the viscosity at small scales or modify the background fluid
by adding rearward momentum to the fluid. Jennifer et al. (2012) and
Jenkinson and Sun (2010) provide more description on this topic.

5.2 Previous works

The study of swimming microorganisms and their interaction with fluid
flows has attracted enormous attention in the last decade. A line of re-
search has focused on characterizing individual swimming strategies by
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3.1. Straining of Phytoplankton Patches by Shear

Vertical gradients in horizontal velocity can transform horizontal gradients of scalars into ver-
tical gradients. This occurs by differential advection, whereby portions of a patch at different
depths are transported at different flow velocities, until the patch is transformed into a thin layer
(Figures 2a and 3a,b). This mechanism, proposed by Eckardt (1948) to explain field observations
of fine-scale vertical variability in temperature, was later extended to thin phytoplankton layers
(Franks 1995, Osborn 1998). Here we summarize the spatial and temporal scales that characterize
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b  Convergent swimming
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Figure 2

Diverse mechanisms can drive the formation of thin phytoplankton layers. (a) Straining transforms initial (time t1) horizontal
phytoplankton heterogeneity into a thin layer (t3), by progressively tilting (t2) a phytoplankton patch. This effect results from the
differential advection of the patch over depth (see Section 3.1). The change in color from t1 to t3 (less green) indicates a lower
concentration of phytoplankton. (b) The accumulation of cells in layers can also result from directed motility, guided by cues that drive
cells towards desirable conditions (e.g., a specific light intensity, L, or nutrient concentration, K; see Section 3.2). (c) Nonmotile cells
whose density differs from that of the surrounding water sink (if heavier) or rise (if lighter) and accumulate at their depth of neutral
buoyancy (dotted line), typically occurring at pycnoclines (see Section 3.3). (d ) The vertical migration of motile phytoplankton can be
suppressed in regions of high fluid shear, forming layers through gyrotactic trapping. As cells swim into a region where the magnitude
of the shear rate, |S|, exceeds a threshold, SCR, flow induces tumbling of the cells, trapping them at depth in the form of a thin layer (see
Section 3.4). (e) Thin layers can also form when growth rates are enhanced at mid-depth. For example, this can occur when light
intensity and nutrient concentration are both suitable for growth over a small depth interval (as shown here). The depth of maximal
growth rate is denoted by a dotted line (see Section 3.5). ( f ) Intrusions can form thin layers by transporting waters containing high
phytoplankton concentrations into adjacent waters containing lower concentrations (see Section 3.6).
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F����� �.�: Diverse mechanism which drive thin layer for-
mation a) straining, b) convergent swimming, c) buoyancy,
d) gyrotactic trapping, e) in situ growth and f) intrusion

from (Durham and Stocker, 2012).
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means of experiments (Berg and Turner, 1979; Leonardo et al., 2010; Visser
and Kiørboe, 2006) as well as by theoretical and numerical modelling
(Lauga, 2016; Teran, Fauci, and Shelley, 2010). A second direction of
study devoted to the consequences of swimming on population dynam-
ics, e.g., by focusing on encounter rates and other collective behaviours
(Hernandez-Ortiz, Stoltz, and Graham, 2005; Baskaran and Marchetti,
2009; Lambert et al., 2013; Lushi, Wioland, and Goldstein, 2014; Drescher
et al., 2011). A third direction focused on the mutual interactions of mi-
croorganisms with the fluid flow environment, in particular bio-induced
flow fluctuations, sometimes dubbed as bacterial turbulence (Hoheneg-
ger and Shelley, 2010; Dunkel et al., 2013; Kaiser et al., 2014), or vice-versa,
on active matter clustering induced by non homogeneous flows or fluid
turbulence (Croze et al., 2013; Durham et al., 2013; Pedley and Kessler,
1992; Warnaas and Hondzo, 2006; Guasto, Rusconi, and Stocker, 2012;
Bergstedt, Hondzo, and J. B, 2004; Stocker, 2012; Gustavsson et al., 2016;
Lillo et al., 2014).
Here we limit ourself to the previous studies which have been performed
on Lagrangian modeling of particles in fluid flows with focus on active
swimmers/phytoplankton. A commonly used model for locomotion of
swimming microorganisms, was first proposed by Pedley and Kessler
(1992) where active particles can swim with slipping velocity in a pre-
ferred direction in addition to the contribution of carrier fluid velocity.

dx

dt
= u[x(t), t)] + vsp (5.1)

and spatiotemporal evolution of p can be obtained from:

dp

dt
=

1

2

W ⇥ p +

a2 � 1

a2

+ 1

p · S · [I � pp] +

1

2B

[k � (k · p)p] +

p
DRÂÂÂ(p)x

(5.2)
in which W is the fluid rotation rate antisymmetric tensor, defined as
Wij = 1/2(∂iuj � ∂jui), a ⌘ l/d is the aspect ratio of the swimmers given
by the ratio of length (l) to their diameter (d), S is the fluid deformation
rate symmetric tensor, defined as Sij = 1/2(∂iuj + ∂jui), I the identity ten-
sor, B the characteristic time that active particles take to reorient toward
vertical direction, k is the preferential swimming direction, DR is rota-
tional di�usivity coe�cient, ÂÂÂ(p) is expressed by ÂÂÂ(p) = I � pp/|p|2,
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and x is uniformly random vector in space.
The first term in the right hand side of eq. 5.2 accounts for tilting of par-
ticles by vorticity while the second term takes into account the e�ect of
particles’ shape. Rate of strain (S) comes into play when particle is either
oblate (a < 1) or prolate (a > 1) (Fig. 5.4). In fact spheroids are subjected

a                          b

F����� �.�: a) Oblate (a < 1) and b) prolate (a > 1)
spheroids.

to the rate of strain tensor and undergo periodic rotation in so-called Jef-
fery’s orbits. Full derivation of the second term and Je�ery’s orbits are
detailed in Je�ery (1922). Its phenomenology in turbulent flows has been
investigated more recently in Parsa et al. (2012) where they only consid-
ered the first two terms of the right hand side of eq. 5.2.
The third term in the equation is pronounced when particle’s center of
symmetry is not the same as its center of mass. In this case, swimming
direction can be guided in a preferential direction which results from the
competition of gravitational force and viscous torque and is called Gyro-
taxis. Kessler (1985) studied this phenomenon to explain hydrodynam- Gyrotaxis

Any directed
locomotion resulting
from a combination of
gravitational and
viscous torques in a
flow

ics of motile alga cells and later on Pedley and Kessler (1992) and Je�ery
(1922) proposed widely known form of swimming direction evolution.
Eventually the last term is responsible for the stochastic rotational di�u-
sivity of particles.
Similar models have been successfully employed for the description of
the behaviour of phytoplankton, such as chlamydomonas (Torney and
Neufeld, 2007; Durham, Climent, and Stocker, 2011; Ardekani and Gore,
2012) in laminar flows. Taylor-Green Vortex (TGV) flow (Solomon and
Gollub, 1988) were used in their studies where Torney and Neufeld (2007)
and Ardekani and Gore (2012) studied orientation of spheroidal parti-
cles by neglecting gyrotaxis and rotational di�usivity and showed that
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the spatial distribution of microorganisms depends on motility, vortic-
ity strength and rheological properties of the background fluid. Durham,
Climent, and Stocker (2011) instead considered the gyrotactic phytoplank-
ton and ignored the stochastic rotational di�usion. They showed that cou-
pling between flow and motility in some conditions leads to aggregation
of swimmers, where relative swimming speed of particles and gyrotactic
orientation parameter (B) are important parameters. This suggests that
vortical flows (TGV) can be used to separate species with di�erent motil-
ity characteristics.
More recently, Durham et al. (2013), Croze et al. (2013), Lillo et al. (2014),
and Zhan et al. (2014) applied this model in turbulent flows, among them
Croze et al. (2013) considered all the contributions in eq. 5.2 to study the
dispersion of swimming algae, while others neglected the last term. Their
findings shows that turbulence can generate clustering of particles which
is given by the gyrotactic e�ect and is a non-isotropic e�ect induced by
the presence of the the external gravity field.
Copepods and zooplankton in general, display higher complexity com-
pared e.g., to algae species because of their higher motility. In the follow-
ing we describe our Lagrangian model.

5.3 Model equation for copepods dynamics

In this section we introduce a simple model system of copepod’s dynam-
ics. This representation is based on the idea that the copepod’s trajectories
in a fluid can be mimicked by properly defined active particles.
The model relies both on biological and hydrodynamical assump-
tions.

• We assume that copepods respond always in the same way to exter-
nal flow disturbances.

• Their jump reaction is embedded in their neural system.

• The stimulus triggering the jump is highly stylised, we only take into
account a mechanical signal with a single-threshold, to be specified
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later on, and ignore any other activity induced by light, food, or
chemistry (e.g., pheromones).

• Copepods have no memory of their previous jumps.

On the mechanical side:

• We assume that copepods are small enough that their centre of mass
can be considered a perfect fluid tracer in a flow, except for the
time when a jump event takes place. In hydrodynamic terms this
means that copepods are assumed to be rigid, homogeneous, neu-
trally buoyant particles with a size which is of the order of the dis-
sipative scale of the flow.

• Gravity force has no role in producing acceleration or torque. Only
the drag force e�ect is taken into account during the jumps.

• Copepods are coupled to the fluid in a one-way fashion, they react
and are carried by the fluid but they do not modify the surrounding
flow.

• Copepods-copepods interactions are also neglected.

Adding all together the above hypothesis the LC equation of motion is as
follows:

˙x(t) = u(x(t), t) + J(t, ti, te, ˙g, p) (5.3)

where u(x(t), t) is the velocity of the carrying fluid at time t and position
x(t) and J is an added velocity term that describes the active behaviour
(jump) of the copepod. J(t, ti, te, ˙g, p) is a function of time t, it depends
also on an initial and a final time ti and te, on flow shear rate value ˙g and
on orientation vector p. If copepods are taken to be spherical in shape,
their orientation dynamics is given by:

˙p(t) = W · p(t) (5.4)
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with

W =

1
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775 (5.5)

While in general the following form of eq. 5.2, which is valid for axisym-
metric ellipsoidal particles, is chosen:

˙p(t) =

⇣
W +

a2�1

a2

+1

⇣
S � p

T

(t) · S · p(t)
⌘⌘

· p(t) (5.6)

Aspect ratio of copepod is typically around 3 for Eurytemora a�nis species
available in Laboratory of Oceanology and Geoscience (LOG).
Notice that here we designate by S the fluid deformation rate symmetric
tensor:

S =

1

2

(ru + (ru)
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and the shear rate is then defined as ˙g =

p
2S : S where

pS : S means
norm of the fluid deformation rate symmetric tensor which is given by
Frobenius norm or the Hilbert-Schmidt norm ||S|| =

p
trace(STS). We

note that the fact that the jump term is assumed to depend on ˙g repre-
sents a generalization to the 3D geometry of Kiørboe’s empirical findings
(Kiørboe, 2008).
For the jump term we propose the following functional form:

J(t, ti, te, ˙g, p) = H[

˙g(ti) � ˙gT] H[te � t]uJ e
ti�t
tJ

p(ti) (5.8)

where H[x] denotes the Heaviside step function, ˙gT is a threshold value of
the shear rate, uJ and tJ are two characteristic parameters characterising
the jump shape, its velocity amplitude (uJ) and duration tJ respectively.
The first H step function models the fact that a jump can begin only when
the shear rate is above the given threshold value, while the second step
function accounts for the fact that the jump time span is finite. Figure 5.5
illustrates better the kinematics of copepods’ jump when the shear rate is
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above the threshold value. The jumps are sharp at initial time and decay
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F����� �.�: Kinematics of a jump of a copepod in regions
where ˙g > ˙gT. It is a function of ti, te, uJ and tJ .

exponentially with latency time of tJ as we obtained this from experimen-
tal jump data analysis. The initial and final time of a jump are defined
as:

ti = t if (

˙g(t) > ˙gT) \ (t > te) (5.9)

te = ti + c tJ = ti + log(10

2

) tJ (5.10)

In other words we assume that a jump can not begin if a previous jump
has not finished (t > te) and that a jump terminates when its amplitude
has decreased to a negligible level, here taken as one percent of the initial
amplitude, i.e., |J(te)| = 10

�2|J(ti)|.
As mentioned, according to our LC model, drag is the only force acting on
jumping behavior of copepods. Taking into account the simplified equa-
tion of motion of particles in the flow (eq. 3.38) and ignoring the added
mass e�ect:

ẍ =

1

tp
(u � ẋ) (5.11)

thus, formal solution of this equation with initial condition of ẋ(0) =

u(0) + uJ , and u(0) = 0, can be written as:

ẋ(t)

⇠
=

u(0) + uJe�t/tp (5.12)
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where tp =

a2

3bn is the Stokes response time of a copepod. Based on this
finding, we can associate tJ , the copepods’ jump decay time that we ex-
tracted from the experiments to be the e�ective response time of the cope-
pods. We note that by assuming a nominal copepod radius of 0.5 mm
with rp ' r f , one can estimate the Stokes particle response time which
is tp = 83.3 ms, but the e�ective particle response time may be smaller
due to the non-linear e�ect induced by a high Reynolds number of the
copepod (Rep) which can be of the order of O(10

2

). If we assume that a
copepod can swim with a velocity of v ' 2 · 10

�1ms�1, then Rep ' 200.
By using the Shiller-Neumann relation (Schiller and Neumann, 1933) for
the response time, tp,min =

a2

3bn

⇣
1

1+CRep

⌘
where CRep = 0.15 Re0.687

p , one
obtains tp,min = 12.3ms which is closer to our estimation from the exper-
iments (tJ ' 8ms).

5.3.1 Model tuning for turbulent flows

We now take into account the presence of the oceanic flow environment
surrounding the copepods. The properties of oceanic turbulence relevant
for our work have been studied, among others by MacKenzie and Leggett
(1993) and Jiménez (1997). In these surveys it was observed that the mean
value of the turbulent kinetic energy dissipation rate, e = 2nS : S , varies
from about 10

�8 m2s�3 in open ocean to 10

�4 m2s�3 in coastal zones (al-
though it is also sensitive to the wind speed conditions and on the depth).
The value of e along with the kinematic viscosity of sea water, n, allow
to estimate the Kolmogorov scales of ocean turbulence: The dissipative
length h = (n3

/e)1/4, time th = (ne)1/2 and velocity uh = (ne)1/4. The
order of magnitude estimate as from Ref. Jiménez (1997) for these quan-
tities are reported in table 5.1. According to the same authors the typical
Taylor-scale Reynolds number Rel in the ocean can reach values up to
O(10

2

).
Given that the typical size of copepods is of the order of millimetres, it
is clear that the relevant flow scales for their dynamics are close to the
Kolmogorov scale or below in turbulence (Yen, 2000). Figure 5.6 shows
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the smallest and largest scale present in the ocean in terms of e and a pa-
rameter N which is the buoyancy or Brunt-Väisälä frequency. The smallest
scale (Kolmogorov scale) is shown by LK in this figure. Brunt-Väisälä

frequency
The angular
frequency at which a
vertically displaced
parcel will oscillate
within a statically
stable environment

F����� �.�: Regimes of ocean turbulence located with re-
spect to stratification and energy dissipation. Dotted lines
indicate Ozmidov1and Kolmogorov length scales (Smyth

and Moum, 2001).

When the LC model is recast in a dimensionless form in terms of these
scales we get three dimensionless groups of parameters: tJ/th, uJ/uh and
th ˙gT. These parameters, together with the flow Rel fully specify the work- Three control

parameters
tJ/th , uJ/uh and th ˙gT

ing conditions (or tuning) of the copepods-in-turbulence model.
In this study we take as reference for the energy dissipation rate the value
e = 10

�6 m2s�3, and by taking into account the dimensional values esti-
mated for the copepods jump intensity uJ and jump decaying time tJ , the
ratios uJ/uh = 83.599 and tJ/th = 0.0080727 can be deduced from the

1A length scale for the description of turbulent flows under stable stratification, de-
fined as the square root of the ratio between the dissipation rate of turbulent kinetic
energy and the third power of the Brunt-Väisälä frequency.
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similarity analysis for copepod species E. a�nis. These dimensionless val-
ues for copepod species A. tonsa is uJ/uh = 83.792 and tJ/th = 0.007351.
This tells us that in ordinary turbulence conditions the copepods possess
an almost instantaneous reaction, since their response time is about one
hundredth of the smallest scale of turbulence. On the opposite the ve-
locity reached during a jump is of a magnitude that is comparable if not
higher to the one of turbulent velocity fluctuations. Finally, we note that
we do not have any experimental guess for the magnitude of ˙gT, therefore
the value th ˙gT is a free parameter of our model.

