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Finite-volume versus streaming-based lattice Boltzmann algorithm for fluid-dynamics simulations:
A one-to-one accuracy and performance study
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A finite-volume (FV) discretization method for the lattice Boltzmann (LB) equation, which combines high
accuracy with limited computational cost is presented. In order to assess the performance of the FV method
we carry out a systematic comparison, focused on accuracy and computational performances, with the standard
streaming lattice Boltzmann equation algorithm. In particular we aim at clarifying whether and in which conditions
the proposed algorithm, and more generally any FV algorithm, can be taken as the method of choice in fluid-
dynamics LB simulations. For this reason the comparative analysis is further extended to the case of realistic flows,
in particular thermally driven flows in turbulent conditions. We report the successful simulation of high-Rayleigh
number convective flow performed by a lattice Boltzmann FV-based algorithm with wall grid refinement.
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I. INTRODUCTION

Since its introduction, the lattice Boltzmann (LB) equation
method for fluid-dynamics simulations has enjoyed increasing
success [1]. The reasons are twofold: on one hand, the meso-
scopic level of description on which it is based goes beyond
the Navier-Stokes continuum matter description of fluids and
it eases, as compared to other macroscopic methods, to accom-
modate for complex effects, such as the interaction between
different fluid components, phase-change processes, and non-
Newtonian rheology. The extensions of the LB methods in such
directions are countless (e.g., multiphase and multicomponent
flows [2–7], flows with suspensions [8–12], emulsions [13],
porous media [14–17], natural convection [18], reactive trans-
port [19,20], combustion [21,22], and magnetohydrodynamics
[23,24]). On the other hand, the LB method has also very
appealing features from a computational point of view. It is
simple to implement, free of numerical diffusion and stability
issues, and suitable for parallelization due to its local-in-space
character.

However, when it comes to the simulation of turbulent flows
one shortcoming of the method, the limitation to equispaced
grids, becomes evident. We recall here that a developed
turbulent flow in the presence of any sort of bounding geometry
(or any local forcing term) develops space inhomogeneities
and as such grid refinement in numerics becomes necessary. It
shall be made clear that in such a context, grid refinement is
not an additional requirement in order to increase the accuracy
of a simulation but is rather an unavoidable need in order to
save memory usage and computational power and being able to
access higher—read more realistic—turbulent flows regimes.
In summary any state-of-the-art computational fluid dynamics
method (CFD) calls for grid refinement.

Several approaches have been proposed in order to over-
come the shortcoming of equi-spaced grids in lattice Boltz-
mann (LB) equation simulations. Here we mention (i) the
grid refinement methods, which make use of locally nested
equispaced grids [25], (ii) the techniques based on off-lattice
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interpolation schemes [26,27], (iii) the finite-difference [28],
finite-volume [29,30], or finite-elements [31] LB discretization
methods, and (iv) the extension of the LB equation to general
manifolds [32]. There are, however, important drawbacks.
All such reformulation are computationally more expensive,
or introduce extra stability limitations enforced by space
and/or time discretization, which were not present in the
original so-called streaming-based implementation. Presently,
the only viable way seems to be the nested monospaced
grid method (i), which has allowed us to simulate turbulent
channel flows [33] and even more complex flow geometries
[34]. However, in this case the advantage in terms of accuracy
and efficiency compared to state-of-the-art direct numerical
simulation (DNS), e.g., spectral methods is limited.

This paper presents a finite-volume (FV) discretization
method for the lattice Boltzmann equation, which besides a
high level of accuracy also displays a contained computational
cost. In order to assess the performance of this FV method we
carry out a systematic comparison with the standard streaming
(ST) formulation. We present a methodical comparison of ac-
curacy and computational performances. We aim at clarifying
whether and in which conditions the proposed FV algorithm
can be taken as the method of choice in fluid-dynamics LB
simulations.

The paper is organized as follows. In the next section we
describe two different discretizations of the LB equation. To
begin with, we briefly review the key points of the streaming
implementation (Sec. II A), then we present the FV-based
formulation (Sec. II B). Our guidelines in the development
of the FV method are the the simplicity and computational
efficiency of the implementation, yet retaining a level of
accuracy, which takes the ST method as the baseline. Results
of this study are reported in Sec. III. First, we address the
accuracy comparison, later on the computational efficiency
of the algorithm. A further section (Sec. V) takes the
analysis to more realistic flows, in particular thermal flows in
turbulent conditions. Here, a high-Rayleigh number convective
flow with wall grid refinement is simulated by a LB-based
code. Final remarks and perspectives are reported in the
conclusions.
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II. METHOD

We focus here on the LB method with the Bhatnagar-Gross-
Krook (BGK) collision operator, which is characterised by a
single relaxation time τ towards a local equilibrium state. The
equation of motion reads:

