Lattice Boltzmann Method for fluid flows

Shrestha Kalyan
Polytech - Laboratoire de Mécanique de Lille
Génie mécanique

Calzavarini Enrico & Mompean Gilmar
INNOCOLD project

www.innocold.org

Using LBM method

1 PhD project: Simulation of the dispersion of leaked methane clouds over 1 sq. km

2 PhD projects: Modeling and Simulation of the source term and phase transition from liquid to gas
INNOCOLD project: Objective

Subject 3: Numerical Simulation of methane gas dispersion in atmosphere using Lattice Boltzmann Method, at LNG terminal in Dunkerque

- Risk assessment at Dunkerque site by providing LFL maps
- Reduce the investment cost of installing LNG industry
- Flexible numerical tool, suitable also for other installations and danger studies
Presentation outline

- INNOCOLD project
- Lattice Boltzmann Method (LBM)
 - Stream-collision algorithm
 - Finite Volume LBM (FVLBM) algorithm
- Comparison of LBM algorithms
 - Comparative study of the accuracy of different LBM algorithms
 - Validation of FVLBM: 3D Rayleigh-Benard Convection
- Perspectives
why LBM?

- Could be easily extended to multi-component, multi-phase flows
- Easy implementation for complex geometry: widely used in automobile industry eg. POWERFLOW
- Avoids solving heavy Poisson equation. Pressure and stress tensors are available locally
- Easy parallelization

Although, it has its own limitations

- Lower order of accuracy (2nd order in time and space)
- Limited to weakly compressible
- Based on equi-spaced cartesian grid
LBM

- Developed from the Lattice Gas Cellular Automaton
- LBM equation with BGK model – single relaxation time approximation

\[\frac{\partial f_\alpha}{\partial t} + c_\alpha \cdot \nabla f_\alpha = \frac{1}{\tau} (f_\alpha^{eq} - f_\alpha) + F_\alpha \quad \text{where, } \alpha = 0, \ldots, N_{pop} \]

\[\rho = \sum \alpha f_\alpha \quad \rho u = \sum \alpha c_\alpha f_\alpha \]

Velocity Discretization

- Fig: D2Q9 lattice arrangement
- Fig: D3Q19 lattice arrangement

Space and time Discretization

- Stream-collision algorithm
- Finite Volume approach
Stream-Collision algorithm

➢ Applying method of characteristics to LBM-PDE along the lines $x(t) = x(0) + c_\alpha t$

ODE :-->

\[
\frac{d}{dt} f_\alpha = \frac{1}{\tau} (f_{\alpha eq} - f_\alpha) + F_\alpha
\]

➢ Redefining the distribution functions for the lattice populations by,

\[
\tilde{f}_\alpha = f_\alpha - \frac{\Delta t}{2\tilde{\tau}} (f_{\alpha eq} - f_\alpha + \tau F_\alpha)
\]

\[
\tilde{f}_\alpha(x + c_\alpha \Delta t, t + \Delta t) = \tilde{f}_\alpha(x, t) + \frac{\Delta t}{\tilde{\tau}} (\tilde{f}_{\alpha eq}(x, t) - \tilde{f}_\alpha(x, t)) + \Delta t \left(1 - \frac{\Delta t}{2\tilde{\tau}}\right) F_\alpha
\]

where, $\tilde{\tau} = \tau + \Delta t/2 \quad \tilde{\tau} > \Delta t/2$

\[
\rho = \sum_\alpha \tilde{f}_\alpha
\]

\[
\rho u = \sum_\alpha c_\alpha (\tilde{f}_\alpha + \frac{\Delta t}{2} F_\alpha)
\]

\[
\nu = (\tilde{\tau} - \Delta t/2)c_s^2
\]
FVLBM algorithm

➢ Target: Applicable to stretched 3D cartesian grids

Fig: Grid Refinement (ParaView)
FVLBM algorithm (cell-centered)

- Integrating LBE over a volume V (with surface S)

\[
\int_V \frac{\partial f_\alpha}{\partial t} \, dV + \int_S \mathbf{c}_\alpha \cdot \mathbf{n} \ f_\alpha \, dS = \int_V \frac{1}{\tau} (f_{\alpha}^{eq} - f_\alpha) \, dV + \int_V F_\alpha \, dV
\]

\[
\frac{\partial f_\alpha}{\partial t} + \frac{S_j}{V} \mathbf{c}_\alpha \cdot \mathbf{n}_j \ [f_\alpha]_j = \frac{1}{\tau} (f_{\alpha}^{eq} - f_\alpha) + F_\alpha
\]

Representation of 2-D structured FV grid

Fig: Schematic of the FV discretization with cell-centered lattice (2-D case)
FVLBM algorithm

Time discretization:

Applying explicit Euler scheme,
\[\frac{\partial f_\alpha}{\partial t} = \frac{(f_\alpha^{(t+\Delta t)} - f_\alpha^{(t)})}{\Delta t} \]

\[f_\alpha^{(t+\Delta t)} = f_\alpha^{(t)} - \Delta t \frac{S_j}{V} c_\alpha \cdot n_j \left[f_\alpha^{(t)} \right]_j + \frac{\Delta t}{\tau} (f_\alpha^{eq(t)} - f_\alpha^{(t)}) + \Delta t F_\alpha \]

Space discretization:
At-least quadratic interpolation scheme required. QUICK scheme is chosen.