Parameter Unit Range This study
n m2s�1 ⇠ 10

�6

10

�6

e m2s�3

10

�8

10

�4

10

�6

h m 3 ⇥ 10

�3

3 ⇥ 10

�4

10

�3

th s 10 0.1 1

uh ms�1

3 ⇥ 10

�4

3 ⇥ 10

�3

10

�3

Rel – O(10

2

) 80

T���� �.�: Reference properties of the ocean turbulent flow
as from Jiménez (1997). e is the mean turbulent energy dis-
sipation rate, h, th and uh are the turbulence space, time
and velocity dissipative scales. Rel is the Taylor-scale based
Reynolds number. Their approximate range of variability is
given together with the reference values chosen for the sim-

ilarity analysis in the present study.

5.4 Case study: Taylor - Green Vortex flow

The Taylor-Green vortex (TGV) is a canonical problem in fluid dynamics
developed to study vortex dynamics, turbulent transition, turbulent de-
cay and the energy dissipation process. The TGV problem contains sev-
eral key physical processes in turbulence in a simple construct and there-
fore is an excellent case for the evaluation of turbulent flow simulation
methodologies.
Here two-dimensional TGV (also known as cellular flow or Solomon and
Gollub flow (Solomon and Gollub, 1988)) is taken in order to study the
behavior of passive/active particles under the Lagrangian Copepod (LC)
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model in a simple vortex flow. The incompressible cellular flow is com-
posed of a periodic array of two-dimensional eddies in square cells of size
L and can be specified by the following streamfunction:

y(x, y, t) =

A
k

sin
(

k
(

x � b sin
(

wt
)))

sin
(

k
(

y � b sin
(

wt + f
)))

(5.13)

where the choice of A, k, b, w and f can be di�erent. Here we choose
A = U

0

where U
0

is the fluid velocity at the cell boundaries, L = 2p,
k = p/L, b = L/4, w = 1/t where t = L/U

0

and f = p/2. The
components of the fluid velocity vector u are:

u

x

=

∂y

∂y

= A sin
(

k
(

x � b sin
(

wt
)))

cos
(

k
(

y � b sin
(

wt + f
)))

(5.14)

u

y

= �∂y

∂x

= �A cos
(

k
(

x � b sin
(

wt
)))

sin
(

k
(

y � b sin
(

wt + f
)))

(5.15)
in the steady state, the eq. 5.14 and 5.15 are simplified to:

u

x

= U
0

sin
⇣px

L

⌘
cos
⇣py

L

⌘
(5.16)

u

y

= �U
0

cos
⇣px

L

⌘
sin
⇣py

L

⌘
(5.17)

Fig. 5.7 illustrates the velocity profile and streamlines of the cellular flow
in 2D. This configuration can be repeated with opposite direction alter-
nately along axis, so that the general shape of TGV flows can be reached
(Fig. 5.8). Here we focus only on the interval [0, L] as shown in Fig. 5.7
to study the dynamics of particles and copepods in a simple vortex flow,
which may give us a good vision of their behavior in real turbulent flows
consisting of more complicated eddies.
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sity between one-half of the fluid density and the fluid
density.

The incompressible cellular flow is a Taylor-Green type
of vortex flow composed of a periodic array of two-
dimensional eddies in square cells of size L !see Fig. 1" and
can be specified by the following streamfunction:1

!!x,y" = !U0L " #"sin x̃ sin ỹ , !1"

where x̃=#x /L and ỹ=#y /L. Here x and y are the coordi-
nates aligned to the boundaries of the cells and U0 is the fluid
velocity at the cell boundaries. The scalar components of the
fluid velocity vector, u, are

ux =
!!

!y
= U0 sin x̃ cos ỹ, uy = −

!!

!x
= − U0 cos x̃ sin ỹ . !2"

The simplified equation used to track the motion of the
particles/bubbles in the steady cellular flow field has the fol-
lowing dimensional vector form:

!mP +
1
2mF"!dV ! dt" = !mP − mF"g + 6#a$!u − V"

+ mFu · "u +
1
2mFV · "u , !3"

where mP is the particle mass, mF is the mass of the dis-
placed fluid, a is the particle radius, and $ is the fluid dy-
namic viscosity. Included in the right-hand side !rhs" of Eq.
!3" are the buoyancy force of the fluid on the particle, the
Stokes drag law, the fluid force on the particle from the stress
gradients of the undisturbed flow field, and the added mass
effect. The Basset history term, the aerodynamic lift force,
and the Faxen corrections for the nonuniform flow field were
not taken into account to reproduce exactly the simulation
setting of Maxey.1 An analysis of the order of magnitude of
the forces acting on the particles, however, reveals that the
added mass and the stress gradient forces are O#!%p /%"−1$,
whereas the Basset force is O#!%p /%"−1/2$: for density ratios
of order one, these forces become comparable. We thus re-
mark that the pressure gradient force due to shear stress in
the conveying fluid and the Basset force may produce quan-
titative, though not qualitative, changes to the results pre-
sented here. Similarly, the lift force can produce different
particle patterns !for instance, it may push bubbles rising in a
horizontal vortex to the vortex side with downward velocity"
and may lead to smaller mean rise velocities.6 Inclusion of
these forces in the equation of particle motion will constitute
the next step of this ongoing study.

Following Maxey,1 the scaled form of Eq. !3" can be
written as

dV ! dt = A#u − V + W$ + R!u +
1
2V" · "u . !4"

The nondimensional parameters characterizing this
equation are the inertia parameter, A, the particle settling
velocity for still fluid, W, and the mass !or, equivalently,
density" ratio, R, which are defined as follows:

A =
1

St
=

6#a$L

!mP +
1
2mF"U0

, W =
!mP − mF"g

6#a$U0

,

!5"

R =
mF

mP +
1
2mF

=
2

2!%P/%F" + 1
,

where %P and %F are the particle density and the fluid density,
respectively. Depending on the value of R, three different
ranges can be identified, which correspond to different sets
of physical conditions: the aerosol range !%P&%F, i.e., 0
'R'0.4", the bubble limit !%F&%P, i.e., R=2", and the
transition range !0.4(R(2". The aerosol range and the
bubble limit have been investigated in detail by Maxey.1 In
the present study, we are interested in situations where %P

'%F !particles/bubbles lighter than fluid" and %P+%F /2
)%F !fluid acceleration and added mass" become relevant
perturbations to the basic aerosol problem. The combination
of these two conditions corresponds to the interval 1 /2
'%P /%F'1 !namely, 2 /3'R'1" in the transition range.
The case R=2/3 has been considered also by Babiano et al.,7

who analyzed the motion of small finite-size neutrally buoy-
ant tracers for the purposes of targeting trajectories in an
incompressible 2D flow representing a simplified chaotic
Hamiltonian system.

We have investigated 38 different cases by increasing the
density ratio via %P. The ranges of variation for the inertia
parameter and for the particle still-fluid settling velocity cor-
responding to the interval 2 /3'R'1 are 5#'A'10# /3
and −0.625'W'0, respectively. As in Maxey,1 two more
nondimensional parameters are introduced: the rise velocity,
Q, and the inertia parameter, B, for a vapor bubble. These
parameters are defined such that their value can be derived
from the following equalities:1

W = % 1

R
−

3

2
&Q, A =

RB

2
. !6"

In the transition range, it is appropriate to assign fixed
values to B and Q as R is varied: Here, we have chosen B

=10# and Q=1.25 !Ref. 1". The components of particle ve-
locity are computed by time integration of the following or-
dinary differential equations !ODEs":

1

A

dVx

dt
+ Vx = sin x̃ cos ỹ +

1

2

R

A
!Vx cos x̃ cos ỹ

− Vy sin x̃ sin ỹ" +
R

A
sin x̃ cos x̃ ,

!7"

(a)

x

y

0

L

(b)

U0

U0

y

x
0

FIG. 1. !a" Streamlines and !b" velocity profiles for the periodic cellular
flow field. The arrows show direction of the flow.
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F����� �.�: a) Streamlines and b) velocity profiles for the
periodic cellular flow field. The arrows show direction of

the flow (Marchioli, Fantoni, and Soldati, 2007).

F����� �.�: General configuration of 2D TGV flows (Marchi-
oli, Fantoni, and Soldati, 2007). It consists of several eddies
placed homogeneously in a plane. The rotation direction of

vortices changes alternately.

This flow can illustrate clearly the di�erences between the tracers’ motion
and the displacement of heavy/light particles in the flow, for this special
case in a vortex flow. As mentioned in chapter 3, the simplified equation
of motion of particles is written as:

dv

dt
= b

D
Dt

[u(x(t), t)] � 1

tp
[v(t) � u(t)] (5.18)

with b = 3r f /(2rp + r f ), the density ratio and tp = a2

/(3bn), the stokes
time of the particle. Tracers follow the streamlines of the flow since they
do not experience any forces from the carrier fluid, however as discussed
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before, light particles are trapped by the vortex while heavy particles tend
to accumulate in low vorticity regions. Fig. 5.9 illustrates this behavior of
light and heavy particles in the 2D - TGV flow. Visualization of tracers,

!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!!"#$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"%$!
!

F����� �.�: Snapshots of the flow taken after 2 eddy turn-
over time from initially homogeneously distributed condi-
tion showing that a) light particles (St = 0.03, b = 1.5) accu-
mulate in the high vorticity region while b) heavy particles
(St = 0.4, b = 0.09) are taken away from the vortex’s core.

Colors correspond to the amplitude of the shear rate.

heavy and light particles in the steady cellular flow can be found in:

• Tracers: https://www.dropbox.com/s/4vbjyhfr5i2tk2y/Tracers.
mpg?dl=0

• Light particles: https://www.dropbox.com/s/ieglyx9mudm7fta/

Light-particles-0.5.mpg?dl=0

• Heavy particles: https://www.dropbox.com/s/726lsutcbu8844l/

Heavy-particles-15.mpg?dl=0

The colors in Fig. 5.9 correspond to the amplitude of the shear rate which
can be estimated through the following relations. Based on the definition,
the energy dissipation rate e can be obtained by:

e =

n

2

Â
ij

�
∂iuj + ∂jui

�
2 (5.19)

https://www.dropbox.com/s/4vbjyhfr5i2tk2y/Tracers.mpg?dl=0
https://www.dropbox.com/s/4vbjyhfr5i2tk2y/Tracers.mpg?dl=0
https://www.dropbox.com/s/ieglyx9mudm7fta/Light-particles-0.5.mpg?dl=0
https://www.dropbox.com/s/ieglyx9mudm7fta/Light-particles-0.5.mpg?dl=0
https://www.dropbox.com/s/726lsutcbu8844l/Heavy-particles-15.mpg?dl=0
https://www.dropbox.com/s/726lsutcbu8844l/Heavy-particles-15.mpg?dl=0
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which is linked to the rate-of-strain tensor e = 2n < SijSij > and of
course to the shear rate by ˙g =

p
2S : S . The distribution of this quan-

tity can be found in Fig. 5.10 where it indicates that the central region
of the domain has the lowest shear rate, however this quantity is maxi-
mum in the corners. Implementing the LC model in this flow and taking
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F����� �.��: Distribution of the shear rate in TGV flow. High
shear rate intensities are found in the corners and regions

with low shear rate intensities are in the center.

into account the existence of only one threshold value of the shear rate
(the upper threshold as described in Kiørboe (2008)), copepods have to
escape from regions with high shear rate intensities. This is shown in
Fig. 5.11 where copepods avoid the corners by jumping into calm regions
and in fact they accumulate at the interface of high and low shear rate
regions. The threshold value of the shear rate in this flow is set to 0.33
and copepods jump in random direction in a plane. The visualization has
been done with and without the flow to better see the performance of LC
model and investigate the influence of the flow on copepods. This can be
found in:

• Copepods in TGV domain without flow: https://www.dropbox.

com/s/nog726bldn2rsvi/Copepod-in-TGV-no-Flow.mpg?dl=0

• Copepods in steady TGV flow: https://www.dropbox.com/s/

v9yqurbqggbcsiv/Copepod-in-TGV-steady.mpg?dl=0

https://www.dropbox.com/s/nog726bldn2rsvi/Copepod-in-TGV-no-Flow.mpg?dl=0
https://www.dropbox.com/s/nog726bldn2rsvi/Copepod-in-TGV-no-Flow.mpg?dl=0
https://www.dropbox.com/s/v9yqurbqggbcsiv/Copepod-in-TGV-steady.mpg?dl=0
https://www.dropbox.com/s/v9yqurbqggbcsiv/Copepod-in-TGV-steady.mpg?dl=0
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F����� �.��: Snapshots of the flow taken after 2 eddy turn-
over time from initially homogeneously distributed condi-
tion showing the distribution of copepods in TGV a) with-
out flow and b) in the presence of the flow. The shear rate
threshold value is set to 0.33 in the domain (Fig. 5.10 repre-

sents the distribution of shear rate value).

It is evident that copepods jump into the calm regions, however some in-
dividuals can be found in regions with shear rate higher than the given
threshold as can be seen from Fig. 5.11 (a). This is due to a very small
random walk of copepods that has been imposed which takes some cope-
pods in the forbidden regions and makes them to react. Panel (b) of Fig.
5.11, represents the distribution of copepods in the presence of the carrier
flow. It is expected to have more individuals in the forbidden regions in
this case. The copepods are dispersed in TGV flow in almost one dimen-
sional manner quantified by a correlation dimension (to be discussed in
next chapter) D

2

⇡ 1.4 in no-flow and D
2

⇡ 1.2 in the presence of the
flow.
Time dependent TGV flow is more complicated and needs more e�ort to
understand the particles’ behavior in its chaotic flow. The behaviour of
particles and copepods can be found in:

• Tracers in time-dependent TGV: https://www.dropbox.com/s/

uirrpbt5b4fg1mv/Tracers-in-time-dependent-TGV.mpg?dl=0

• Copepods in time-dependent TGV: https://www.dropbox.com/s/
7pkgdixq9em8gds/Copepod-in-time-dependent-TGV.mpg?dl=0

https://www.dropbox.com/s/uirrpbt5b4fg1mv/Tracers-in-time-dependent-TGV.mpg?dl=0
https://www.dropbox.com/s/uirrpbt5b4fg1mv/Tracers-in-time-dependent-TGV.mpg?dl=0
https://www.dropbox.com/s/7pkgdixq9em8gds/Copepod-in-time-dependent-TGV.mpg?dl=0
https://www.dropbox.com/s/7pkgdixq9em8gds/Copepod-in-time-dependent-TGV.mpg?dl=0
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Compared to TGV flows, turbulence is much more complicated where we
have a hierarchy of time and spatial scales. This is to be discussed in detail
in the next chapter.
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Chapter 6

Analysis of spatial distribution of
Lagrangian copepods

In this section the results of the implemented LC model in the homogeneous
isotropic turbulent flow will be addressed. First the single point statistics of the
copepods are assessed. Later we will quantify the non-homogenous distribution
of copepods by using a technique which is introduced in a separate section.
Moreover the influence of the geometrical aspect ratio, the direction of the jump
and the jump time latency on particles’ spatial distribution are recognized.

As mentioned in previous chapter, the LC model is characterised by three
control parameters: the jump intensity uJ , the decaying time of the jump
tJ and the shear rate threshold value ˙gT, which are conveniently pre-
sented in dimensionless form in terms of turbulence dissipative scale
units. Since the LC model is just one-way coupled to the fluid, in the
numerics we can perform simultaneous simulations of several families of
copepods in the same turbulent flow, where each family is characterized
by the triplet

⇥
uJ/uh, tJ/th,

˙gTth
⇤
.

In agreement with the experimental observation we always keep fixed
the decaying time of the jump to the value tJ/th = 10

�2, while the other
parameters are varied independently in the ranges uJ/uh 2

[

1, 400

]

and
th ˙gT 2

[

0, 4

]

. Note that if ˙gT = 0, according to the model, all the particles
will jump in a synchronous way. In order to avoid such an unphysical fea-
ture, the time te for each particle is initialized by a random variable with
homogeneous distribution in the interval [0, log(10

2

) tJ ].
We perform a series of simulations with multiple families, with about
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2.56 ⇥ 10

5 particles per family1. The simulation was started and particles
were let displace for about 2 eddy turnover times, after that during the
following ⇠2 eddy turnover times about 10 instantaneous distributions
of LC particles were saved for analysis. Copepods are modeled as solid
sphere particles and orientation vector a�ected by fluid rotation rate (eq.
5.4), unless otherwise noted. For comparison a set of passive fluid tracers
are also included in all our simulations.