∂fα

∂t
+ cα · ∇fα = 1

τ

(
f eq

α − fα

) + Fα α = 0, . . . ,Npop,

(1)
where fα(x,t) is one of the Npop distribution functions for
particles (also called populations) with velocity cα at position
x and time t . The set of fα distribution functions relax towards
a local equilibrium state f

eq
α (x,t), which is prescribed in terms

of local macroscopic variables (in nonthermal models, as here,
they are just the fluid velocity and density) [1]. The macro-
scopic fluid mass and momentum density can be computed as
ρ = �αfα and ρu = �αcαfα and the kinematic viscosity as
ν = τ c2

s , where the constant cs stands for the so-called lattice
speed of sound, whose value depends on the specific velocity
lattice topology (see for instance Succi’s book [1] for details).
Finally, Fα is a forcing term, constructed in such a way to
model the effect of a macroscopic body force term.

Note that Eq. (1) is discrete just in the velocity space (for
this reason it is also known as discrete velocity Boltzmann
equation). Up to this level no discretization has been taken,
either in the spatial domain or in the temporal one. Such further
discretizations can take different paths as we describe in the
following sections.

A. Outline of the streaming lattice Boltzmann algorithm

It is here useful to briefly recall the steps that have to be
made in order to obtain from Eq. (1) the standard streaming
(ST) LB algorithm. First, by applying to the above partial
differential equation (PDE) the technique of the characteristics
along the lines x(t) = x(0) + cα t , one gets the ordinary
differential equation (ODE)

d

dt
fα = 1

τ

(
f eq

α − fα

) + Fα. (2)

Second, the discrete integration in time, of step �t , is
performed by applying the semi-implicit Crank-Nicolson
method. Such a step is followed by a convenient redefinition
of the distribution functions for the lattice populations f̃α =
fα − �t

2τ
(f eq

α − fα + τFα) which makes the scheme explicit,
leading to [35]:

f̃α(x + cα�t,t + �t)

= f̃α(x,t) + �t

τ̃

[
f̃ eq

α (x,t) − f̃α(x,t)
]

+�t

(
1 − �t

2τ̃

)
Fα, (3)

where τ̃ = τ + �t/2 is a redefined relaxation time
(τ̃ > �t/2). It is easy to derive the relations between the
macroscopic variables and the tilded (∼) quantities, they
are respectively: ρ = �αf̃α , ρu = �αcα(f̃α + �t

2 Fα) and ν =
(τ̃ − �t/2)c2

s . Note that a factor 1 − �t
2τ̃

in front of the forcing
term needs to be introduced a posteriori in order for the
discretized Eq. (3) to give the same hydrodynamics limits as
(1) [36].

The numerical implementation of (3) is straightforward.
It can be divided in two steps: (i) the computation of the
right-hand side and (ii) the displacement (or streaming) of the
computed values on the lattice according to the direction and
intensity of cα . It is important to note that the integration along
the characteristics introduces a link between the space and
time discretization, which reads cα = �xα/�t . This means
that if one choose the Cartesian components of the set of cα

velocities to be either ±1 or 0, it implies that �xα,i = �t

or 0. The standard choice (but not the only possible one) is
�xα,i = �t = 1 [1].

B. Lattice Boltzmann finite-volume formulation

The method of characteristics is very convenient from a
computational point of view because it reduces the complexity
of the integration of a PDE to a simple ODE, however,
at the same time it introduces a tight link between the
shape of the velocity lattice and the spatial discretization
mesh. Such a constraint can be removed if one takes the
more usual numerical approach based on (i) a direct spatial
discretization of Eq. (1) combined with (ii) an independent
time discretization phase. For the first step, several standard
options are available, such as finite elements, finite differences,
or finite-volume methods.

