Small buoyant particles in turbulence

Enrico Calzavarini

Laboratoire de Mécanique de Lille (LML) Université de Lille France

in collaboration with Varghese Mathai, Chao Sun, Detlef Lohse Physics of Fluids, University of Twente, The Netherlands

Flowing Matter Conference, Porto, January 2016

Motivation : experiments (1)

Bubble size $\Phi \sim 150 + /-25 \ \mu m$ Taylor Reynolds number Re_{λ} up to 300

Credits: Varghese Mathai, Chao Sun, Detlef Lohse

Motivation : experiments (2)

At moderate Re_{λ} values:

- Increased variance compared to tracers
- Horizontal component larger

Acceleration statistics of drops and bubbles in turbulence

Droplets case, see:

Peter J. Ireland, Andrew D. Bragg, Lance R. Collins arXiv:1507.07022 (2015)

Model equation of motion

$\mathbf{U}(\mathbf{X}(\mathcal{T}), \mathcal{T})$ fluid flow field

We neglect: Lift, History, Faxen (finite-size), two-way coupling (wake)

Dimensionless model

turbulence dissipative scales : η length τ_{η} time

$$\ddot{\mathbf{x}} = \beta \frac{D\mathbf{u}}{Dt} + \frac{1}{St}(\mathbf{u} - \dot{\mathbf{x}}) + \frac{1}{Fr}\hat{\mathbf{e}}_z$$

modified $\beta \equiv \frac{3\rho_f}{\rho_f + 2\rho_p}$

Stokes $St \equiv \frac{a^2}{3\beta\nu\tau_{\eta}} = \frac{\tau_p}{\tau_{\eta}}$

Froude $Fr^{-1} \equiv \frac{(\beta - 1)g}{a_{\eta}}$

Numerics : Eulerian-Lagrangian DNS

Eulerian

Lattice Boltzmann solver

- periodic cube (256³)
- constant power, large scale, stochastic forcing
- $\text{Re}_{\lambda} = 80 ~(\eta \sim 1.5 \Delta x)$

Lagrangian

- Trilinear interpolation
- 2nd order in time
- >5 10^6 particles , ~500 families

Acceleration variance from DNS

 β = 0 already studied in:

- Bec, Homann, Ray, PRL 184501 (2014)
- Parishani, Ayala, Rosa, Wang, Grabowski Phys Fluids 27, 033304 (2015)
- Ireland, Bragg, Collins arXiv:1507.07022 (2015)

Acceleration variance from DNS

St = 0.05

For very small particles (small Stokes)

$$Fr^{-1} \to 0 \qquad \dot{\mathbf{x}} \simeq \mathbf{u} \longrightarrow \ddot{\mathbf{x}} \simeq D_t \mathbf{u}$$

 Fr^{-1} finite $\dot{\mathbf{x}} \simeq \mathbf{u} + \frac{St}{Fr} \hat{\mathbf{e}}_z$

$$\frac{St}{Fr} = \frac{(\beta - 1)}{\beta} \frac{a^2g}{3\nu u_{\eta}} = \frac{u_T}{u_{\eta}}$$

Acceleration

$$\ddot{\mathbf{x}} \simeq \frac{d}{dt} (\mathbf{u} + \frac{St}{Fr} \hat{\mathbf{e}}_z) = \frac{\partial \mathbf{u}}{\partial t} + \dot{\mathbf{x}} \cdot \nabla (\mathbf{u} + \frac{St}{Fr} \hat{\mathbf{e}}_z) = D_t \mathbf{u} + \frac{St}{Fr} \partial_z \mathbf{u}$$

Evaluation of Acceleration variance

horizontal vertical $\langle \ddot{x}^2 \rangle \simeq \langle (D_t u_x)^2 \rangle + \left(\frac{St}{Fr}\right)^2 \langle (\partial_z u_x)^2 \rangle \qquad \langle \ddot{z}^2 \rangle \simeq \langle (D_t u_z)^2 \rangle + \left(\frac{St}{Fr}\right)^2 \langle (\partial_z u_z)^2 \rangle$

$$\frac{\langle \ddot{x}^2 \rangle}{\langle (D_t u_x)^2 \rangle} \simeq 1 + \frac{2}{15a_0} \left(\frac{St}{Fr}\right)^2$$

$$\frac{\langle \ddot{z}^2 \rangle}{\langle (D_t u_x)^2 \rangle} \simeq 1 + \frac{1}{15a_0} \left(\frac{St}{Fr}\right)^2$$

Acceleration variance comparison

Acceleration variance: comparison with experiments

13

Acceleration Time Correlation

Higher moments: Acceleration Flatness

For small $|St/Fr| \longrightarrow \frac{\mathcal{F}(\ddot{x})}{\mathcal{F}(D_t u_x)} \simeq 1 + 2\left(\frac{3}{\mathcal{F}(D_t u_x)} - 1\right) \frac{2}{15 a_0} \left(\frac{St}{Fr}\right)^2$

Asymptotically goes to $\longrightarrow \begin{array}{cc} \mathcal{F}(\partial_z u_x) & < & \mathcal{F}(D_t u_x) \\ \mathcal{F}(\partial_z u_z) & < & \mathcal{F}(D_t u_x) \end{array}$

Larger Stokes (fixed gravity and Re_{λ})

 $\beta = [0.5, 1.5]$ $1 + (2/15 a_0) (St/Fr)$ 0 St=0.05 0 20 0 0 St=0.16 \odot \odot Ο St=0.27 0 0 Ο 0 0 St=0.38 0 0 0 St=0.5 Ο 15 0 Ο $a^{2}_{h} > / a^{2}_{h,T} >$ 0 \odot \odot 0 0 0 Θ 0 \mathbf{O} 8 10 6 0 0 0 000 Θ Ο 0 0 5 0 -40 -20 40 20 0 St/Fr

Inertial Filtering reduces the acceleration enhancement effect

Larger Stokes (fixed gravity and Re_{λ})

Inertial Filtering reduces the acceleration enhancement effect

Conclusions & Perspectives

A tiny bubble (or a droplet) is not a good fluid acceleration proxy

Finite Froude numbers, Small Stokes limit:

- Increase of acceleration variance
- Decrease of the correlation time
- Decrease of acceleration flatness

To be explored:

- Intermediate and large *St* limit (clustering)
- Interplay with finite-size, lift and wake effects

Mean vertical velocity vs. Fr

What about Lift force?

$$\ddot{\mathbf{x}} = \beta \frac{D\mathbf{u}}{Dt} + \frac{1}{St}(\mathbf{u} - \dot{\mathbf{x}}) + \frac{1}{Fr}\hat{\mathbf{e}}_z + \frac{\beta}{3}(\mathbf{u} - \dot{\mathbf{x}}) \times \boldsymbol{\omega}$$

important for large bubbles