6.1 Single Point Statistics

Distribution of the shear rate ˙gT, as one of the main control parameters,
gives us a better view on the copepods activity in turbulence. Figure 6.1
which represents this quantity, indicates that Probability Density Func-
tion (PDF) of the shear rate varies in a narrow range. Since our LC model
in linked to the spatial distribution of the shear rate, we expect copepods
to be more sensitive in this range and be less active in regions with higher
shear rate intensity
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F����� �.�: Probability distribution function of the shear
rate in turbulence at Re ⇠ 80.

In order to see how the LC dynamics in turbulence di�er from that of a
fluid tracer, we first address the velocity single point statistics. The PDF of

1In physical dimension this corresponds to a number density of O(1) LC particles
per cm3, a density comparable to the one found for real copepods estuarine water.
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the absolute value of single component velocity for the copepods, i.e., | ˙xi|,
is shown in figure 6.2. Tracers, the particles which move along the stream-
lines, agree with a Gaussian distribution, while for copepods a slower de-
caying tail is found. Gaussian distribution is a statistical distribution, here
with probability density function of:

P(x) =

2

s
p

2p
e�(x�µ)

2

/2s2 (6.1)

where s is the measured root mean square velocity of the Eulerian field
and µ is mean velocity equal to zero.

This deviation becomes more pronounced at increasing the jump inten-
sity for a given threshold value of the shear rate, as shown in figure 6.2(a).
It also appears that low jump intensities uJ < 10 uh are not strong enough
to make e�ective changes on the copepods PDF. On the other hand, in-
creasing the threshold value of the shear rate leads to fewer jumps, there-
fore in this case copepods behave almost like tracers. Their deviation in
velocity distribution from the Gaussian, indeed increases by decreasing
the shear rate threshold value as can be seen in figure 6.2(b).
The general trend of the observed deviation from Gaussianity can be pre-
dicted by means of the following probabilistic model. We suppose that
the instantaneous single cartesian component velocity of LC particles can
be approximated by the sum of three statistical independent random vari-
ables. The first variable accounts for the turbulent velocity field contribu-
tion, therefore it is a Gaussian with zero mean and same standard devia-
tion as the one measured in the DNS. The second and the third variable
mimic respectively the jump direction and its intensity: we assume that
the orientation is random uniform in the solid angle and that the jumps
happen uniformly in time. One can obtain the resulting PDF for the LC
particle velocity from the convolution of the three elementary PDFs asso-
ciated to the three described random variables. The resulting density dis-
tribution function when compared to the LC measurements at low thresh-
old value th ˙gT = 0.21 (i.e., when copepods jump very frequently), shows
an overall qualitative agreement with a slight deviation in the tails (see
Fig. 6.2(b)).
Such a discrepancy comes from the fact that in reality the jump directions
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F����� �.�: Probability density function of absolute value
of single component velocity | ˙xi/uh | for the copepods. (a)
at constant threshold value th ˙gT = 0.7 and di�erent jump
intensities. Gaussian distribution is a statistic distribution
here with the measured root mean square velocity of the Eu-
lerian field as the standard deviation. (b) at constant jump
intensity uJ/uh = 100 for di�erent shear rate threshold
values. Random jumps correspond to the expected veloc-
ity distribution when randomly oriented jumps occur uni-

formly in time on top of the turbulent velocity field.

develop some correlations with the underlying flow, via Eq. 5.4, while
the probabilistic model neglects it. One can make use of the approximate
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probabilistic model to estimate the average fraction of particle perform-
ing jumps as a function of the shear-rate threshold value. This is done by
introducing an adjustable parameter accounting for the probability that
a given particle is actually jumping, and by fitting the model to the PDF
curves. This is shown in equation below:

˙x(t) = U + a p uJ e�t/tJ (6.2)

where U is the Gaussian random variable with zero mean and standard
deviation equal to the one in turbulent flow, a is the jumping fraction and
p is random jump vector. Jump intensity is shown with uJ while tJ is a
flat random between zero and the final time of the jump (

[

0, te]). Figure
6.3 shows the fitted predictions obtained with such a procedure (which
confirms the validity of the probabilistic model), while the inset of the
same figure displays the inferred jump percentage as a function of the
shear rate threshold value. We observe an exponential decrease as ˙gT is
raised. For the value th ˙gT = 0.5, the jumping particle fraction is around
50%.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0  50  100  150  200

P
D

F
(|

 ẋ
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F����� �.�: Probability density function of absolute value of
single component velocity | ˙xi/uh | for the copepods at con-
stant jump intensity uJ/uh = 100 for di�erent shear rate
threshold values. Fitted PDF curves correspond to the per-
centage of jump of copepods. (Inset) Deduced percentage of
jump as a function of the shear rate threshold value th ˙gT.
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We finally observe that the shape of the PDF displayed by the LC model,
is also in qualitative agreement with a recently published experimental
study (Michalec, Souissi, and Holzner, 2015), despite the fact that the ex-
periment has been performed in low Reynolds number conditions (up to
Rel ' 30).

F����� �.�: Probability density function of the magnitude
of the velocity for the copepods species E. a�nis at di�erent
turbulent intensities from Michalec, Souissi, and Holzner

(2015).

What has not been reported yet in experimental studies is a quantification
of the three-dimensional spatial distribution of copepods in turbulence.
We do this in the next sections by means of a fractal dimension character-
ization.

6.2 Introduction to the correlation dimen-
sion

Chaos detection can be estimated by the calculation of the fractal dimen-
sion. The most intuitive concept to characterize a geometrical shape is its
dimension where a single point has no dimension, curve has one dimen-
sion, plane and space have 2 and 3 dimensions respectively. This can be
justified by the fact that each point of a curve can be set in continuous cor-
respondence with a unique real number x. Analogously, this idea can be
established between a point of surface and couple of real numbers

(

x, y
)

,
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indeed for a point in space and real numbers
(

x, y, z
)

. Therefore a geo-
metrical object has a dimension d, when its points are in correspondence
with elements

(

x
1

, x
2

, . . . , xd) within a set of Rd. This non-negative inte-
ger lower than or equal to the dimension of the space in which the object
is embedded, is said to be topological dimension.
This integer dimension d, however might be insu�cient to characterize
the dimensionality of a set of points, or never ended patterns which are
called fractal (Cencini, Cencini, and Vulpiani, 2009).
Figure 6.5 shows the fractal von Koch, which is produced by dividing a
unitary segment into 3 equal parts, then removing the central part and
replacing it by two segments of equal length 1/3.

F����� �.�: Iterative procedure to construct the fractal von
Koch curve from Zhu, Zhou, and Jia (2003).

This procedure is repeated for each edge and after some steps the outcome
is a weird shape, as can be seen in Fig. 6.5. The number of segments at
each step is equal to N(k + 1) = 4 N(k) with N(0) = 1, and the length of
each segment is equal to l(k) =

(

1/3

)

k. So the total length of the curve at
n � th generation is:

L(n) =

✓
4

3

◆n
(6.3)
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since at each step, it comprises N(n) = 4

n segments of lenght l(n) =

(

1/3

)

n. By eliminating n between N(n) and l(n), one obtains:

N(l) = l�D
2 (6.4)

in which exponent D
2

is the fractal dimension and is written as:

D
2

= � lim

l!0

LnN(l)
Lnl

(6.5)

For fractal von Koch, this quantity is equal to D
2

= Ln4/Ln3 = 1.2618. So
the fractal dimension of this curve is not equal to its dimension (D

2

6= d).
In general a name fractal is given to any objects characterized by D

2

6= d.
Each part of a fractal reproduces the same complex pattern of the whole
object. This property is titled self-similarity, which can be found in nature
as well, like the beautiful pattern in the sunflowers, snowflakes or even
fractal like nature of some coastlines (Fig. 6.6).

!
!
!
!
!

! !

!" #"

$" %"

F����� �.�: Examples of self-similarity in nature a) sunflow-
ers, b) snowflake, c) leaf and d) coastline.

Fully developed turbulence is another generous source of natural fractals.
For instance, the energy dissipated is known to concentrate on small scale
fractal structures. Bernard et al. (2006) quantified the fractals in turbulent
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flows with a dimension of D
2

= 4/3. Fig. 6.7 shows the isolines of zero-
vorticity in two-dimensional turbulence in the inverse cascade regime.
Colors identify di�erent vorticity clusters, i.e., regions with equal sign of
the vorticity. Bernard et al. (2006) showed that the boundaries of these
clusters have self-similarity behavior and are in fact the fractals.

Characterization of Chaotic Dynamical Systems 97

Fig. 5.3 Fractal-like nature of the coastline of Sardinia Island, Italy. (a) The fractal profile

obtained by simulating the erosion model proposed by Sapoval et al. (2004), (b) the true coastline

is on the right. Typical rocky coastlines have DF ⇡ 4/3. [Courtesy of A. Baldassarri]

Fig. 5.4 Typical trajectory of a two-

dimensional Brownian motion. The inset

shows a zoom of the small box in the main

figure, notice the self-similarity. The figure

represents only a small portion of the trajec-

tory, as it would densely fill the whole plane

because its fractal dimension is DF = 2, al-

though the topological one is d = 1.

Fig. 5.5 Isolines of zero-vorticity in two-

dimensional turbulence in the inverse cas-

cade regime (Chap. 13). Colors identify dif-

ferent vorticity clusters, i.e. regions with

equal sign of the vorticity. The boundaries

of such clusters are fractals with DF = 4/3
as shown by Bernard et al. (2006). [Cour-

tesy of G. Bo↵etta]

0.63092 . . ., i.e. less than the topological dimension (to visualize such a set retain

only segments of the von Koch curve which lie on the horizontal axis).

The value DF provides a measure of the roughness degree of the geometrical

object it refers: the rougher the shape, the larger the deviation of DF from the

topological dimension.

F����� �.�: Colors identify di�erent vorticity clusters and
their boundaries are fractal with D

2

= 4/3 (Bernard et al.,
2006).

There are several types of fractals where their reconstruction are quite
di�erent with respect to the Koch curve and typically have more com-
plex self-similar properties. There are also several ways to quantify the
fractal dimension of di�erent patterns. Some of these algorithms are
box-counting algorithm, Grassberger-Procaccia algorithm, stretch and
fold mechanism and multifractal analysis. Here we focus only on the
Grassberger-Procaccia algorithm.
The Grassberger-Procaccia (GP) algorithm (Grassberger and Procaccia,
1983), is used to estimate the correlation (fractal) dimension of a set of
points. Given a d-dimensional dynamical system, the main idea of this
algorithm is to compute C(r) the correlation sum:

C(r) =

2

N(N � 1)

Â
i<j

H(r � ��xi � xj
��
) (6.6)

where N denotes the number of points x
1

, x
2

, . . . , xN in space,
��xi � xj

��

represents the distance between any pair of points, H is the Heaviside
step function. C(r) is then defined as the fraction of pairs whose distance
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is smaller than r. This sum in monotonically decreasing to zero as r !
0. If C(r) decreases like a power law, C(r) ⇠ rD

2 , then the correlation
dimension can be written in the following form:

D
2

= lim

r!0

log C(r)
log r

(6.7)

More information on the general form of the correlation dimension can
be found in Cencini, Cencini, and Vulpiani (2009). In the next section,
this analysis will be applied on copepods to see their behavior more care-
fully.

6.3 Analysis of clustering by correlation dimen-
sion

The distribution of the LC particles is illustrated by figure 6.8, where
we show the instantaneous particle positions in two-dimensional slices
of thickness ⇠ h, visualising at the same time the values of shear-rate
of the carrying flow. Contrary to fluid tracers, LC particles are non-
homogeneously dispersed in regions where turbulence intensity is below
the given shear-rate threshold, according to the model. In the panels of
figure 6.8, we also highlight the ˙gT values by contour lines, we name re-
spectively comfort and alert regions the locations which are below or above
these fixed ˙gT values. In Fig. 6.8(a), which corresponds to ˙gT = 0.35 t�1

h ,
the alert region is the dominant one. In this situation the great majority
of LC particles are jumping but they manifestly fail to reach the few avail-
able comfort islands. This may be due both to the fact that islands are
small and that they are short lived: one shall bear in mind the interplay
between space and time in this problem. The panel (b) shows a condition
where comfort and alert regions are equally probable. We notice a pro-
nounced aggregation of particles in the alert areas surrounding the com-
fort regions, while the latter are e�ciently evacuated. Finally, the panel
(c) illustrates what happens when the alert behaviour is triggered only
by few extreme shear rate filamentary regions. The LC particles manage
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to avoid them quite e�ciently but in the overall picture they seems to be
mostly homogeneously distributed.
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F����� �.�: Patchiness of the copepods from the simula-
tions. Shading shows the instantaneous field of the absolute
value of the shear rate of the Eulerian field, (a) distribution
of the copepods with uJ/uh = 250 and th ˙gT = 0.35, (b)
distribution of the copepods with uJ/uh = 250 and th ˙gT =

0.92, (c) distribution of the copepods with uJ/uh = 250 and
th ˙gT = 1.77. Contour lines are traced at the corresponding

value of ˙gT on each panel.
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In order to better quantify the patchiness of the LC particles we compute
their correlation dimension. According to the Grassberger-Procaccia al-
gorithm, the D

2

is defined as the scaling exponent of the probability of
finding a pair of particles with a separation distance less than r

P
2

(|X
2

� X
1

| < r) µ rD
2 (6.8)

as r ! 0. Figure 6.9 shows the D
2

value in the two dimensional parameter
space composed by the intensity of the jump and the shear rate threshold
value. The clustering (D

2

< 3) is discernible when the prescribed shear
rate threshold value is less than 2.8 t�1

h , and it is maximal, D
2

' 2.3, at
around 0.5 t�1

h . On the other hand we observe a saturation of cluster-
ing as uJ is increased. In order to better appreciate these two features,
i.e., the minimum with respect to th ˙gT and a saturation as a function of
uJ/uh, two two-dimensional cuts of the D

2

(

˙gT, uJ) surface are shown in
Fig. 6.10.
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F����� �.�: Correlation dimension D
2

of copepods as a func-
tion of jump intensity uJ/uh and threshold value th ˙gT.

One may wonder why there is an optimum and what is its physical mean-
ing. Copepods are prone to jump in order to escape from regions of alert
(

˙g > ˙gT), to reach regions where ˙g < ˙gT, therefore the chance for a jump
to be successful (assuming it to be randomly oriented) depends on the size
of the comfort region, in other words to the volume, V

˙g< ˙gT (see Fig. 6.11).
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On the other hand, clustering would be maximum if we have numerous
successful jumps and obviously the number of jumps depends on V

˙g> ˙gT .
This implies that copepods clustering is expected to be proportional to
V

˙g< ˙gT · V ˙g> ˙gT . Now, substituting the volume of comfortable regions with
Vtot � V

˙g> ˙gT leads to V
˙g> ˙gT · (Vtot � V

˙g> ˙gT). One direct consequence is
that the clustering would be maximum when V

˙g> ˙gT = Vtot/2.!
!
!
!
!

!!!!!!!!!!!!!!!
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !!! !!!!"#$"%&!!"#$%&!
!
! !!
!
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%!!"#$%&!!
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F����� �.��: Illustration of comfort and alert regions in the
computational domain according to the shear rate threshold

value.