The idea of using a finite-volume method to decouple
the spatial numerical mesh from the velocity lattice structure
was first proposed by Nannelli and S. Succi [30] (see also
Ref. [29]). In this seminal paper a low-order upwind scheme
was suggested for the discretization of the advection (or flux)
term. The idea was further refined in Amati et al. [37], where
piecewise linear interpolation scheme was suggested for the
treatment of the flux term. While these first works were limited
to stretched Cartesian grids, Chen [38] presented a volumetric
formulation, based on a cell-centered discretization scheme,
which allowed for the adoption of arbitrary structured meshes.
The formulation was further developed by Peng et al. [39,40]
through cell-vertex FV scheme, which displayed enhanced
stability properties. Sbragaglia and Sugiyama [41] applied
Peng’s scheme to an energy-conserving LB model to study
for the first time thermal convective flows. More recently
Ubertini et al. [42] addressed the problem of unstructured
bidimensional triangular meshes, which allow great flexibility
on one hand, but also reintroduce known issues related to
numerical stability. This has been further refined in a work
by Zarghami et al. [43] through a cell-centered FV approach
on arbitrary mesh in two dimensions. A total variation
diminishing (TVD) formulations for LB FV algorithm has
been suggested by Patil et al. [44], where stability and accuracy
can be efficiently enhanced. Despite all these contributions, at
present the situation is still far from being solved. If on one
side it has been shown that a satisfactory level of precision
can be reached by the FV method, on the other hand
this is often at the price of the high computational costs
needed to obtain a stable algorithm. As an example, in a
recent work [43], where a series of laminar but relatively
complex flows over nonhomogeneous meshes were simulated,
a fifth-order Runge-Kutta scheme had to be adopted for
the time discretization in order to have stable results. The
consequence on the computational cost is evident since in
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FIG. 1. (a) Illustration of the finite-volume space discretization:
the dot denotes the position of the cell center [where the value of
fα(x) is defined], while the lines marks the cell boundaries. The cell
has volume V and each boundary surface is denoted with Sj with
j = 0, . . . ,3 in two-dimensional space. (b) Sketch of the quadratic
upwind interpolation scheme (QUICK) for the estimating the value
of fα at the cell boundary position xS . Note that the interpolation
method makes use of different nodes according to the direction of the
population velocity �cα .

such a scheme the advection terms of (1) need to be computed
five times per time step (while in the ST method it is
performed just by means of a memory shift, the streaming).
As a consequence the FV LB is rarely a method of choice
in fluid-dynamics simulations (see also the discussions in
Refs. [45] and [46]).

The present paper further develops the finite-volume lattice
Boltzmann method in order to simulate fluid flow problems
with higher accuracy, greater stability properties, and com-
parable performance as the ST method. The FV method
that we propose is of the type denoted as cell centered (as
opposed to vertex centered, see Fig. 1(a). Its most original
features concern the approach taken for the time discretization
(Sec. II B 2) and the method of fluxes computation, which
adopt a quadratic upwind scheme (Sec. II B 3). In the following
we detail the steps taken in developing it.

1. Space discretization

Upon integration of Eq. (1) over a volume V (of surface S)
and by applying the flux theorem we get∫

V

∂fα

∂t
dV +

∫
S

cα · n fα dS

=
∫

V

1

τ

(
f eq

α − fα

)
dV +

∫
V

Fα dV . (4)

We then assume that every term in the volume integrals can be
considered as constant and its magnitude taken at a reference
location x (also called node) inside V .

The term in the surface integral, however, carries some kind
of spatial variability. When such a surface is decomposed in M

faces (as in a structured grid of nodes with connectivity index
M) it is convenient to make the assumption that fα is constant

on each of the Sj surfaces perpendicular to nj and denoting
its value with [fα]j . This altogether leads to:

∂fα

∂t
+ Sj

V
cα · nj [fα]j = 1

τ

(
f eq

α − fα

) + Fα, (5)

where summation over the repeated index j is applied.

2. Time discretization

If the time derivative is discretized by the explicit Euler
scheme, we get:

f (t+�t)
α = f (t)

α − �t
Sj

V
cα · nj

[
f (t)

α

]
j

+�t

τ

(
f eq (t)

α − f (t)
α

) + �t Fα, (6)

where the superscript indexes (t) and (t + �t) denote, respec-
tively, the current and the next discrete time instant. Such
an approach, however, puts tight bounds on the maximum
allowed �t . It is easy to show that if we discard the advection
and the forcing terms and assume f eq to be constant, the
stability region of the method is 0 < �t � 2τ . Empirically
it is possible to show that this range becomes even narrower
when the nonlocal advection term, the forcing and the time
dependency in f eq are taken into account. The fact that �tmax

depends on and is bounded by the value of τ is a known
problem in FV LB implementations. It poses, among others,
a severe limitation for the simulations of turbulent flows (i.e.,
low viscosity flows). On the opposite, such a constraint does
not exist in the ST approach (where �t is independent of
τ ). Different solutions have been proposed in the literature,
often resorting explicit time discretization schemes of higher
order, for example multistage Runge-Kutta schemes. However,
as we mentioned above such schemes only produce marginal
improvements at the expenses of considerably increasing the
computations. The Runge-Kutta schemes for example requires
multiple evaluations of the full right-hand-side terms on (5).
We opt for a different approach, with a better trade off between
the enhancement of the stability limit for �t and the growth
in computational cost.