Fig: Test of accuracy of different numerical methods for standard Poiseuille flow. Velocity profile comparison for mesh size 1X64.
FVLBM algorithm

Major drawback:

![Graph showing the relationship between d_{max}/τ and τ for different values of τ for FVLBM. The graph includes a line and data points, with the equation $2*\exp(-\tau)$ plotted as well.]

Fig: Decaying Kolmogorov flow: $(d_{\text{max}}/\tau$ vs τ) measure of maximum threshold stable time step for different values of τ for FVLBM

$$2 > \frac{\Delta t}{\tau} > 0$$
FVLBM algorithm: Improvement

➢ Semi-implicit integration scheme

\[f^{(t+\Delta t)}_\alpha = f_\alpha - \Delta t \frac{S_j}{V} c_\alpha \cdot n_j \left[f_\alpha + \frac{\Delta t}{2\tilde{\tau}} (f^{eq}_\alpha - f_\alpha) \right]_j + \frac{\Delta t}{\tilde{\tau}} (f^{eq}_\alpha - f_\alpha) + \Delta t \ F_\alpha \]

where, \(\tilde{\tau} = \tau + \frac{\Delta t}{2} \), \(\tilde{\tau} > \frac{\Delta t}{2} \)

➢ Further improvement with Heun scheme for advection term

- Greater stability criteria
- Increased accuracy

\[f^{(t+\Delta t)}_\alpha = f_\alpha - \Delta t \frac{S_j}{V} c_\alpha \cdot n_j \left(\frac{[f^{*}_\alpha + \frac{\Delta t}{2\tilde{\tau}} (f^{eq\ast}_\alpha - f^{*}_\alpha)]_j + [f_\alpha + \frac{\Delta t}{2\tilde{\tau}} (f^{eq}_\alpha - f_\alpha)]_j}{2} \right) + \frac{\Delta t}{\tilde{\tau}} (f^{eq}_\alpha - f_\alpha) + \Delta t \ F_\alpha \]

\[\nu = \tau \ c_s^2 = \left(\tilde{\tau} - \frac{\Delta t}{2} \right) c_s^2 \]
stream-collision

- Well-known; highly tested
- Restricted to homogenous grid
- Streaming along characteristics performed at almost zero cost

FV-LBM algorithm

- Not well explored
- Allows non-homogenous grids
- Addition of a heavy advection term in the calculation

Comparison
efficiency, accuracy, performance, stability
Comparative study of the accuracy of FV-LBM and standard LBM algorithms

Viscosity evaluation

Fig: Decaying Kolmogorov flow: Relative error measurement. Finite Volume case: \(dt = 1 \) for \(\tau \geq 0.13 \) (marked with a vertical line) and \(dt = 0.1 \) for \(\tau < 0.13 \). Streaming case: \(dt = 1 \) always. **Inset:** the absolute value of the same error in log-log scale. FVLBM is less accurate but there is an optimal region of application (\(\tau = 0.5 \)).
Comparative study of the accuracy of FV-LBM and standard LBM algorithms

Accuracy of velocity (bounded flow)

Fig: *Poiseuille Flow:* Relative error on the Re = 10 velocity Poiseuille flow profile at changing the number of grid points (N) and keeping Δx = 1.

FV is same order in space as stream-collision (i.e. second order accurate) but less accurate of a factor 8 to 10.
Comparative study of the accuracy of FV-LBM and standard LBM algorithms

Fig: *Poiseuille flow*: Relative error measurement on the $Re = 10$ velocity Poiseuille flow profile. Here domain size and forcing is varied keeping Re constant. Also grid points are kept constant. At average dt of 10, the FV can be even 100 times more accurate than stream-collision.
FVLBM algorithm: 3D flows

- 3D Rayleigh-Benard System

- Ra=2.5\times10^6; Pr=1; Aspect ratio=2
- Grid : 128X128X64
- Hyperbolic sine grid refinement at the walls
- No-slip BC at walls
- Periodic BC in x,y directions
- Constant upper and lower wall temperatures to be -1 and 1 respectively
3D Validation: Rayleigh-Benard convection

Fig: Mean temperature profile T_m - averaged over time and horizontal planes - as a function of the height z in the cell. Profiles only the lower/upper 10% of the cell.
3D Validation: Rayleigh-Benard convection

Fig: Root-mean-square temperature profiles T_{rms}, averaged over time and horizontal planes, as a function of the cell height z. Profiles only the lower/upper 10% of the cell.
3D Validation: Rayleigh-Benard convection

Fig: Turbulent kinetic energy $k = 0.5* (u^2)$, averaged over time and horizontal planes, as a function of the cell height z.
Perspectives

➢ Performance comparison

➢ Simulation of fully turbulent Channel flow by FVLBM

- $\text{Re}_{(\tau)} = 180$
- Grid 128 X 128 X 256
- No-slip BC at top and bottom walls
- Periodic BC in x-y directions
- Inlet initiated with parabolic velocity profile

Fig: Fully-developed turbulent channel flow simulation domain

➢ Further enhancing the stability of the method
Thank You