This can explain the existence of the optimum of D
2

as a function of th ˙gT

as shown in figure 6.10(a) as well as its trend as a function of ˙gT. Note
however that this argument is based on the simplifying assumption that
there is no correlation between the orientation of a LC particle at jump
and its position respect to the comfort area and also it neglects the spatial
structure of the shear rate field.
How can we determine the value of ˙g for which the condition of V

˙g> ˙gT =

Vtot/2 occurs? One possibility is to perform an Eulerian measurement
of the ˙g(x, t) field over space and time. Another option is to look at the
fraction of time spent by tracers in alert regions, T

˙g> ˙gT /Ttot (with Ttot the
total time of the measurement). Since tracers explore evenly all the region
of the flow this is equivalent to measure the volume ratio V

˙g> ˙gT /Vtot. In
particular in order to increase the statistical sampling we look at the global
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mean value hT
˙g> ˙gTi/Ttot where the average is over the total number of

particles (Ntot):

hT
˙g> ˙gTi =

1

Ntot

Ntot

Â
i=1

Z Ttot

0

H(

˙gi(t) � ˙gT) dt. (6.9)

The plot in figure 6.12 shows the trend of hT
˙g> ˙gTi/Ttot as function of ˙gT

both for tracers and LC particles. It confirms that copepods reside less
in alert regions compared to tracers. Moreover the di�erence among the
two time fractions can be used as an alternative clustering indicator. It
has in fact a similar trend as the D

2

(

˙gT) function and shows a peak for
the same value of ˙gT (inset of Fig. 6.12). The prediction that clustering
varies as V

˙g> ˙gT · (Vtot � V
˙g> ˙gT) is in qualitative agreement with the ob-

served trend, it is in quite good agreement in the large ˙gT regime, however
it fails to capture the correct value at which the maximum appears, giv-
ing th ˙gT = 0.85 instead of 0.5. Finally, we note that the case of maximal
clustering at D

2

' 2.3 corresponds to a condition where the LC particles
concentrate in nearly two-dimensional sheets which envelop the alert re-
gions (as can be also inferred from the visualisation in Fig. 6.8(b)).
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We can o�er a qualitative physical explanation for the observed D
2

satu-
ration for high values of uJ at fixed ˙gT, (figure 6.10(b)). The argument is as
follow: one may expect that there is clustering if the time to escape from
an alert region is less than the lifetime of such a region: tescape < t

˙gT . The
former time can be estimated as tescape = l

˙gT /uJ , where l
˙gT is the typical

size of the alert region characterised by a shear-rate ˙g > ˙gT. This implies
that LC particles form clusters and the D

2

measure is lead to saturate to
a constant value if uJ > l

˙gT /t
˙gT . This latter ratio can be thought as a

threshold dependent escape velocity u
˙gT = l

˙gT /t
˙gT . From the correla-

tion dimension measurement this escape velocity is estimated to be of the
order of 100 uh, i.e., of the order of the large scale velocity, with a weak
decreasing trend at increasing ˙gT.

We finally observe that when the flow field associated to the Lagrangian
particles, v = ẋ, displays a weak compressibility, it can be shown
(Falkovich, Gawedzki, and Vergassola, 2001; Durham et al., 2013) that
D

2

depends on the flow divergence by the relation D
2

= 3 � chr · vi2

with c a proportionality constant and angular brackets denoting time
and space average. If this argument is applied to the LC model we ob-
serve that the divergence can be di�erent form zero only at the interface
between comfort and alert regions. This is because in comfort regions
(r · v = r · u = 0) and in alert regions (r · v = r · u + r · J = 0, as we
can safely assume the jump term to be spatially constant). At the interface
however, the change from the fluid velocity intensity u to u + uJ has a spa-
tial transition scale roughly proportional to uJ · log (10

2

)tJ which leads to
a non-null divergence. This explains the LC accumulation that we observe
in correspondence of the alert/comfort interfaces, which e�ectively acts
as sink or source term of the LC velocity field (see in particular the cen-
tral panel of Fig. 6.8). By following this line of reasoning, one can guess
that the minimum value of D

2

will correspond to the case where the sur-
face of alert/comfort interface is maximum (and not of volumes, as stated
above). This has clearly a dependence on the threshold ˙gT and much less,
if any, on uJ . Despite the qualitative agreement of this observation with
our numerical results, we have not been able yet to confirm it quantitively
in the weakly compressible limit of the LC model.
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6.4 Particle Orientational Dynamics

What is the importance of particle orientation for the non homogenous
distribution of particles? The e�ect of the geometrical aspect ratio of the
particles, together with the direction of their jump on the fractal dimen-
sion are addressed here.
The fluid deformation rate symmetric tensor Sij comes into play by mod-
elling copepods as elongated particles with aspect ratio equal to 3 (e.g.,
the relevant aspect ratio for Eurytemora a�nis copepod) as can be seen in
the equation below:

˙p(t) =

⇣
W +

a2�1

a2

+1

⇣
S � p

T

(t) · S · p(t)
⌘⌘

· p(t) (6.10)

Its e�ect on the jump direction selection leads to enhanced clustering of
the particles for jump intensity uJ/uh = 250. Copepods can also jump
in random direction in the solid angle independently from the rotation
rate and deformation rate of the Eulerian field. Less clustering in this
case is logical since the jumping direction has no relation with the fluid
flow. These behaviors can be found in more details in figure 6.13, where
we address the influence of jump direction on the PDF of the copepods
velocity.
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6.5 E�ect of the jump time latency

Up to now, copepods were considered to be able to jump whenever they
are in alert regions and their previous jump has finished. Since copepods
have certain amount of energy and during each jump, they lose lots of en-
ergy (the mechanical energy produced during their escape is reported to
be very high (8⇥ 10

�5 J/s) according to Lenz and Hartline (1999)), then it
is more realistic to include this feature of copepods in the LC model.
The experimental data analysis revealed that a copepod has memory on
its previous jumps, thus the future jump depends on the history and can-
not always occur right after the previous jump.
Unfortunately based on available data and our analysis, no general rule
can be established to consider this feature in the LC model of copepods,
instead one can play with latency time of the jump. This is shown in Fig.
6.14 where twaitde f ault represents the default value of the latency time. Ac-
cording to the LC model, the final time a jump has the following form:

te = ti + log(10

2

) tJ (6.11)

so the default value of the waiting time or the latency time of the jump is
equal to

twait = te � ti = log(10

2

) tJ (6.12)

dividing by th gives the dimensionless waiting time to be equal to 0.046.
Increasing this quantity means that copepods are less reactive, therefore
they jump less compared to the default case. By varying this parameter,
the jump memory of copepods and their limited amount of energy can be
embedded in the LC model.
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F����� �.��: Kinematics of the jump of a copepod by varia-
tion of the jump time latency twait.

The e�ect of the jump latency time on the correlation dimension can be
seen in Fig. 6.15. The jump intensity is fixed (uJ/uh = 250) and twait/th

varies in
[

0.02, 10

]

.

 0
 0.5

 1
 1.5

 2
 2.5 0.01

 0.1

 1

 10
 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

D2

τη γ̇T

τwait/τη

D2

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

F����� �.��: E�ect of the jump latency time on copepods’
clustering.



108 Chapter 6. Analysis of spatial distribution of Lagrangian copepods

For ˙gth = 0.5, Fig. 6.16 shows a 2D plot in which the default case is
shown in blue and vertical lines correspond to tJ/th = 0.01, twait/th = 1

and the large eddy turn-over time (T = L/U) divided by Kolmogorov
time scale (th). This figure indicates that the LC model leads to clustering
when twait < th, otherwise the patchiness will disappear.
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Chapter 7

Encounter rates study and future
perspectives

In this chapter the encounter rate of copepods from the Lagrangian model will
be assessed and its e�ect on copepods’ mating will be discussed. As a perspec-
tive an Eulerian approach for the simulation of copepods’ motion will be intro-
duced.

7.1 Encounter rate of copepods from the LC
model

An essential aspect in marine biology is the encounters between individ-
ual organisms which is vital for males and females in order to mate or
for predators to locate their prey to capture and consume them (Hein and
McKinley, 2013; Menden-Deuer, 2006; Kiørboe, 2008). Finding a suitable
habitat (colonization) for organisms is also encounter-dependent (Wosni-
ack et al., 2014). Organism speed, size, motility and abundance can a�ect
the biological encounter rates, the rates at which individuals meet other
organisms of the same or di�erent species. It is thus fundamentally im-
portant to understand the phenomenon that a�ect the encounter rates and
the biological processes in oceanic flows.
The encounter rate of plankton species has been studied by many au-
thors in the past (Gerritsen and Strikler, 1977; Rothschild and Osborn,
1988; Evans, 1989; MacKenzie et al., 1994; Visser and MacKenzie, 1998;
Kiørboe and Saiz, 1995). Gerritsen and Strikler (1977) were the pioneers
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who introduced the theory of contact rate in laminar flow. However liv-
ing habitats of the plankton species are rarely laminar. It is now widely
known that turbulence has a strong influence on dispersal, feeding and
reproduction of plankton. Not only the small-scale but also other scales
within the turbulence spectrum are important contributors to encounter
process (Visser and MacKenzie, 1998). Some authors regarded the small-
scale turbulent processes as homogenizing factors, so that the encounter-
rate model, assumed the distribution of plankton to be random in space
and time (Kiørboe and Saiz, 1995; Sundby and Fossum, 1990; Davis et al.,
1991; MacKenzie and Leggett, 1991; Caparroy and Carlotti, 1996), whilst
turbulence increases inhomogeneity at small scales (Frisch, 1995; Toschi
and Bodenschatz, 2009; Schmitt and Huang, 2016).
The encounter rate in oceanic turbulence is governed by two biologically-
and physically-driven processes (Kiørboe and Saiz, 1995; Seuront,
Schmitt, and Lagadeuc, 2001; Dzierzbicka-Glowacka, 2006). First, it
is likely due to the behavior of organisms (biologically-driven process)
and secondly it is a�ected by the turbulent motion of the carrier fluid
(physically-driven process). However notice that turbulence has a great
impact on microorganisms and can induce some behavioral responses in
swimmers (Jennifer et al., 2012; Durham and Stocker, 2012). Hence, it is
more reasonable not to sum up the contribution of these processes lin-
early as it is the case for Seuront, Schmitt, and Lagadeuc (2001), Kiørboe
and Saiz (1995), and Dzierzbicka-Glowacka (2006). The encounter rate
formulation developed by Sundaram and Collins (1977), Wang, Wexler,
and Zhou (1998), Reade and Collins (2000), and Collins and Keswani
(2004) can be used in turbulence in case of preferential concentration of
species. Despite many studies which have been performed on the e�ect
of the preferential concentration on the coagulation of colloidal particles
(Wang, Wexler, and Zhou, 2000; Lian, Charalampous, and Hardalupas,
2013; Falkovich, Fouxon, and Stepanov, 2002; Brunk, Koch, and Lion,
1998), only few studies (Squires and Yamazaki, 1995; Schmitt and Seu-
ront, 2008) are available in the context of copepods ecology whilst the
study of Squires and Yamazaki (1995) was published before including the
precise e�ect of the preferential concentration in the theory of contact rate.
Rather than swimming behavior, other mechanisms can also play a role in
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encounter rate for copepods, i.e., chemoreception and mechanoreception
(Buskey, 1984; Weissburg, Doall, and Yen, 1998), prey movement detec-
tion (Visser, 2001; Jiang, Osborn, and Meneveau, 2002) and feeding cur-
rents (Marrasé et al., 1990), which are outside the scope of the present
study.
The encounter rate, i.e., the number of encounters per unit time under
the condition of statistically homogeneous and isotropic movement can
be written in the following form:

E(r) = npr2 g(r) hdvrad(r)i (7.1)

where n is the organisms number density, r is the encounter or perceptive
radius of organisms and hdvrad(r)i is the mean radial velocity between two
particles separated by a distance r (Sundaram and Collins, 1977; Wang,
Wexler, and Zhou, 1998; Collins and Keswani, 2004; Reade and Collins,
2000). In the latter expression h.i indicates ensemble average and dvrad(r)
is the amplitude of the relative radial velocity:

dvrad(r) = |(v(x + r) � v(x)

)

· r̂| (7.2)

A detailed explanation on the appropriate choice of the mean radial ve-
locity to be used in expression 7.1, can be found in Sa�man and Turner,
1956; Wang, Wexler, and Zhou, 1998. g(r) represents the radial distribu-
tion function, which describes the variation of the particles’ density from
a reference particle. This is linked to the fractal dimension (Grassberger
and Procaccia, 1983) for very small values of r. It has thus the following
form:

g(r) =

1

4pr2

1

Nr

N

Â
i=1

N

Â
k 6=i

d
(

r � |rk � ri|) (7.3)

r in this equation represents the given distance from a particle, N is the
total number of particles, r = N/V is an average number density of N
particles in a volume V and |rk � ri| is the distance between pair of parti-
cles.
The pair correlation function of LC model is shown in figure 7.1 where
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the slope of g(r) at small r is linked to the correlation dimension of cope-
pods’ distribution in turbulence, as can be found in the inset of this fig-
ure. This slope increases by increasing the shear rate threshold value up
to th ˙gT = 0.5, then further growth of the shear rate threshold value, de-
creases the steepness of g(r). The inset of the Fig. 7.1 confirms these de-
scriptions. The mean radial velocity between two copepods is shown in
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Fig. 7.2. Our findings for tracers are in good agreement with the Eulerian
longitudinal velocity structure function of the fluid, given by the empiri-
cal approximation of Borgas and Yeung (2004):
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(7.4)
with C = 2 and hdvrad(r)i =

(

2

¯SII/p
)

1/2. The Eulerian structure func-
tion grows linearly as rzd with zd = 1 for dissipative scales (small r) and at
inertial-range it is proportional to rzi with zi = 1/3. Copepods with the
shear rate threshold value of th ˙gT = 3.9 have less frequent jump behav-
ior, so that they behave almost like a tracers and they are advected by the
flow. For this reason they go very close to the prediction given by expres-
sion 7.4. In a case where all the copepods are in alert regions (th ˙gT = 0),
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one can expect the Brownian like motion of copepods according to the LC
model. The di�usivity of the copepods would be dimensionally propor-
tional to a relation of the type u2

J tJ . For this case, the copepod’s relative
velocity tends to be constant and its amplitude would be proportional to
the jump intensity (uJ). For other cases (di�erent shear rate threshold val-
ues th ˙g), such an estimation is not applicable since the exponential term
does not exist for copepods in safe regions. Therefore for copepods, es-
timation of such a relation (Borgas and Yeung (2004)) is not straightfor-
ward. It might be due to the fact that copepods at distance r may have
di�erent behavior. This is shown in Fig. 7.3 where two copepods at an
immediate vicinity may have very large velocity di�erence. Establishing
the Eulerian structure function, thus is linked to the local threshold value
of the shear rate. Scaling exponents zd, zi for copepod families through
power law fits are shown in Fig. 7.4. The change of the power law scaling
exponent in inertial-range is smooth, but in dissipative scale it shows non
monotonic behavior. Having the pair correlation function g(r) and mean
radial velocity dvrad(r) one can estimate the encounter rate kernel E(r).
In reality there is no contact between tracers, since they are passive parti-
cles advected by the flow where the fluid streamlines does not cross each
other. However to have an e�ective contact rate, it is not necessary for
copepods to have physical contacts. Copepods thus can grab their prey
or an incoming mate before the contact happens (Schmitt and Seuront,
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2008). This is why r in eq. 7.1 represents the radius of perception of par-
ticles rather than their their characteristic radius of geometry.
Fig. 7.5 represents the encounter kernel as a function of r for di�erent
copepod families. Here the encounter rate of copepods are introduced as
a reference case for other copepod families. Notice that copepod-copepod
interaction has been neglected from the beginning as an assumption to in-
troduce LC model. It is evident that by increasing the shear rate threshold
value (th ˙gT), the encounter rate of copepods decreases monotonically, al-
though the growth of the shear rate th ˙gT had non-uniform impact on the
pair correlation dimension (see Fig. 7.1).
The vertical line shows the radius of perception for Lagrangian copepod
particles, here 5 times greater than the Kolmogorov length scale of the
carrier fluid. The ratio of the radius of perception to the copepods’ body
size is reported to be in the range of 1 � 3 (Lenz and Yen, 1993; Bagoien
and Kiørboe, 2005; Doall et al., 1998). In terms of h unit, this means that
the radius of perception of copepods is of the order of O(1). In order to
see how e�ective the shear rate threshold value is on the encounter rate
of Lagrangian copepods at di�erent perception radius, one can estimate
the ratio between the encounter rates experienced by copepod families
and tracers. This is shown in Fig. 7.6 where it is realistic to have larger
encounter rate at small distances, nevertheless this figure suggests that
at optimum clustering corresponding to the shear rate threshold value of
th ˙gT = 0.5, the encounter rate can be of the order of O(10) with respect to
the tracers at r = 5h. The LC model shows no contact rate enhancement
at shear rate values larger than 2.75.
The LC model shows an enhanced contact rate with respect to the case

where copepods are considered as passive particles. This enhancement
comes from two terms in the contact rate expression; one is the variation
of the g(r) which accounts for the preferential concentration and the other
one is the variation of the hdvrad(r)i, which comes from the fact that cope-
pods are swimming. Both contributions are important in the encounter
rate enhancement in zooplankton which is a key parameter for sexual re-
production and feeding of plankton species.
Here we have shown that the small scale clustering of copepods which
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is linked to behavioral model in turbulence, can increase largely the en-
counter rate. Our studies show that, this increase depends on copepods’
perception radius and can be of the order of O(10

2

) at dissipative scales.
The enhancement of the contact rate is relevant for mating behavior of
copepods but it is less relevant for the nutrient uptake. As a perspective
it would be interesting to see the consequence of our LC model for the
nutrient uptake by using the Lagrangian model of copepods in one side
and larger particles drifting in the flow which represent modeling preda-
tors. A manuscript describing the performed analysis can be found in
appendix B.