Similarly to what is done for the classic LB streaming
method, in the steps from Eqs. (2) to (3), a possible im-
provement consists in taking also for the FV algorithm a
semi-implicit integration scheme. However, this is not directly
possible for Eq. (5) because of the presence of the advection
term. Therefore, we propose to limit such an approach only to
the collision and forcing terms, after few manipulations (more
details in the Appendix) one gets the discretized form:

f̃ (t+�t)
α = f̃α − �t

Sj

V
cα · nj

[
f̃α + �t

2τ̃
(f̃ eq

α − f̃α) + �t

2
Fα

]
j

+ �t

τ̃

(
f̃ eq

α − f̃α

) + �t

(
1 − �t

2τ̃

)
Fα. (7)

The above equation share the same definitions of (3) for the
tilded distribution function, f̃α and the relaxation time (τ̃ ).
The rule of computing the macroscopic fields and the viscosity
ν = τ c2

s = (τ̃ − �t/2)c2
s are exactly the same as for the ST

algorithm. Correspondingly, the term 1 − �t
2τ̃

in front of the
forcing has been introduced a posteriori to keep the same
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hydrodynamic limit. However, one can immediately note the
advected field in the equation is not simply a distribution
function but a rather a complex term involving also the
equilibrium distribution and the forcing. The main advantage
of this approach is that a stability analysis under the same
hypothesis mentioned above (neglecting advection, forcing
and time dependencies in the equilibrium function) shows
now that every time step length �t is stable. However, we
find that the situation reached so far is not yet satisfactory.
From simple numerical tests we observe that even with this

discretization scheme the time-step size is still restricted by the
relaxation time, particularly for small relaxation time values.
The origin of this still limited stability of the scheme lies now
in the advection term. For this reason a further refinement
is proposed. We set it into place by applying the so-called
Heun predictor-corrector scheme to the advection term. In
other words we use the calculation of the population based on
(7), now called f̃ ∗, as an intermediate value for constructing an
explicit trapezoidal integration rule applied to the advection:

f̃ (t+�t)
α = f̃α − �t

Sj

V
cα · nj

[
f̃ ∗

α + �t
2τ̃

(
f̃

eq∗
α − f̃ ∗

α

) + �t
2 F ∗

α

]
j
+ [

f̃α + �t
2τ̃

(
f̃

eq
α − f̃α

) + �t
2 Fα

]
j

2

+ �t

τ̃

(
f̃ eq

α − f̃α

) + �t

(
1 − �t

2τ̃

)
Fα, (8)

where F ∗
α indicates the LB forcing term computed from

f̃ ∗. This scheme enjoys greater stability at the additional
computational price of a second evaluation of the advection
term. In order to make this observations more quantitative we
should first specify the way in which the flux terms [. . .]j are
computed. Indeed, the exact stability properties of the method
depends upon the implementation of the advection term, that
we discuss in the following section.

3. Approximation of the advection term

There exist several ways to estimate the nonlocal term
[fα]j and each one can be characterised by a spatial order of
accuracy. The complexity of such an estimation also depends
on the grid characteristics. Even for structured but irregular
grids a high-order estimation of [fα]j becomes expensive in
computation terms. In order to simplify such a problem, we
limit the following discussion to the case of structured regular
grids, that is to say, to the case where the nodes lie on lines.
This is the case, for instance, of a nonuniform Cartesian grid
(the typical case of wall refinement), but it also apply to a
uniformly skewed nonorthogonal grids.

It has been long known that fluxes in advection equations
are better approximated by upwind schemes, which are
interpolation schemes biased in the direction determined by
the sign of the characteristic speeds (the set of cα in our
case). At the lowest order of accuracy, and easiest level of
implementation, there exists the first-order upwind scheme,
increasing the refinement leads to linear interpolation schemes
or even to more refined quadratic schemes (which are of
third order of spatial accuracy). While low-order schemes
introduce artificial numerical dissipations, higher-order ones
lead to spurious oscillations, especially evident near the
boundaries. This is also true in the present cell-centered FV
implementation, in particular zero-order or linear upwind
interpolation schemes leads to inaccurate results. Even a
cell-centered symmetric scheme, which here does not display
extra dissipation, produces inaccurate results in the presence
of boundaries. Empirically, we find that the quadratic upstream
interpolation, known as the QUICK method [47], is the

simplest one to give accurate results both in open (i.e., periodic)
and bounded domains.

According to this approach, on each surface Sj at position,
say xSj

, [fα]j is approximated via a combination of the value of
fα in the two nodes bracketing the surface (denoted with x and
x+) and a third node that is located upstream with respect to
the direction of the projection of ĉα on n̂j (denoted either x++
or x−). The interpolant function is a parabola a + b ξ + c ξ 2,
with ξ the linear coordinate spanning on the line connecting
the nodes [see sketch in Fig. 1(b)]. This leads to:

[fα(xSj
)]j = (1 − γ1 + γ2)fα(x) + γ1 fα(x+)

− γ2 fα(x−) |α: ĉα ·n̂j >0 +(1 − γ3 + γ4)fα(x+)

+ γ3 fα(x) − γ4 fi(x++) |α: ĉα ·n̂j <0 , (9)

where the γ1,2,3,4 are four coefficients, that shall be evaluated
and/or stored for each surface of the control volumes.

4. Force term

Finally, a brief remark on the forcing term Fα in the
LB equation. The simplest way to implement it is by the
expression:

Fα = wα

cα · ρ a
c2
s

, (10)

where the summation over index α is not implied, wα is a
lattice-dependent weight, and the product ρa represents the
force per unit volume in physical space (for example in case
of a gravitational external field a = g). The above expression
satisfies the conditions �αFα = 0 and �αcαFα = ρ a, which
are required for Eq. (1) to give the correct macroscopic effect
of a body force term. However, when the body force is time and
space dependent and Eq. (1) is discretized in space and time,
such as in (3), the above expression needs to be refined in order
to remove spurious discretization terms that would otherwise
appear in the macroscopic limit. The corrected expression, first
proposed by Guo et al. [36], is

Fα = wα

(
cα − u

c2
s

+ (cα · u) cα

c4
s

)
ρ a (11)
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FIG. 2. Illustration of the finite-volume arrangement for the
implementation of the double-reflection boundary conditions.

with an overall multiplicative factor 1 − �t/(2τ ) when the
distribution functions f̃α are evolved in place of fα . Note
that accordingly (by employing the relation between f̃α and
ρu and ρ given in Sec. II A) one gets the fluid velocity as
u = �αcαf̃α/�αf̃α + �t

2 a.

5. Boundary conditions

In the following we consider the implementation of two
types of boundary conditions (BC): (i) no-slip walls and
(ii) fixed density (or equivalently pressure) boundaries. The
physical domain boundaries lie on the faces of the external
control volumes. Similarly to the bounce-back approach for
the streaming LB algorithm, we introduce in-wall ghost cells.
However, in the QUICK treatment of the advection two ghost
cells are needed instead of one. The ghosts cells are located
in wall and have centers at position mirroring the first and
second nodes in the fluid domain, as illustrated in Fig. 2.
Let us suppose that the quantity to be advected is fα and
that the boundary condition is to be imposed on the S cell
surface, whose center is at xS . For simplicity we assume
that S lies along the plane (y,z) perpendicular to x, with
the x axis pointing inward (i.e., in the fluid bulk direction).
Consequently, the first two nodes in the fluid domain are
located at position x1 = xS + �x1/2 and x2 = xS + �x1 +
�x2/2, where �x1 and �x2 represents the linear size of the two
first discretization volumes. Accordingly, the ghosts cells are at
positions x−1 = xS − �x1/2 and x−2 = xS − �x1 − �x2/2.
A no-slip boundary condition requires u(xS) = 0, while the
density at ρ(xS) is free to take any arbitrary value. This
corresponds to the constraint �αcαfα(xs) = 0. The simplest
way (but not the only one) to enforce it, is to set the in-wall
nodes as the following:

fα(x−1) = finv(α)(x1),

fα(x−2) = finv(α)(x2), (12)

where inv(α) is an integer valued function that selects the
population moving along the opposite direction with respect
to cα . We have verified that such a choice does not introduce
artificial fluctuations at the boundary, that would quickly
generates instabilities. This implementation of BC, which we
dub double reflection, has a first order of accuracy in space (it
does not implement the quadratic interpolation) and therefore
it leaves room for further improvements.

If instead we are interested to impose a density value
at the border, say ρS = �αfα(xS), we need to resort to an
extrapolation strategy. We proceed as follows: first, the density
value ρ(x−1) is linearly extrapolated from the values ρS and
ρ(x1), similarly ρ(x−2) is derived from ρS and ρ(x2). Second,

we assign the in-wall distribution functions as follows:

fα(x−1) = ρ(x−1)

ρ(x1)
fα(x1),

fα(x−2) = ρ(x−2)

ρ(x2)
fα(x2). (13)

Also the above choice, a rescaling of the bulk distribution
functions, is not the only viable way for the implementation of
fixed density BC, however, it is one that has been shown to not
introduce wall disturbances. As a final remark, we shall note
that in the implementation of (8) the boundary conditions need
not be implemented on the redefined distribution function f̃α ,
but rather on the original fα = f̃α + �t

2τ̃
(f̃ eq

α − f̃α) + �t
2 Fα .

The algorithm presentation given so far is independent of
the particular microscopic velocity lattice topology. In the
present work and for the accuracy study presented in the
reminder of this manuscript we make the choice to always use
the so-called D3Q19 lattice, which is a standard option for
three-dimensional LB simulations and reduces to the D2Q9
lattice for two-dimensional flow problems [1].

III. ACCURACY TESTS

In this section we address the accuracy of the present LB
FV algorithm and we compare it with the ST algorithm. In
particular we approach the following questions: (i) To what
degree does the FV algorithm correctly describe the dynamics
of a low Reynolds number viscous flow? What is its order
of spatial accuracy and how does it compare with ST? (ii) Is
there any optimal usage of the FV algorithm in order to take
advantage of the grid refinement and obtaining highly accurate
solutions?