7.2 Eulerian modelling of copepods’ dynamics
in turbulent flows

Up to now, we have quantified the clustering of copepods for limited
number of individuals at small scales by means of a Lagrangian copepod
model, but it is also useful to have a model which describes copepods’
behavior in large scales, for instance in thin plankton layers where the
congregations of zooplankton in the water column and the dynamics of
microorganisms are of interest and more generally in oceanography do-
main. Therefore we have to think to an equivalent Eulerian model for
the Lagrangian copepod (LC) model in turbulence which describes the
evolution of the concentration of copepods in a given region. The basic
equation that can be used is the advection-di�usion equation for the con-
centration of copepods:

∂C
∂t

+ u ·rC = KDC (7.5)

where C represents the concentration of microorganisms here copepods,
u is the fluid velocity and K is the di�usion coe�cient. The term in the
right hand side represents the di�usion term which needs to be adapted
here in our case according to copepods’ dynamics. In order to simplify
the simulations, let us assume that copepods can either exhibit an abrupt
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jump in certain conditions or have a small velocity additional to the veloc-
ity of the fluid. In both cases, the additional velocity and jumps are ran-
domly oriented, therefore the two behaviors can be described with the dif-
fusion coe�cient, but this coe�cient (K) is not a constant. One possibility
is to write the di�usion term as r

(

K ·rC
)

. Another way to express this
term is to use D(KC), where K in both forms depends on space (Kampen,
2007). Furthermore, since copepods react to the shear rate, the di�usion
coe�cient (K) depends not directly on space but through its dependancy
on the shear rate ( ˙g).
The two plausible ways of expressing the di�usion term are di�erent.
Which one among r

(

K ·rC
)

and D(KC) should be used? The choice
is based on physical interpretation. Our interpretation here is to find an
equivalent Eulerian model for the Lagrangian copepod model, accord-
ing to which, homogenous distribution of copepods ended up into non-
homogenous spatial distribution. We observed that the second choice
leads to the clustering of particles. Let us expand the term D(KC):

D(KC) = r ·r(KC) = r ·
(

CrK + KrC
)

(7.6)

then,
D(KC) = CDK + 2rKrC + KDC (7.7)

This indicates that starting from a uniform distribution, CDK is the only
term which is responsible for the clustering.
In order to obtain the value of the di�usivity in alert regions, the standard
link between the Brownian motion and di�usivity is taken, meaning that
if copepods are put all in the alert region, they will jump continuously in
di�erent directions. Computing the mean squared displacement (MSD),
which measures the deviation over time between the position of a particle
and its reference position, is directly linked to the di�usivity by:

D
(

x(t) � x
0

)

2

E
= 2d K t (7.8)

where x
0

refers to the reference (initial) position, d is the dimension of
the domain (here d = 2), K is the corresponding di�usion coe�cient of
copepods in alert regions and t is the time. The di�usion coe�cient of
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copepods in alert regions (Ka) for jump intensity of uJ/uh = 250, is then
equal to Ka = 130 by MSD analysis. There is a di�usion for copepods in
safe regions (Ks) that we added for numerical reasons. This coe�cient for
copepods is Ks = 0.01 which corresponds to the fact that in the Eulerian
framework copepods can have small Brownian motions on the top of the
velocity of the fluid. At the interface of the alert and the safe regions,
there are copepods which can jump from the alert regions into the safe
regions. Therefore the transition of the di�usivity can not be sharp and
should be treated carefully at the interface. As a first attempt we choose
an hyperbolic step function of the following form:

K = Ks + (Ka � Ks)

✓
0.5 + 0.5 ⇥ tanh

✓
˙g � ˙gT

d ˙g

◆◆
(7.9)

which indicates that the transition should be smooth as shown in Fig. 7.7.
The parameter d ˙g corresponds to the width of a region where this tran-
sition should occur. Two dimensional Taylor-Green vortex flow is used

!
!
!
!
!
!
!

"#!

"$!

F����� �.�: Transition of di�usivity from safe (Ks) to alert
(Ka) region.

to compare the Eulerian model with the Lagrangian copepod model in a
periodic boundary condition. Here the following form of the advection-
di�usion equation is solved via pseudo-spectral method, with di�usivity
which varies according to the eq. 7.9 with Ka = 130 and Ks = 0.01. The
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parameter d ˙g needs to be tuned. Here it has a value equal to 0.05. C rep-
resents the concentration of copepods which is chosen to be uniform in
the entire computational domain and u is the fluid velocity in TGV flows
which follows the form of eq. 5.16 and eq. 5.17.

∂C
∂t

+ u ·rC = D
(

KC
)

(7.10)

Figure 7.8 shows this comparison for the corresponding values of the dif-
fusivity however one can observe that visually the choice of Ka = 1 fits
better into the LC model. This implies that the parameter d ˙g should be
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the same quantity corresponding to the homogenous dis-
tribution at initial time. Contour lines are traced at value of
r(x)/rh = 1) of the Eulerian and Lagrangian approaches in
TGV flow with Ks = 0.01 and top) Ka = 130 and bottom)

Ka = 1. The transition width is d ˙g = 0.05 for both cases.
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treated carefully, since in our simulation is not tuned correctly.

7.2.1 Di�culties

The main issue in this model is the way to treat the parameter d ˙g. The
problem arises from the fact that the transition of the di�usivity at the in-
terface cannot be sharp, because high speed copepods go to the low speed
regions until their jumps finish. Therefore we need to translate this be-
havior to d ˙g. One idea is to estimate from a linear approximation (Taylor
expansion of the shear rate) which gives:

˙g =

˙gT +

∂ ˙g

∂x
|xT(x � xT) (7.11)

generalizing this to two-dimensions suggests that d ˙g = ||r ˙g|| · Dx with
Dx ⇠ uJtJ . The expression 7.9 can be rewritten as:

K = Ks + (Ka � Ks)

✓
0.5 + 0.5 ⇥ tanh

✓
˙g � ˙gT

||r ˙g|| · Dx

◆◆
(7.12)

One needs to evaluate the norm of the gradient of the shear rate at the
interface. In this flow the shear rate ˙g has an analytical expression as a
function of position. Although it seems to be reasonable in the TGV flow,
however it is more complicated in turbulent flows.
What we observe from eq. 7.10 and eq. 7.7, if we take into account that
di�usivity is a function of ˙g and the shear rate depends on space, then (in
one dimension):

∂

∂x
∂

∂x
K =

∂

∂x


∂K
∂ ˙g

· ∂ ˙g

∂x

�
(7.13)

and:
∂

∂x


∂K
∂ ˙g

�
· ∂ ˙g

∂x
+

∂K
∂ ˙g

∂2

˙g

∂x2

(7.14)

finally:
∂2K
∂x2

=

✓
∂ ˙g

∂x

◆
2 ∂2K

∂ ˙g2

+

∂K
∂ ˙g

∂2

˙g

∂x2

(7.15)

generalizing the eq. 7.15 to three-dimension and replacing into eq. 7.7:

D(KC) =

✓
D ˙g

dK
d ˙g

+ (r ˙g)

2

d2K
d ˙g2

◆
C + 2r ˙g

dK
d ˙g

rC + KDC (7.16)
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finally the laplacian term turns into:

D(KC) = KDC +

dK
d ˙g

(

CD ˙g + 2r ˙grC
)

+

d2K
d ˙g2

⇣
(

r ˙g
)

2 C
⌘

(7.17)

Eq. 7.17 shows the complexity of the problem. In a case when C is chosen
to be uniform, the terms contributing to the creation of the clustering are
dK
d ˙g (

CD ˙g
)

and d2K
d ˙g2

⇣
(

r ˙g
)

2 C
⌘

. This shows that it is linked not only to the
first derivative but also to the second derivative of di�usivity, therefore
the system of tuning is very delicate and our choice of eq. 7.9 may not be
the best.
This is a preliminarily discussion on this topic and can be used to develop
an equivalent Eulerian model of Lagrangian copepod model in turbulent
flows.
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Chapter 8

Conclusions

In this thesis we have considered a Lagrangian model for active particles.
The model is trimmed in a way to reproduce some dynamical features ex-
perimentally observed in the motion of copepods in still water. Its main
characteristics is the possibility to locally acquire an extra-velocity (jump)
in response to a variation of the fluid flow conditions surrounding the par-
ticle. The direction of the jump is ruled by the hydrodynamics of small
neutrally-buoyant particles. The Lagrangian model has been coupled to a
turbulent developed flow described by the incompressible Navier-Stokes
equations.
We have shown that jump escape reaction from spatio-temporal events
characterised by high shear-rate leads to non homogeneous spatial distri-
butions of active particles. This clustering mechanisms however is e�ec-
tive only when the reaction threshold is close to values of the order of t�1

h

in a very narrow range. The fact that the range is narrow is ultimately
linked to the intermittent distribution of the turbulence dissipation rate
(Frisch, 1995). We have shown that clustering approaches its maximum
when the threshold rate value ˙gT roughly divide the shear-rate (

˙g) spa-
tial field in equal volume regions. Since this mechanisms mainly depends
on the average value of small-turbulence scales rather than on their fluc-
tuations we expect it to have a weak dependence on the Reynolds num-
ber of the turbulent flow. A second implication of the model is that for
any given shear-rate reaction value ˙gT there is a maximal intensity jump
velocity beyond which clustering can not be further increased. Finally,
the analysis of the correlation dimension suggests the formation of local
quasi-bidimensional clusters enclosing the non-permitted flow regions.
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From a physicist viewpoint we remark that the clustering mechanism at
work in turbulence for the LC model is di�erent form the one shown in
other model systems of particulate active matter. For instance the cluster-
ing observed for motile algal cells in turbulence is given by the gyrotactic
e�ect, which is a non-isotropic e�ect induced by the presence of the the
external gravity field (Lillo et al., 2014). On the opposite, the LC model
discussed here is isotropic but it is non-homogeneous in space (it depends
on the local value of the shear-rate). We have tested the fact that clustering
also appears when LC particles are made sensitive to other flow quantities
such as enstrophy or fluid acceleration. The minimal fractal dimension we
observed is always above the value of 2, confirming the fact that particles
in this case aggregate in order to cover the surface of the forbidden re-
gions. Based on these observations we do not expect that such clustering
processes could lead to filamentary like clusters, D

2

' 1, as the ones ob-
served for microbubbles in turbulent flows. Another notable result is the
negligible impact of the particle orientational dynamics on the clustering.
This is likely to be linked to the limited duration of jumps (note that here
tJ ⌧ th), but might become important for longer jumps, particularly in
the modelling of larger motile plankton. Moreover we observed that only
a prompt reaction leads to clusters. The negligible impact of orientation
for the case examined here, suggests the possibility to formulate accu-
rate Eulerian mean-field particle models based on the introduction of a
space-dependent e�ective di�usivity (k) whose amplitude may be linked
directly to jump shape parameters, via a dimensional relation of the type
k µ u2

J tJ . We showed that this di�usivity depends not directly on space
but through its dependancy to the shear rate ( ˙g). However there are some
di�culties in tuning the parameters for complex flows.
From a more biological perspective, although behavioural mechanisms
leading to clustering had been already suggested in the past, such as the
formation of patches through swimming against the flow (Genin et al.,
2005), the possibility of cluster formation by escape jumps in a no-mean
flow situation was never reported before. As discussed in Schmitt and
Seuront (2008), clustering of copepods has an ecological importance: an
e�ect may be to strongly increase the contact rate with mates and hence
improve the reproduction. Indeed several models have been proposed
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to express copepod contact rates in turbulence (Rothschild and Osborn,
1988; Evans, 1989; Visser and MacKenzie, 1998), reviewed in Lewis and
Pedley (2000). In case of clustering, the contact rate is strongly increased
(Wang, Wexler, and Zhou, 1998; Reade and Collins, 2000; Collins and
Keswani, 2004; Schmitt and Seuront, 2008). The clustering which would
result from a behaviour of predator avoidance (a reaction to turbulent
shears similar to predator’s signals) would have as side-e�ect a positive
consequence with a strong enhancement of the mating contact rate. Our
analysis showed that the encounter rate can be increased by a factor of
the order of O(10

3

) at dissipative scales. Of course such copepod con-
centration could also attract predators. Due to di�erent trade-o�s, each
copepod species may have an optimal jump behaviour in response to tur-
bulence. For example the copepod Eurytemora a�nis used in our experi-
mental section is an estuarine species adapted to maintain the bulk of its
population in a salinity gradient in highly turbulent conditions (Devreker
et al., 2008; Schmitt et al., 2011). By using high frequency sampling data
of all life stages of E. a�nis, Schmitt et al. (2011) confirmed that the late
developmental stages (mainly adults) exhibited active vertical migration
during the flood. Consequently the population was not homogeneously
distributed in the water column, as dense patches are observed during
short time window and near the bottom (Devreker et al., 2008).

8.1 Perspectives

Our model can be improved in the future to test such situations with
tidally induced turbulence in shallow estuaries where copepods can use
their jump abilities to simply avoid to be flushed out their optimal habitat.
This could lead to the identification of some optimal clustering strategy
that may be in relation with the dome-shapes proposed earlier, on purely
speculative intuitions (Cury and Roy, 1989; MacKenzie, 2000). The pre-
sented LC model can also be improved by refining the jumping protocol
in order to take into account the fact that the temporal sequence of jumps
in copepods occurs in fast sequences (bursts) interposed to inactive mo-
ments. Another possible direction of research concerns the investigation
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of the impact of a spatial radius of perception for copepods to react to tur-
bulent shear. This may produce a smoothing or a delay in the perceived
turbulent signal.
Furthermore an Eulerian mean-field particle model can be developed and
tuned to be applicable for turbulent situations. Such a model describes the
evolution of the concentration of copepods in a given region and can be
used for studies in oceanography domain.
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Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an
aptness is used to escape from high shear regions, which may be caused either by flow perturbations, produced by
a large predator (i.e., fish larvae), or by the inherent highly turbulent dynamics of the ocean. Through a combined
experimental and numerical study, we investigate the impact of jumping behavior on the small-scale patchiness
of copepods in a turbulent environment. Recorded velocity tracks of copepods displaying escape response jumps
in still water are here used to define and tune a Lagrangian copepod (LC) model. The model is further employed
to simulate the behavior of thousands of copepods in a fully developed hydrodynamic turbulent flow obtained by
direct numerical simulation of the Navier-Stokes equations. First, we show that the LC velocity statistics is in
qualitative agreement with available experimental observations of copepods in turbulence. Second, we quantify
the clustering of LC, via the fractal dimension D2. We show that D2 can be as low as ∼2.3 and that it critically
depends on the shear-rate sensitivity of the proposed LC model, in particular it exhibits a minimum in a narrow
range of shear-rate values. We further investigate the effect of jump intensity, jump orientation, and geometrical
aspect ratio of the copepods on the small-scale spatial distribution. At last, possible ecological implications of
the observed clustering on encounter rates and mating success are discussed.

DOI: 10.1103/PhysRevE.93.043117

I. INTRODUCTION

The study of swimming microorganisms and their interac-
tion with fluid flows has attracted enormous attention in the
past decade. A line of research has focused on characterizing
individual swimming strategies by means of experiments [1–3]
as well as by theoretical and numerical modeling [4,5]. A
second direction of study devoted to the consequences of
swimming on population dynamics, e.g., by focusing on
encounter rates and other collective behaviors [6–10]. A third
direction focused on the mutual interactions of microorgan-
isms with the fluid-flow environment, in particular bioinduced
flow fluctuations, sometimes dubbed as bacterial turbulence
[11–13], or, vice-versa, on active matter clustering induced
by nonhomogeneous flows or fluid turbulence [14–22].
The present study will focus on this latter aspect, in particular
on copepod’s dynamics in turbulent flow.

Copepods are the most diversified crustaceans in the aquatic
environment whose length ranges from 0.1 mm to a few
millimeters. They are important to global ecology and to the
carbon cycle [23] (see also Refs. [24] and [25]). Although
copepods are not at the top of the food web, they have a major
role in the marine ecosystem because they are the secondary
producers in the ecological food web linking phytoplankton
cells (the primary producers) to fish larvae and even to
large mammals such as whales. Copepods also consume the
mosquito larvae, acting as control mechanism for malaria [26].
They are of great importance in fishery industry. A central issue
in breeding fish species is the external food supply. Most fishes

*hamidreza.ardeshiri@polytech-lille.fr

prefer copepods to other zooplankton species (i.e., rotifers) and
they grow bigger in shorter time when eating copepods [27,28].