A. Viscosity evaluation

A simulation is performed on a physical domain of size,
[Lx,Ly,Lz] = [1,64,1]. For this test, the number of grid nodes
per direction (indicated with Nx,y,z) is also the same. The
flow is initialized with a one-dimensional sinusoidal velocity
amplitude profile of the form

u(x,y,z) = [ux(y),uy,uz] =
[
A sin

(
2π y

Ly

)
,0,0

]
(14)

and it is left to decay in time. We monitor the behavior of
the total kinetic energy in time, ktot(t), which is expected to
decrease exponentially as ktot(t) = 1

4A2L2
y e−2(2π/Ly )2ν t , with

ν representing the fluid kinematic viscosity. The reproduced
value of ν can be deduced from a least-square fit of ktot(t) and
then compared to the theoretically expected value ν = τ c2

s =
(τ̃ − �t/2)c2

s . The degree of accuracy of the FV method
measured in such a way is compared with the ST method
and reported in Fig. 3. While it is known and expected that
accuracy carries some form of dependency with the relaxation
time τ , we observe that both FV and ST methods reach the
maximal accuracy (minimal value of the error denoted Eτ )
around τ = 0.5. Such behavior has been already reported in
the works of Holdych et al. [48] and Kruger et al. [49], however
ST in that very same case performs better by a factor 10.
Moreover, in general the ST error grows less than the FV one
for all τ < 0.5.
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FIG. 3. Relative error of measured kinematic viscosity νnum with
respect to the expected one νth = τ c2

s as a function of the relaxation
time τ . In the finite-volume case �t = 1 for τ � 0.13 (marked with
a vertical line) and �t = 0.1 for τ < 0.13, while in the Streaming
case �t = 1 always. In the inset, the absolute value of the same error
in log-log scale.

B. Steady Poiseuille flow

Our second test addresses the case of a simple bounded flow
in the same spatial domain as above, [Lx,Ly,Lz] = [1,64,1].
The flow is initiated with a parabolic Poiseuille velocity
profile Ux(y) = 4 UmaxL

−2
y y (Ly − y) corresponding to a

Reynolds number Re = LyUmax/ν = 10. A uniform volume
forcing along the x direction and no-slip boundary conditions
at y = 0 and y = Ly positions are imposed, while periodicity
is implemented along the horizontal direction, x. The forcing
is implemented via a constant acceleration ax = 4

L2
y

ν
ρ

U using

Eq. (11). The simulated flow profile [denoted with ux (y)] keeps
the original theoretical shape Ux(y) with tiny adjustments
depending on the method. In order to compare these two
functions we use the relative difference ‖ux − U‖2/‖U‖2

where ‖ . . . ‖2 denotes the L2 norm, which in its discretized
form is computed as:

‖f (x)‖2 =
(∫

L

f (x)2dx

)1/2

= (
�N

i=1f
2
i �xi

)1/2
. (15)

In Fig. 4, we show the L2 relative difference results at varying
the physical domain size in y direction, i.e., changing Ly and
at the same time Ny (or in other words keeping fixed the
grid spacing �x ≡ Ly/Ny = 1). Note that in this test we are
actually varying the maximal Mach, Ma = Umax/cs , number
of the flow. Since the LB equation is O(Ma2) accurate [1],
the figure proves that both the FV and ST methods posses
the same level of incompressibility accuracy. However, we
can clearly notice that ST in this condition is still on average
more accurate by a factor ∼8–10 as compared to FV. Such
a difference is inherited from the behavior at τ = 0.5 of the
viscosity accuracy highlighted in the previous test.

As a further step, we address the effect of a stretched spatial
grid on the overall accuracy of the Poiseuille flow simulation.
To this end we implement three types of commonly used wall-
normal stretched grids. The y-coordinate value of the cell
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FIG. 4. Relative error on the Re = 10 velocity Poiseuille flow
profile at changing the number of grid points (N ) and keeping fixed
the grid spacing �x ≡ Ly/Ny = 1. Proof that FV has same order
of incompressibility accuracy of ST but is less accurate of a factor
8 to 10.

volume centres (or simply nodes) is given by

yi = ξi+1 + ξi

2
with 0 � i < Ny,

where the ξi , the coordinates at the volume boundaries, are
defined as
Chebychev nodes:

ξi = L

2

(
1 − cos

[
(i − 1/2)π

N

])

where 0 � i � N (16)

hyperbolic tangent:

ξi = L

2

(
1 + 1

s1
tanh

[(
2

N
i − 1

)
atanh(s1)

])

where 0 � i � N (17)

hyperbolic sine:

ξi =
⎧⎨
⎩

(
L/2

sinh(s2/2)

)
sinh

(
s2 i
N

)
, if 0 � i � N

2

L − (
L/2

sinh(s2/2)

)
sinh

(
s2 (N−i)

N

)
, if

(
N
2 + 1

)
� i � N.

(18)

L and N denote here, respectively, the physical domain size
and the grid size (the subscript index y have been dropped
for brevity), and s1,s2 are stretching factors (we have chosen
s1 = 0.98 and s2 = 6.5). We then perform the same, Re = 10,
Poiseuille flow simulation with the above three different grid
arrangements with the FV method, and for completeness we
also include the results obtained on a uniform grid by both the
FV and the ST methods. In order to have a better understanding
on the accuracy of the methods, this time we change the
number of grid points (N ) while keeping fixed the physical
domain size L = 64. In other words, what we vary here is the
average grid spacing 〈�x〉 = L/N .

Figure 5 reports the results of the described test. Three
sources of inaccuracy lead to the overall error behavior
observed here. The asymptotic behaviors are respectively
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FIG. 5. Relative error on the Re = 10 velocity Poiseuille flow
profile at changing the number of grid points (N ) and keeping fixed
the domain size L = 64. Data are traced for FV with uniform grid,
with Chebychev points and hyperbolic tangent grid refinement, and
finally for the ST algorithm with uniform grid.

dominated by the spatial accuracy error E�x and by the
finite Mach correction EMa, while the transition between these
two regimes is also affected by the relaxation time error
Eτ . At small resolutions (small values of N or equivalently,
values of �x > 1 in our numerical experiment) the spatial
discretization error of ST method goes as E�x ∼ O(�x2)
while the one of the uniform-grid FV method behaves roughly
as E�x ∼ O(�x3) (due to the QUICK flux computation).
In the opposite limit (large N , or equivalently �x < 1) the
compressibility correction comes into play. This effect that
goes as EMa ∼ O(Ma2) has a constant behavior, both in the ST
and FV method, because in this numerical experiment U is kept
fixed. This explains the observed plateau in the same figure.
At the crossover between the two regimes, around the value
�x 	 1 it also happens that �t 	 2τ and this corresponds to
the range of best accuracy on the viscosity term (minimal Eτ )
(same as in Fig. 3). In conclusion, there exists an optimum
value of N linked to the relaxation time error Eτ for which
the error is minimum; this happens both for the FV and ST
algorithms, both on uniform and on stretched grids. The ST
method (which can only be based on a uniform grid) performs
better than the uniform-grid FV implementation for almost
all the values of N , furthermore, its absolute accuracy is the
highest. However, the situation becomes interesting when the
nonuniform grid FV method is employed. There we notice
that one can get the same accuracy of the ST algorithm but
with a smaller amount of grid points. For instance, in the case
of the hyberbolic-tangent grid with N = 11 one can obtain
the same accuracy as the ST algorithm with N 	 46. This
leads to a saving in memory and potentially in computational
costs. In conclusion, the reduction in memory occupation at
comparable accuracy seems to be the main benefit one can get
from employing the wall-refined FV method rather than the
standard ST.

However, a situation that often occurs in the simulation
practice is that one wants to use all the available memory of
a computer and using an algorithm with the best possible
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FIG. 6. Relative error on the Re = 10 velocity Poiseuille flow
profile at changing simultaneously the domain size L and the forcing
amplitude, but keeping constant the number of grid points N = 64.
Here the data are plotted versus the average grid spacing 〈�x〉 =
L/N . Data are traced for FV with uniform grid, with Chebychev
points, hyperbolic tangent, and hyperbolic sine grid refinement. The
corresponding relative error for the ST algorithm with uniform grid
is also traced.

accuracy. The interesting question is then: How can we
increase the accuracy at comparable memory costs? Let us
imagine one wants to perform again the same Poiseuille
simulation at Re = 10 but wants to reach a higher level of
accuracy (with accuracy defined in the sense of L2 norm).
One new possibility is to adjust L and Umax in a way that the
averaged grid spacing 〈�x〉 = L/N , with N left unchanged,
is the one that offers the best accuracy performance for a given
grid. For the above case of the hyberbolic-tangent grid this
would be around 〈�x〉 = L/N = 64/11 = 5.8. The result of
this novel Poiseuille flow test is shown in Fig. 6. We can see
that when N = 64 the best choice is to adopt a grid with tanh
or Chebychev spacing and with 〈�x〉 much larger than unit.
The optimum is here reached when 〈�x〉 	 20, this produce
an increase in accuracy of a factor greater than 100 compared
to the case of a simulation with the ST algorithm (and this
independently of the value of 〈�x〉 chosen for the ST method).