Living in a fluid environment characterized by body-scale
Reynolds number up to 1000, they are subjected to the
physics of the flow field both in viscous and inertial regime
[29]. Copepods typically have a short, cylindrical body with
antennas, few pairs of swimming legs, and tales. Using their
antennas, copepods can sense the disturbance, which is caused
either by the presence of predators or by high turbulent
regions in the flow. Kiørboe et al. [30,31] performed series
of experiments, investigating the effect of nonuniform flow
motion on copepods. In order to find the component of the
flow that copepods react the most to, the copepods were put
into a time-dependent siphon flow (which ideally generates a
pure longitudinal deformation rate), in an oscillating chamber
where copepods experience only acceleration, in a couette
device producing shear deformation, and finally in a rotating
cylinder where acceleration and vorticity are both present.
The conclusion of this study was that these small crustaceans
react to the flow deformation rate. Kiørboe also reported [32]
that there are two threshold values of the deformation rate:
the upper one, around 10 s−1, which corresponds to either
the presence of predators or to a region where turbulence
intensity is high, and the lower one, 1 s−1, which corresponds
to regions in the flow where turbulence intensity is lower
or food abundance is not enough for copepods. These tiny
crustaceans find themselves at ease in regions in between these
two thresholds. To avoid uncomfortable regions, copepods
exhibit a rapid escape in the flow that is often dubbed a
jump. Buskey et al. [33,34] showed that copepod’s velocity
can reach the rate of 500 body length per second (0.5 m/s)
while jumping. The mechanical energy produced during their
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escape is reported to be very high (8 × 10−5 J/s) [35], which
makes copepods, relative to their size, among the fastest and
the strongest animals in the world.

Buskey [33,34] also reported that males and females
respond differently to hydrodynamic stimulus in terms of
response latency, jump speed, number of thrusts, distance
jumped, and many other parameters. According to their
investigations, copepods jump in an unpredictable direction,
but rarely in the backward direction of their motion. Other
studies have considered the mating behavior of copepods [36]
and the effect of salinity on copepod’s dynamics and copepod’s
encounter rate [37,38]. Copepods are also sensitive to light
stimuli, being attracted by natural light sources [39].

In the past two decades many studies have been conducted
to quantify the dynamics of copepods. Most of them focused
on their behavior in still water [36–38], while less studies
have studied the dynamics in their natural living environment
because of the difficulties of such experimental investigations.
Few works have been devoted to the dynamics of copepods in
turbulent flows [40–44]. However, the densities of copepods
used in these studies are often lower than the maximum
densities that can be encountered in the field.

The numerical simulation can provide a tool that integrates
our current knowledge on copepod dynamics and uses a
high number of individuals. The objective of the present
study is to simulate copepods numerically in turbulence to
characterize their dynamics induced by a behavior model. To
achieve this goal, our strategy is twofold: on one hand, new
experimental measurements and observations available in the
literature [45–51], along with the aforementioned copepods
properties, should be considered in detail in order to introduce
a realistic and physical model. On the other hand, fundamental
knowledge on simulation of particles in turbulent flows,
available in numerical and experimental studies on particles
in turbulence [52–56], is needed to couple the physics and
biology in the numerical model.

The paper is organized as follows: Sec. II describes the
experimental framework used to stimulate copepods. We then
analyze copepods’ trajectories to introduce a model equation
describing copepods’ behavior. Furthermore, similarity anal-
ysis is performed to tune the LC model and its numerical
implementation is explained at the end of this section. Section
III details the single-point statistics, fractal dimension, and
orientation dynamics of copepods. The paper ends with
conclusion and outlook on future works.

II. METHODS

A. Experimental jump data analysis

We begin by presenting an analysis of a new experimental
trajectory data set of the estuarine copepod, Eurytemora
affinis, recorded at LOG Laboratory between May and June
2015. Copepods that originated from the Seine river estuary
(France) are maintained in the laboratory under optimal
conditions for several generations. The experimental setup
is a shallow-depth aquarium, 63 × 53 × 6 mm3 in length,
height, and depth, respectively, with two light sources on the
lateral side (53 × 6 mm2). The water is kept still and at a
temperature of (18 ± 1)◦C and salinity of 15 psu. Copepods
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FIG. 1. (a) The copepod velocity relative to temporal sequence
with multiple jumps occurring in response to stimulus. (b) Several
jumps superposed by a shift, taking as reference time that are
associated with their peak position. Almost all of the jumps decay
exponentially. (Inset) The probability density function (PDF) of the
jump intensity.

were introduced one at a time into the aquarium and their
dynamics were filmed. A total of 14 individuals were analyzed
(7 males and 7 females). A copepod in the aquarium is lead to
jump preferentially along the horizontal direction by switching
on just one of the light sources. The copepod dynamics in
a vertical plane is recorded by a high-speed camera (1000
frames/s) and the single trajectory is extracted by means
of particle-tracking velocimetry software (TEMA Motion by
Image Systems). In such a way hundreds of trajectories are
recorded, each with an average time length of 19 s. A typical
copepod velocity signal as a function of time is shown in
Fig. 1(a). We see extremely abrupt spikes (jumps) alternating
to calm, nearly immobile, phases.

In order to see if the velocity signal of the jump events
share some common features, we zoom in on the signal
and superpose several jumps by a shift taking as reference
their peak position. In Fig. 1(b) we can appreciate that
almost all of the jumps, after a steep rise, display a similar
decay. We associate such a decay to a purely hydrodynamical
effect. It can be interpreted as a drag-induced decay of an
instantaneous acceleration. The inset panel in Fig. 1 shows that
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FIG. 2. Average shape of copepod velocity (over about 730
jumps): mean value (red line) and standard deviation (shaded area).
Note that an error along the horizontal direction due to the uncertainty
in the identification of jump peaks may be present but has been omitted
here. Green line: Fitted exponential function uJ e−t/τJ where uJ is the
jump intensity and τJ is the decaying time of the jump. Blue line:
Same fit with the addition of a noise velocity offset.

the probability density function (PDF) of the jump intensity
has a maximum value around ∼0.07 m/s. Note that spikes are
identified based on a threshold on the time-averaged velocity
of the copepods in each copepod’s trajectory.

We then average the data set of jumps in order to obtain an
averaged shape of jump. This is shown in Fig. 2, from which
we can deduce the average jump velocity amplitude uJ =
0.0939 m/s and the mean decaying time τJ = 8.87 ms. We also
see that for a long time the velocity reaches a very low plateau
at 5 × 10−3 m/s ∼ 1/20 uJ , which we are tempted to associate
to a weak random wandering behavior of the copepod.

The distribution of jumps in time in the experimental
data set seems to deviate from an exponential distribution,
suggesting the existence of a memory effect. This may,
however, be dependent on the type of stimulus (the light
source), which is continuous in time, very different from the
one due to the presence of a variable-flow shear rate. This
aspect will, therefore, not be taken into account in the model
presented in the next section. We plan to investigate interjump
statistics more carefully in the future, when experiments with
mechanically induced stimulus may be available.

B. Model equation for copepods dynamics

In this section we introduce a simple model system of
copepods’ dynamics. This representation is based on the idea
that the copepods’ trajectories in a fluid can be mimicked by
properly defined active particles. Similar models have been
successfully employed for the description of the behavior
of phytoplankton, such as chlamydomonas [16,57,58], both
in laminar and, more recently, in turbulent flows [14,15,22].
Copepods, and zooplankton in general, display higher com-
plexity compared, e.g., to algae species because of their
higher motility. The model relies both on biological and
hydrodynamical assumptions. First, we assume that copepods
respond always in the same way to external flow disturbances.

Their jump reaction is embedded in their neural system. Fur-
thermore, the stimulus triggering the jump is highly stylized;
we only take into account a mechanical signal with a single
threshold, to be specified later on, and ignore any other activity
induced by light, food, or chemistry (e.g., pheromones). On the
mechanical side, we assume that copepods are small enough
that their center of mass can be considered a perfect fluid tracer
in a flow, except for the time when a jump event takes place.
In hydrodynamic terms, this means that copepods are assumed
to be rigid, homogeneous, neutrally buoyant particles with a
size that is of the order of the dissipative scale of the flow.
Gravity force has no role in producing acceleration or torque.
Only the drag force effect is taken into account during the
jumps. Finally, copepods are coupled to the fluid in a one-way
fashion, they react and are carried by it, but they do not modify
the surrounding flow; copepods-copepods interactions are also
neglected. Adding all together the above hypothesis, the LC
equation of motion is as follows:

ẋ(t) = u(x(t),t) + J(t,ti ,te,γ̇ ,p), (1)

where u(x(t),t) is the velocity of the carrying fluid at time
t and position x(t) and where J is an added velocity term
that describes the active behavior (jump) of the copepod.
J(t,ti ,te,γ̇ ,p) is a function of time t ; it depends also on an
initial and a final time ti and te, on flow shear rate value γ̇ , and
on orientation vector p. If copepods are taken to be spherical
in shape, their orientation dynamics is given by

ṗ(t) = ! · p(t), (2)

where ! is the fluid rotation rate antisymmetric tensor, defined
as #ij = 1/2(∂iuj − ∂jui). A more general form of Eq. (2),
valid for axisymmetric ellipsoidal particles, is as follows:

ṗ(t) =
{
! + α2 − 1

α2 + 1
[S − pT (t) · S · p(t)]

}
· p(t), (3)

where α ≡ l/d is the aspect ratio of the ellipsoids given by the
ratio of length (l) to diameter (d), which is typically around
3 for E. affinis. The above equation was first proposed by
Jeffery, and its full derivation is detailed in Ref. [59]. Its
phenomenology in turbulent flows has been investigated more
recently in Ref. [54]. Notice that here we designate by S the
fluid deformation rate symmetric tensor as Sij = 1/2(∂iuj +
∂jui) and the shear rate is then defined as γ̇ =

√
2S : S . We

note that the fact that the jump term is assumed to depend on
γ̇ represents a generalization to the 3D geometry of Kiørboe’s
empirical findings [32]. For the jump term we propose the
following functional form:

J(t,ti ,te,γ̇ ,p) = H [γ̇ (ti) − γ̇T ] H [te − t]uJ e
ti−t

τJ p(ti), (4)

where H [x] denotes the Heaviside step function, γ̇T is
a threshold value of the shear rate, uJ and τJ are two
characteristic parameters characterizing the jump shape, its
velocity amplitude (uJ ), and duration τJ , respectively. The
first H step function models the fact that a jump can begin
only when the shear rate is above the given threshold value,
while the second step function accounts for the fact that the
jump time span is finite. The initial and final time of a jump
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are defined as:

ti = t if (γ̇ (t) > γ̇T ) ∩ (t > te), (5)

te = ti + c τJ = ti + log(102) τJ . (6)

In other words, we assume that a jump cannot begin if
a previous jump has not finished (t > te) and that a jump
terminates when its amplitude has decreased to a negligible
level, here taken as one percent of the initial amplitude, i.e.,
|J(te)| = 10−2|J(ti)|.

C. Model tuning for turbulent flows

We now take into account the presence of the oceanic
flow environment surrounding the copepods. The properties of
oceanic turbulence relevant for our work have been studied by,
among others, MacKenzie et al. [60] and Jimenez [61]. In these
surveys it was observed that the mean value of the turbulent
kinetic energy dissipation rate, ϵ = 2νS : S , varies from about
10−8 m2s−3 in open ocean to 10−4 m2s−3 in coastal zones
(although it is also sensitive to the wind speed conditions and
on the depth). The value of ϵ along with the kinematic viscosity
of sea water, ν, allows us to estimate the Kolmogorov scales
of ocean turbulence: The dissipative length η = (ν3/ϵ)1/4,
time τη = (ν/ϵ)1/2, and velocity uη = (νϵ)1/4. The order of
magnitude estimate as from Ref. [61] for these quantities are
reported in Table I. According to the same authors the typical
Taylor-scale Reynolds number Reλ in the ocean can reach
values up to O(102).

Given that the typical size of copepods is of the order of
millimeters, it is clear that the relevant flow scales for their
dynamics are close to the Kolmogorov scale or below in tur-
bulence [29]. When the LC model is recast in a dimensionless
form in terms of these scales, we get three dimensionless
groups of parameters: τJ /τη, uJ /uη, and τηγ̇T . These param-
eters, together with the flow Reλ, fully specify the working
conditions (or tuning) of the copepods-in-turbulence model.

In this study we take as reference for the energy dissipation
rate the value ϵ = 10−6 m2s−3, and by taking into account the
dimensional values estimated for the copepods jump intensity
uJ and jump decaying time τJ , the ratios uJ /uη = 93.9
and τJ /τη = 0.00887 can be deduced from the similarity
analysis. This tells us that in ordinary turbulence conditions

TABLE I. Reference properties of the ocean turbulent flow as
from Ref. [61]. ϵ is the mean turbulent energy dissipation rate, and
η, τη, and uη are the turbulence space, time, and velocity dissipative
scales, respectively. Reλ is the Taylor-scale-based Reynolds number.
Their approximate range of variability is given together with the
reference values chosen for the similarity analysis in the present
study.

Parameter Unit Range This study

ν m2s−1 ∼10−6 10−6

ϵ m2s−3 10−8 10−4 10−6

η m 3 × 10−3 3 × 10−4 10−3

τη s 10 0.1 1
uη m s−1 3 × 10−4 3 × 10−3 10−3

Reλ — O(102) 80

the copepods possess an almost instantaneous reaction, since
their response time is about one-hundredth of the smallest scale
of turbulence. On the opposite the velocity reached during a
jump is of a magnitude that is comparable if not higher to the
one of turbulent velocity fluctuations. Finally, we note that we
do not have any experimental guess for the magnitude of γ̇T ,
therefore the value τηγ̇T is a free parameter of our model.

D. Numerical implementation of the LC model and
of the turbulent flow simulation

The copepods-in-turbulence model system is conveniently
implemented via an Eulerian-Lagrangian approach, meaning
that the trajectory x(t) of each individual copepod is computed
by means of Lagrangian tracking method applied to Eq. (1)
[62,63], while the fluid flow is obtained by solving the
field equations of incompressible fluid-dynamics, i.e., Navier-
Stokes equations, in turbulent conditions. All the particles are
advanced in time using Adams-Bashforth method with a time
step equal to δt = 1.4 × 10−3τη, the same time step as for the
integration of the Navier-Stokes equations. Such a choice of
time step shall also satisfy the constraint δt ≪ τJ .

A direct numerical simulation (DNS) approach was used to
solve the Navier-Stokes equations for homogeneous isotropic
turbulence by means of a pseudospectral method:

∂tu + u · ∇u = −∇p/ρ + ν,u + f , (7)

where u(x(t),t) is the incompressible (∇ · u = 0) fluid velocity
field, p is the pressure, ν is the kinematic viscosity, and ρ is
the fluid density. The f is the forcing that is applied on large
scales to sustain the statistically stationary turbulence. The
solution domain is a cube of length L = 2π with N3 = 1283

grid points, subject to periodic boundary condition. Aliasing
error is controlled by omitting the wave number larger than k =
2/3 × (2πN/L), to reach the Taylor-Reynolds number of the
flow Reλ =

√
15u2

rms/(νϵ)1/2 ≈ 80, where urms is the single
component root mean square velocity fluctuation. kmaxη > 1.4,
in which kmax = N/3 and η is the Kolmogorov length scale,
assures that small scales structures are well resolved.

III. RESULTS AND DISCUSSION

As mentioned above, the LC model is characterized by three
control parameters: the jump intensity uJ , the decaying time
of the jump τJ , and the shear rate threshold value γ̇T , which
are conveniently presented in dimensionless form in terms of
turbulence dissipative scale units. Since the LC model is just
one-way coupled to the fluid, in the numerics we can perform
simultaneous simulations of several families of copepods in
the same turbulent flow, where each family is characterized by
the triplet [uJ /uη, τJ /τη, γ̇T τη].

In agreement with the experimental observation we always
keep fixed the decaying time of the jump to the value τJ /τη =
10−2, while the other parameters are varied independently
in the ranges uJ /uη ∈ [1,400] and τηγ̇T ∈ [0,4]. Note that if
γ̇T = 0, according to the model, all the particles will jump in a
synchronous way. In order to avoid such an unphysical feature,
the time te for each particle is initialized by a random variable
with homogeneous distribution in the interval [0,log(102) τJ ].
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We perform a series of simulations with multiple families, with
about 2.56 × 105 particles per family.1 The simulation was
started and particles were let displace for about 2 eddy turnover
times, after that during the following ∼2 eddy turnover times
about 10 instantaneous distributions of LC particles were saved
for analysis. Copepods are modeled as solid sphere particles,
and orientation vector affected by fluid rotation rate [Eq. (2)],
unless otherwise noted. For comparison a set of passive fluid
tracers are also included in all our simulations.

A. Single-point statistics

In order to see how the LC dynamics in turbulence differ
from that of a fluid tracer, we first address the velocity
single-point statistics. The PDF of the absolute value of
single-component velocity for the copepods, i.e., |ẋi |, is shown
in Fig. 3. Tracers, the particles that move along the streamlines,
agree with a Gaussian distribution, while for copepods a
slower decaying tail is found. This deviation becomes more
pronounced at increasing the jump intensity for a given
threshold value of the shear rate, as shown in Fig. 3(a). It also
appears that low jump intensities uJ < 10 uη are not strong
enough to make effective changes on the copepods PDF. On
the other hand, increasing the threshold value of the shear rate
leads to fewer jumps; therefore, in this case copepods behave
almost like tracers. Their deviation in velocity distribution
from the Gaussian indeed increases by decreasing the shear
rate threshold value as can be seen in Fig. 3(b).

The general trend of the observed deviation from Gaussian-
ity can be predicted by means of the following probabilistic
model. We suppose that the instantaneous single cartesian
component velocity of LC particles can be approximated by the
sum of three statistical independent random variables. The first
variable accounts for the turbulent velocity field contribution;
therefore, it is a Gaussian with zero mean and the same
standard deviation as the one measured in the DNS. The second
and third variable mimic, respectively, the jump direction and
its intensity: we assume that the orientation is random uniform
in the solid angle and that the jumps happen uniformly in time.
One can obtain the resulting PDF for the LC particle velocity
from the convolution of the three elementary PDFs associated
to the three described random variables. The resulting density
distribution function when compared to the LC measurements
at low threshold value τηγ̇T = 0.21 (i.e., when copepods jump
very frequently), shows an overall qualitative agreement with
a slight deviation in the tails [see Fig. 3(b)].

Such a discrepancy comes from the fact that in reality the
jump directions develop some correlations with the underlying
flow, via Eq. (2), while the probabilistic model neglects it.
One can make use of the approximate probabilistic model
to estimate the average fraction of particle performing jumps
as a function of the shear-rate threshold value. This is done
by introducing an adjustable parameter accounting for the
probability that a given particle is actually jumping and by
fitting the model to the PDF curves. Figure 4 shows the fitted

1In physical dimension this corresponds to a number density of
O(1) LC particles per cm3, a density comparable to the one found for
real copepods estuarine water.
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ẋ |(F
DP

i/u
η|)
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FIG. 3. Probability density function of absolute value of single
component velocity |ẋi/uη| for the copepods (a) at constant threshold
value τηγ̇T = 0.7 and different jump intensities. Gaussian distribution
is a statistic distribution here with the measured root mean square
velocity of the Eulerian field as the standard deviation (b) at constant
jump intensity uJ /uη = 100 for different shear rate threshold values.
Random jumps correspond to the expected velocity distribution when
randomly oriented jumps occur uniformly in time on top of the
turbulent velocity field.

predictions obtained with such a procedure (which confirm
the validity of the probabilistic model), while the inset of the
same figure displays the inferred jump percentage as a function
of the shear rate threshold value. We observe an exponential
decrease as γ̇T is raised. For the value τηγ̇T = 0.5, the jumping
particle fraction is around 50%.

We finally observe that the shape of the PDF displayed by
the LC model is also in qualitative agreement with a recently
published experimental study [43], despite the fact that the
experiment has been performed in low Reynolds number
conditions (up to Reλ ≃ 30). What has not been reported
yet in experimental studies is a quantification of the three-
dimensional spatial distribution of copepods in turbulence.
We do this in the next section by means of a fractal dimension
characterization.

B. Correlation dimension analysis

The distribution of the LC particles is illustrated by Fig. 5,
where we show the instantaneous particle positions in two-
dimensional slices of thickness ∼η, visualizing at the same
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component velocity |ẋi/uη| for the copepods at constant jump
intensity uJ /uη = 100 for different shear rate threshold values. Fitted
PDF curves correspond to the percentage of jump of copepods. (Inset)
Deduced percentage of jump as a function of the shear rate threshold
value τηγ̇T .

time the values of shear-rate of the carrying flow. Contrary to
fluid tracers, LC particles are nonhomogeneously dispersed in
regions where turbulence intensity is below the given shear-
rate threshold, according to the model. In the panels of Fig. 5,
we also highlight the γ̇T values by contour lines, we name,
respectively, comfort and alert regions the locations which
are below or above these fixed γ̇T values. In Fig. 5(a), which
corresponds to γ̇T = 0.35 τ−1

η , the alert region is the dominant
one. In this situation the great majority of LC particles are
jumping but they manifestly fail to reach the few available
comfort islands. This may be due both to the fact that islands
are small and that they are short lived: one shall bear in mind the
interplay between space and time in this problem. Figure 5(b)
shows a condition where comfort and alert regions are equally
probable. We notice a pronounced aggregation of particles
in the alert areas surrounding the comfort regions, while the
latter are efficiently evacuated. Finally, Fig. 5(c) illustrates
what happens when the alert behavior is triggered only by a
few extreme shear-rate filamentary regions. The LC particles
manage to avoid them quite efficiently but in the overall
picture they seems to be mostly homogeneously distributed.
(See Supplemental Material [64] for the 2D visualization of
copepods’ motion in turbulent flow at τηγ̇T = 0.92.)

In order to better quantify the patchiness of the LC particles
we compute their correlation dimension (D2), which is a
measure of the dimensionality of a set of points. According
to the Grassberger and Procaccia algorithm [65], the D2 is
defined as the scaling exponent of the probability of finding
a pair of particles with a separation distance less than r :
P2(|X2 − X1| < r) ∝ rD2 as r → 0. In other words, if

C(r) = 2
N (N − 1)

∑

i<j

H (r − |Xi − Xj |) (8)

decreases like a power law, then D2 = lim
r→0

log C(r)
log r

. Figure 6

shows the D2 value in the two-dimensional parameter space
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FIG. 5. Patchiness of the copepods from the simulations. Shading
shows the instantaneous field of the absolute value of the shear rate of
the Eulerian field (a) distribution of the copepods with uJ /uη = 250
and τηγ̇T = 0.35, (b) distribution of the copepods with uJ /uη = 250
and τηγ̇T = 0.92, and (c) distribution of the copepods with uJ /uη =
250 and τηγ̇T = 1.77. Contour lines are traced at the corresponding
value of γ̇T on each panel.

composed by the intensity of the jump and the shear rate
threshold value. The clustering (D2 < 3) is discernible when
the prescribed shear rate threshold value is less than 2.8 τ−1

η ,
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FIG. 6. Correlation dimension D2 of copepods as a function of
jump intensity uJ /uη and threshold value τηγ̇T .

and it is maximal, D2 ≃ 2.3, at around 0.5 τ−1
η . On the

other hand, we observe a saturation of clustering as uJ is
increased. In order to better appreciate these two features, i.e.,
the minimum with respect to τηγ̇T and a saturation as a function
of uJ /uη, two two-dimensional cuts of the D2(γ̇T ,uJ ) surface
are shown in Fig. 7.
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FIG. 7. Lateral view of correlation dimension of the copepods
as a function of the jump intensity uJ /uη and threshold value τηγ̇T .
Error bars indicate the range of variability of the measurements from
10 independent particle snapshots.

One may wonder why there is an optimum and what is its
physical meaning. Copepods are prone to jump in order to
escape from regions of alert (γ̇ > γ̇T ), to reach regions where
γ̇ < γ̇T ; therefore, the chance for a jump to be successful
(assuming it to be randomly oriented) depends on the size
of the comfort region, in other words to the volume, Vγ̇<γ̇T

.
On the other hand, clustering would be maximum if we have
numerous successful jumps, and obviously the number of
jumps depends onVγ̇ >γ̇T

. This implies that copepods clustering
is expected to be proportional to Vγ̇<γ̇T

· Vγ̇>γ̇T
. Now, substi-

tuting the volume of comfortable regions with Vtot − Vγ̇>γ̇T

leads to Vγ̇>γ̇T
· (Vtot − Vγ̇>γ̇T

). One direct consequence is that
the clustering would be maximum when Vγ̇>γ̇T

= Vtot/2. This
can explain the existence of the optimum of D2 as a function
of τηγ̇T as shown in Fig. 7(a) as well as its trend as a function
of γ̇T . Note, however, that this argument is based on the
simplifying assumption that there is no correlation between
the orientation of a LC particle at jump and its position respect
to the comfort area, and also it neglects the spatial structure of
the shear rate field.

How can we determine the value of γ̇ for which the
condition of Vγ̇>γ̇T

= Vtot/2 occurs? One possibility is to
perform an Eulerian measurement of the γ̇ (x,t) field over
space and time. Another option is to look at the fraction of
time spent by tracers in alert regions, Tγ̇>γ̇T

/Ttot (with Ttot the
total time of the measurement). Since tracers explore evenly all
the region of the flow this is equivalent to measure the volume
ratioVγ̇>γ̇T

/Vtot. In particular, in order to increase the statistical
sampling we look at the global mean value ⟨Tγ̇>γ̇T

⟩/Ttot where
the average is over the total number of particles (Ntot):

⟨Tγ̇>γ̇T
⟩ = 1

Ntot

Ntot∑

i=1

∫ Ttot

0
H (γ̇i(t) − γ̇T ) dt. (9)

The plot in Fig. 8 shows the trend of ⟨Tγ̇>γ̇T
⟩/Ttot as function of

γ̇T both for tracers and LC particles. It confirms that copepods
reside less in alert regions compared to tracers. Moreover, the
difference among the two time fractions can be used as an
alternative clustering indicator. It has, in fact, a similar trend
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as the D2(γ̇T ) function and shows a peak for the same value
of γ̇T (inset of Fig. 8). The prediction that clustering varies
as Vγ̇>γ̇T

· (Vtot − Vγ̇>γ̇T
) is in qualitative agreement with the

observed trend, it is in quite good agreement in the large
γ̇T regime; however, it fails to capture the correct value at
which the maximum appears, giving τηγ̇T = 0.85 instead of
0.5. Finally, we note that the case of maximal clustering at
D2 ≃ 2.3 corresponds to a condition where the LC particles
concentrate in nearly two-dimensional sheets, which envelop
the alert regions [as can be also inferred from the visualisation
in Fig. 5(b)].

We can offer a qualitative physical explanation for the
observed D2 saturation for high values of uJ at fixed γ̇T

[Fig. 7(b)]. The argument is as follow: one may expect that
there is clustering if the time to escape from an alert region
is less than the lifetime of such a region: τescape < τγ̇T

. The
former time can be estimated as τescape = lγ̇T

/uJ , where lγ̇T
is

the typical size of the alert region characterized by a shear-rate
γ̇ > γ̇T . This implies that LC particles form clusters and the D2
measure is lead to saturate to a constant value if uJ > lγ̇T

/τγ̇T
.

This latter ratio can be thought as a threshold-dependent
escape velocity uγ̇T

= lγ̇T
/τγ̇T

. From the correlation dimension
measurement this escape velocity is estimated to be of the order
of 100 uη, i.e., of the order of the large scale velocity, with a
weak decreasing trend at increasing γ̇T .

We finally observe that when the flow field associated to the
Lagrangian particles, v = ẋ, displays a weak compressibility,
it can be shown [15,66] that D2 depends on the flow divergence
by the relation D2 = 3 − c⟨∇ · v⟩2 with c a proportionality
constant and angular brackets denoting time and space average.
If this argument is applied to the LC model we observe that
the divergence can be different form zero only at the interface
between comfort and alert regions. This is because in comfort
regions (∇ · v = ∇ · u = 0) and in alert regions (∇ · v = ∇ ·
u + ∇ · J = 0, as we can safely assume the jump term to be
spatially constant). At the interface, however, the change from
the fluid velocity intensity u to u + uJ has a spatial transition
scale roughly proportional to uJ · log (102)τJ , which leads to
a non-null divergence. This explains the LC accumulation
that we observe in correspondence of the alert and comfort
interfaces, which effectively acts as sink or source term of the
LC velocity field (see in particular the central panel of Fig. 5).
By following this line of reasoning, one can guess that the
minimum value of D2 will correspond to the case where the
surface of alert and comfort interface is maximum (and not
of volumes, as stated above). This has clearly a dependence
on the threshold γ̇T and much less, if any, on uJ . Despite the
qualitative agreement of this observation with our numerical
results, we have not been able yet to confirm it quantitatively
in the weakly compressible limit of the LC model.

C. Particle orientational dynamics

What is the importance of particle orientation for the
nonhomogenous distribution of particles? The effect of
the geometrical aspect ratio of the particles, together with
the direction of their jump on the fractal dimension are
addressed here. The fluid deformation rate symmetric tensor
Sij comes into play by modeling copepods as elongated
particles with aspect ratio equal to 3 (e.g., the relevant aspect
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FIG. 9. (a) Effect of the aspect ratio and direction of the jump on
the fractal dimension; (red) copepod as solid sphere particles, their
direction of the jump is random in the solid angle; (blue) copepod as
solid sphere particles with an orientation; and (green) as elongated
particles. Both jump in a direction following the Jeffery’s equation.
(b) PDF of the absolute value of the single component velocity for
(red) random direction case and (green) Jeffery’s case with aspect
ratio of 3. All cases are computed at uJ /uη = 250.

ratio for E. affinis copepod). Its effect on the jump direction
selection leads to enhanced clustering of the particles for jump
intensity uJ /uη = 250. Copepods can also jump in random
direction in the solid angle independently from the rotation rate
and deformation rate of the Eulerian field. Less clustering in
this case is logical since the jumping direction has no relation
with the fluid flow. These behaviors can be found in more
details in Fig. 9, where we address the influence of jump
direction on the PDF of the copepods velocity.

IV. CONCLUSIONS AND PERSPECTIVES

In this study we have considered a Lagrangian model
for active particles. The model is trimmed in a way to
reproduce some dynamical features experimentally observed
in the motion of copepods in still water. Its main characteristics
is the possibility to locally acquire an extra-velocity (jump) in
response to a variation of the fluid-flow conditions surrounding
the particle. The direction of the jump is ruled by the
hydrodynamics of small neutrally buoyant particles. The
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Lagrangian model has been coupled to a turbulent developed
flow described by the incompressible Navier-Stokes equations.

We have shown that jump escape reaction from spa-
tiotemporal events characterized by high shear-rate leads
to nonhomogeneous spatial distributions of active particles.
This clustering mechanisms, however, is effective only when
the reaction threshold is close to values of the order of
τ−1
η in a very narrow range. The fact that the range is

narrow is ultimately linked to the intermittent distribution
of the turbulence dissipation rate [67]. We have shown that
clustering approaches its maximum when the threshold rate
value γ̇T roughly divide the shear-rate (γ̇ ) spatial field in equal-
volume regions. Since this mechanism mainly depends on the
average value of small-turbulence scales rather than on their
fluctuations, we expect it to have a weak dependence on the
Reynolds number of the turbulent flow. A second implication
of the model is that for any given shear-rate reaction value
γ̇T there is a maximal intensity jump velocity beyond which
clustering cannot be further increased. Finally, the analysis
of the correlation dimension suggests the formation of local
quasibidimensional clusters enclosing the nonpermitted flow
regions. From a physical point of view, we remark that the
clustering mechanism at work in turbulence for the LC model
is different from the one shown in other model systems of
particulate active matter. For instance, the clustering observed
for motile algal cells in turbulence is given by the gyrotactic
effect, which is a nonisotropic effect induced by the presence
of the the external gravity field [22]. On the opposite, the LC
model discussed here is isotropic but it is nonhomogeneous
in space (it depends on the local value of the shear rate).
We have tested the fact that clustering also appears when LC
particles are made sensitive to other flow quantities such as
enstrophy or fluid acceleration. The minimal fractal dimension
we observed is always above the value of 2, confirming the
fact that particles in this case aggregate in order to cover the
surface of the forbidden regions. Based on these observations
we do not expect that such clustering processes could lead
to filamentary like clusters, D2 ≃ 1, as the ones observed for
microbubbles in turbulent flows. Another notable result is the
negligible impact of the particle orientational dynamics on the
clustering. This is likely to be linked to the limited duration of
jumps (note that here τJ ≪ τη), but might become important
for longer jumps, particularly in the modeling of larger motile
plankton. The negligible impact of orientation for the case
examined here suggests the possibility to formulate accurate
eulerian mean-field particle models based on the introduction
of a space-dependent effective diffusivity (κ) whose amplitude
may be linked directly to jump shape parameters, via a
dimensional relation of the type κ ∝ u2

J τJ .
From a more biological perspective, although behavioral

mechanisms leading to clustering had been already suggested
in the past, such as the formation of patches through swimming

against the flow [68], the possibility of cluster formation by
escape jumps in a no-mean flow situation was never reported
before. As discussed in Ref. [38], clustering of copepods
has an ecological importance: an effect may be to strongly
increase the contact rate with mates, and hence improve the
reproduction. Indeed, several models have been proposed to
express copepod contact rates in turbulence [69–71], reviewed
in Ref. [72]. In case of clustering, the contact rate is strongly
increased [38,73–75]. The clustering that would result from
a behavior of predator avoidance (a reaction to turbulent
shears similar to predators’ signals) would have as side effect
a positive consequence with a strong enhancement of the
mating contact rate. Of course, such copepod concentration
could also attract predators. Due to different tradeoffs, each
copepod species may have an optimal jump behavior in
response to turbulence. For example, the copepod E. affinis
used in our experimental section is an estuarine species
adapted to maintain the bulk of its population in a salinity
gradient in highly turbulent conditions [76,77]. By using
high-frequency sampling data of all life stages of E. affinis,
Schmitt et al. [77] confirmed that the late developmental stages
(mainly adults) exhibited active vertical migration during the
flood. Consequently, the population was not homogeneously
distributed in the water column, as dense patches are observed
during short time window and near the bottom [76].

Our model can be improved in the future to test such
situations with tidally induced turbulence in shallow estuaries
where copepods can use their jump abilities to simply avoid to
be flushed out of their optimal habitat. This could lead to the
identification of some optimal clustering strategy that may be
in relation with the dome-shapes proposed earlier, on purely
speculative intuitions [78,79]. The presented LC model can
also be improved by refining the jumping protocol in order to
take into account the fact that the temporal sequence of jumps
in copepods occurs in fast sequences (bursts) interposed to
inactive moments. Another possible direction of research con-
cerns the investigation of the impact of a spatial radius of per-
ception for copepods to react to turbulent shear. This may pro-
duce a smoothing or a delay in the perceived turbulent signal.
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Abstract

A crucial parameter for planktonic copepods is their interspecies contact rate which is driven by

their behavior and it is also strongly influenced by turbulence. The most important feature of

copepods is their ability to exhibit a powerful jump in order to escape from flow disturbances

due to the predators or other external causes. In the present study, the encounter rate of

copepods in homogeneous isotropic turbulent flows is assessed, by means of copepods’ statistics

in turbulence, which are obtained through a Lagrangian copepod (LC) model that mimics the

behavior of the most abundant form of plankton in turbulent flows. Using LC model which

leads to preferential concentration of copepods as low as a fractal dimension of ≥ 2.3, our

analysis shows that the encounter rate can be increased by a factor of the order of O(10

3
) at

dissipative scales.

1 Introduction

Many biological processes are determined by individual-interaction or contacts between organisms.
An essential aspect in marine biology is the encounters between individual organisms which is
vital for males and females in order to mate or for predators to locate their prey to capture and
consume them [1, 2, 3]. Finding a suitable habitat (colonization) for organisms is also encounter-
dependent [4]. Organism speed, size, motility and abundance can a�ect the biological encounter
rates, the rates at which individuals meet other organisms of the same or di�erent species. It is
thus fundamentally important to understand the phenomenon that a�ect the encounter rates and
the biological processes in oceanic flows.
The encounter rate of plankton species has been studied by many authors in the past [5, 6, 7, 8, 9, 10].
Gerritsen et al. [5] were the pioneers who introduced the theory of contact rate in laminar flow.
However living habitats of the plankton species are rarely laminar. It is now widely known that
turbulence has a strong influence on dispersal, feeding and reproduction of plankton [11]. Not only
the small-scale but also other scales within the turbulence spectrum are important contributors to
encounter process [9]. Some authors regarded the small-scale turbulent processes as homogenizing
factors, so that the encounter-rate model, assumed the distribution of plankton to be random
in space and time [10, 12, 13, 14, 15], whilst turbulence increases inhomogeneity at small scales
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[16, 17, 18].
The encounter rate in oceanic turbulence is governed by two biologically- and physically-driven
processes [10, 19, 20]. First, it is likely due to the behavior of organisms (biologically-driven
process) and secondly it is a�ected by the turbulent motion of the carrier fluid (physically-driven
process). However notice that turbulence has a great impact on microorganisms and can induce
some behavioral responses in swimmers [21, 22]. Hence, it is more reasonable not to sum up
the contribution of these processes linearly as it is the case for [19, 10, 20]. The encounter rate
formulation developed by Sundaram and Collins [23], Wang et al. [24], Reade et al. [25] and Collins
and Keswani [26] can be used in turbulence in case of preferential concentration of species. This is
to be discussed in details in the next section.
Despite many studies which have been performed on the e�ect of the preferential concentration on
the coagulation of colloidal particles [27, 28, 29, 30], and of the inertial particles [31, 32], only few
studies [33, 34] are available in the context of copepods ecology whilst the study of Squires and
Yamazaki [33] was published before including the precise e�ect of the preferential concentration in
the theory of contact rate. Rather than swimming behavior, other mechanisms can also play a role
in encounter rate for copepods, i.e. chemoreception and mechanoreception [35, 36], prey movement
detection [37, 38] and feeding currents [39], which are outside the scope of the present study.
The goal of the present study is to estimate the mutual encounter rate of copepods (encounter
rate of the same species) based on the previously proposed behavioral model in turbulent flows [40].
The Lagrangian copepod model was introduced based on the experimental data analysis to quantify
copepods’ dynamics in homogeneous isotropic turbulence. To the best of our knowledge, this is
the first numerical simulation of copepods behavior in turbulent flows, which result in preferential
concentration in some condition.
The paper is organized as follows: in section 2 we briefly introduce our Lagrangian copepod model
and the parameters and assumption we made. Furthermore, the encounter rate formulation where
there is a preferential concentration of particles in the flow, is discussed in this section. We then
present our analysis in details on the pair correlation function, and the encounter rate in Sec. 3
and end the paper by results and discussion in Sec. 4.

2 Methods and Tools

In this section we introduce the Lagrangian copepod model in turbulence which has been used to
quantify copepods’ behavior. The model was implemented via an Eulerian-Lagrangian approach
where the fluid flow was obtained by solving the incompressible Navier- Stokes equations, in tur-
bulent conditions by means of Direct Numerical Simulation (DNS). The Lagrangian part will be
described in section 2.1. Moreover the encounter rate formulation will be given in this section in
the case of preferential concentration which is the direct result of our LC model [40].

2.1 Lagrangian copepod model

Recorded velocity track of copepods showed that their jump intensity decays almost exponentially,
from which the equation of motion is chosen as follows:

ẋ(t) = u(x(t), t) + J(t, ti, te, “̇, p) (1)

where u(x(t), t) is the velocity of the carrying fluid and J is an added velocity term that describes
the active behaviour (jump) of the copepod. J(t, ti, te, “̇, p) is a function of time t, it depends also
on an initial and a final time ti and te, on flow shear rate value “̇ and on orientation vector p, which
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in its most simplified form is given by:

ṗ(t) = ⌦ · p(t) (2)

where ⌦ is the fluid rotation rate antisymmetric tensor, defined as �ij = 1/2(ˆiuj≠ˆjui). Copepods
react to the shear rate which is obtained by “̇ =

Ô
2S : S in which S is the fluid deformation rate

symmetric tensor, defined as Sij = 1/2(ˆiuj +ˆjui). Therefore copepods drift with the carrier fluid,
when they find themselves in the alert regions (regions with shear rate larger than the threshold
value “̇ > “̇T ), they start to jump with exponentially decaying intensity over the time. Notice that
a jump will finish when it’s amplitude reach to very low value and a new jump cannot happen if
the previous one is not finished. This jumping process can thus read mathematically as:

J(t, ti, te, “̇, p) = H [“̇(ti) ≠ “̇T ] H [te ≠ t]uJ e
ti≠t

·J
p(ti) (3)

where H [x] denotes the Heaviside step function meaning that it is unity if x Ø 0, “̇T is a threshold
value of the shear rate, uJ and ·J are two characteristic parameters characterising the jump shape,
its velocity amplitude (uJ) and duration ·J respectively. This implies that a jump can start if
a copepod is in an alert region (“̇(ti) Ø “̇T ) and its previous jump has finished (t Æ te). More
information of development and implementation of the LC model can be found in [40].

2.2 Encounter rate in case of preferential concentration

The encounter rate, i.e., the number of encounters per unit time under the condition of statistically
homogeneous and isotropic movement can be written in the following form:

E(r) = nfir2 g(r) È”vrad(r)Í (4)

where n is the organisms number density (i.e., number of copepods per unit volume), r is the
encounter, or perceptive, radius of organisms and È”vrad(r)Í is the mean radial velocity between
two particles separated by a distance r [23, 24, 26, 25]. In the latter expression È. . .Í indicate
ensemble average and ”vrad(r) is the amplitude of the relative radial velocity:

”vrad(r) = |(v(x + r) ≠ v(x)) · r̂| (5)

A detailed explanation on the appropriate choice of the mean radial velocity to be used in expression
4, can be found in [41, 24]. g(r) represents the radial distribution function, which describes the
variation of the particles’ density from a reference particle. This is linked to the fractal dimension
[42], for very small values of r. It has thus the following form:

g(r) = 1
4fir2

1
Nfl

Nÿ

i=1

Nÿ

k ”=i

” (r ≠ |rk ≠ ri|) (6)

r in this equation represents the given distance from a particle, N is the total number of particles,
fl = N/V is an average number density of N particles in a volume V and |rk ≠ ri| is the distance
between pair of particles.
Non-homogeneous distribution of particles has been studied comprehensively, where heavy particles
(particles denser than then fluid) concentrate in low vorticity and high strain rate regions [17, 43,
31, 44, 45, 46] whereas light particles are trapped by vortices in the flow [17, 31, 46, 47, 48], however
zero inertia particles (passive tracers) are purely passively advected by the flow. This preferential
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concentration is due to the particles’ Stokes number (St = ·p/·÷, ratio of the aerodynamic response
time of a particle ·p to the turbulent characteristic time scale ·÷) and the ratio of the particle
density to the fluid density — = flp/flf .
For swimming microorganisms, a preferential concentration e�ect has been found resulting from
the gyrotactic motility [49, 50], a competition between the spatial gradients in fluid velocity that
contributes to vorticity and the stablizing torque due to the displacement of the center of gravity
from the center of geomtry.
Compared to the other microorganisms, copepods show a di�erent type of complexity due to their
jumping behavior. Contrary to the previously observed clustering, patchiness of copepods in our
simulations, is tightly linked to the behavioral model in turbulent flows.
In the following section, the radial distribution function g(r) and its link to the fractal dimension,
the radial velocity È”vrad(r)Í and their contribution in encounter rate between copepods will be
addressed and discussed in detail.

3 Analysis

The pair correlation function of LC model is shown in figure 1 where the slope of g(r) at small
r is linked to the correlation dimension of copepods’ distribution in turbulence, as can be found
in the inset of this figure. This slope increases by increasing the shear rate threshold value up to
·÷ “̇T = 0.5, then further growth of the shear rate threshold value, decreases the steepness of g(r).
The inset of the Fig. 1 confirms these descriptions.
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Figure 1: Pair-radial-distribution function g(r) for di�erent Lagrangian copepod families with di�erent

threshold values of the deformation-rate ·÷“̇T . Inset represents the correlation dimension of copepod dis-

tribution with di�erent jump intensity.

The mean radial velocity between two copepods is shown in Fig. 2. Our findings for tracers are in
good agreement with the Eulerian longitudinal velocity structure function of the fluid, given by the
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empirical approximation of Borgas and Yeung [51]:

S̄II = 2Re⁄

151/2

C
1 ≠ exp

A
≠ r

(15C)3/4

BD4/3 A
153r4

153r4 + (2Re⁄/C)6

B1/6

(7)

with C = 2 and È”vrad(r)Í =
!
2S̄II/fi

"1/2. The Eulerian structure function grows linearly as r’d

with ’d = 1 for dissipative scales (small r) and at inertial-range it is proportional to r’i with
’i = 1/3. Copepods with the shear rate threshold value of ·÷ “̇T = 3.9 have less frequent jump
behavior, so that they behave almost like a tracers and they are advected by the flow. For this
reason they go very close to the prediction given by expression 7. In a case where all the copepods
are in alert regions (·÷ “̇T = 0), one can expect the Brownian like motion of copepods according to
the LC model. The di�usivity of the copepods would be dimensionally proportional to a relation of
the type u2

J·J . For this case, the copepod’s relative velocity tends to be constant and its amplitude
would be proportional to the jump intensity (uJ). For other cases (di�erent shear rate threshold
values ·÷ “̇), such an estimation is not applicable since the exponential term does not exist for
copepods in safe regions.
Therefore for copepods, estimation of such a relation (Borgas and Yeung [51]) is not straightforward.
It might be due to the fact that copepods at distance r may have di�erent behavior. This is shown
in Fig. 3 where two copepods at an immediate vicinity may have very large velocity di�erence.
Establishing the Eulerian structure function, thus is linked to the local threshold value of the shear
rate.
Scaling exponents ’d, ’i for copepod families through power law fits, is shown in Fig. 4. The change
of the power law scaling exponent in inertial-range is smooth, but in dissipative scale it shows non
monotonic behavior as observed in Fig. 1 for the fractal dimension as a function of the shear rate
threshold values.
Having the pair correlation function g(r) and mean radial velocity ”vrad(r) one can estimate the
encounter rate kernel E(r). In reality there is no contact between tracers, since they are passive
particles advected by the flow where the fluid streamlines does not cross each other. However to
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have an e�ective contact rate, it is not necessary for copepods to have physical contacts. Copepods
thus can grab their prey or an incoming mate before the contact happens [34]. This is why r in
eq. 4 represents the radius of perception of particles rather than their their characteristic radius of
geometry.
Fig. 5 represents the encounter kernel as a function of r for di�erent copepod families. Here the
encounter rate of copepods are introduced as a reference case for other copepod families. Notice that
copepod-copepod interaction has been neglected from the beginning as an assumption to introduce
LC model. It is evident that by increasing the shear rate threshold value (·÷ “̇T ), the encounter rate
of copepods decreases monotonically, although the growth of the shear rate ·÷ “̇T had non-uniform
impact on the pair correlation dimension (see Fig. 1).
The vertical line shows the radius of perception for Lagrangian copepod particles, here 5 times
greater than the Kolmogorov length scale of the carrier fluid. The ratio of the radius of perception
to the copepods’ body size is reported to be in the range of 1 ≠ 3 [52, 53, 54]. In terms of ÷ unit,
this means that the radius of perception of copepods is of the order of O(1). In order to see how
e�ective the shear rate threshold value is on the encounter rate of Lagrangian copepods at di�erent
perception radius, one can estimate the ratio between the encounter rates experienced by copepod
families and tracers. This is shown in Fig. 6 where it is realistic to have larger encounter rate at
small distances, nevertheless this figure suggests that at optimum clustering corresponding to the
shear rate threshold value of ·÷“̇T = 0.5, the encounter rate can be of the order of O(10) with
respect to the tracers at r = 5÷. The LC model shows no contact rate enhancement at shear rate
values larger than 2.75.

4 Conclusion

The paper reports the encounter rate of copepods in turbulent flows. Numerical results of a previ-
ously applied LC model in turbulence were used in which copepods were simulated in turbulence
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with a possibility to perform jump in response to a variation of the local shear rate of the fluid-flow.
The main feature of the LC model was the preferential concentration of copepods in narrow range
of the shear rate.
The LC model shows an enhanced contact rate with respect to the case where copepods are consid-
ered as passive particles. This enhancement comes from two terms in the contact rate expression;
one is the variation of the g(r) which accounts for the preferential concentration and the other one
is the variation of the È”vrad(r)Í, which comes from the fact that copepods are swimming. Both
contributions are important in the encounter rate enhancement in zooplankton which is a key pa-
rameter for sexual reproduction and feeding of plankton species.
Here we have shown that the small scale clustering of copepods which is linked to behavioral model
in turbulence, can increase largely the encounter rate. Our studies shows that, this increase depends
on copepods’ perception radius and can be of the order of O(102) at dissipative scales.
The enhancement of the contact rate is relevant for mating behavior of copepods but it is less
relevant for the nutrient uptake. As a perspective it would be interesting to see the consequence of
our LC model for the nutrient uptake by using the Lagrangian model of copepods in one side and
larger particles drifting in the flow which represent modeling predators.
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