IV. PERFORMANCE EVALUATION

From a computational point of view the FV algorithm has
more operations per time step than the ST algorithm. This
comes from the fact that while the streaming process can be
implemented simply as a shift in memory the computation
of the flux term in FV involves many arithmetic operations.
According to our measurement the present FV algorithm is
about 8–10 times computationally more expensive than ST
algorithm per time step. However, as discussed in Sec. II B 2,
differently from the ST algorithm, in the FV the time step �t is
a function of τ . The functional relation linking the maximum
time step to τ for the proposed time discretizations can be
measured and it is reported in Fig. 7. We observe that the
method based on (8), semi-implicit integration in time of the
collision term plus a trapezoidal correction for the advection, is
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flow by using Eq. (6) (FV Euler), Eq. (7) (FV semi-implicit), and
Eq. (8) (FV semi-implicit + Heun). The very same result is obtained
in the steady Poiseuille flow at Re = 10. The horizontal dashed
line represents the standard choice of the time step for the ST
implementation, i.e., �t = 1 independently of τ .

superior to the others. In particular, for this method �tmax > 1
for τ > 1/8, that is to say that the time step can be larger
than the one used in the ST method (which is bounded to
the value 1 for �x = 1). The most advantageous case occurs
for τ ∼ 1/2—which as we have shown above is also the best
condition for accuracy—in that case �tmax ∼ 1.7. This reduces
the ratio of the computational cost FV/ST to a factor 5–6. We
note that all this reasoning did not take into account the effect
of nonuniform grids. As we have seen for the simple Poiseuille
flow this brings further saving in terms of computational costs
as compared to the ST method.

Finally, we shall mention that memory occupation is also
part of the performance of an algorithm: According to our
estimate FV in the present formulation needs twice more
memory allocation as compared to ST.

V. BENCHMARK IN A COMPLEX FLOW: HIGH
RAYLEIGH NUMBER THERMAL CONVECTION

Several LB finite-volume methods proposed in the past
have been tested just on laminar flows as proof of principle of
the proposed algorithms. Few exceptions exist in the literature
in which the FV method have been benchmarked on much
more complex, three-dimensional, developed turbulent flows.
One of such exceptions is the model proposed by Amati et al.
[37], which was probed in a three-dimensional plane turbulent
channel flow. In such a case, however, the grid wall refinement
was based on a very simple structure of halved-grid spacing
near the walls and the accuracy of the method turned out to
be not satisfactory (the computed mean-velocity profile could
not properly reproduce the log-law of the wall).

In this section the proposed lattice Boltzmann FV algorithm
is tested to simulate a complex three-dimensional statistically
steady turbulent flow. Our choice is here for the well-studied
flow in the Rayleigh-Bénard (RB) cell, the prototype of
a thermal convection driven system [50]. The RB setup
considered in this study deals with a cubic domain (of

height H and equal lateral sizes L); it has periodic BC
on the lateral walls, while on the horizontal walls no-slip
and isothermal conditions are imposed. In this system, the
fluid is heated from below and as such (when the heating
is large enough and a small perturbation is introduced in
the system) an instability arises and brings the system into
convective condition. The dimensionless control parameters
are the Rayleigh (Ra) and Prandtl (Pr) numbers and aspect ratio
AR = L/H [50].

For the LB simulation we use a double population approach
[18]. This means that beside Eq. (1) we integrate an analogous
equation for the distributions gα:

∂gα

∂t
+ cα · ∇gα = 1

τg

(
geq

α − gα

)
α = 0, . . . ,Npop (19)

with equilibrium function g
eq
α = (T/ρ) f

eq
α where the macro-

scopic temperature is computed as T = �αgα and the thermal
diffusivity corresponds to κ = τg c2

s . Furthermore, in the
equation for fα the forcing term Fα is assigned in order to
model the buoyancy force as represented in the Boussinesq
approximation. In physical space the added buoyant acceler-
ation has the form a = −β(T − T0)g where β is the volume
thermal expansion coefficient and T0 is a reference temperature
taken here as the mean temperature between the ones at the
top and bottom plates.

In order to validate the double population approach also for
the FV method, we first address a rather elementary simulation
in steady convective laminar conditions, adapting it from a test
case already conducted for the ST algorithm in Ref. [18]. The
system is two-dimensional (2D) with control parameters fixed
at Ra = 104, Pr = 1, and AR = 2.02. The fluid is initially
at rest (u = 0), while the temperature field is initialized
by a linear conductive profile, Tc(z) = −�T (z/H + 1/2),
plus a small perturbation [of order O(10−2)�T ] breaking
the left-right symmetry. Given the weak, but not negligible,
compressibility of the simulated flow the initial density
stratification due to gravity should be also taken into account.
This avoids the generation of pressure waves at the startup
of the simulation. We do it via the barometric equation, this
leads to ρ(z) = ρ0 exp [−c−2

s βg
∫ z

0 Tc(z′)dz′], where ρ0 is a
reference density value taken at temperature T0. Note that in a
2D system, in order not to suppress the linear hydrodynamic
instability, the cell aspect ratio (AR) must be slightly larger
than 2π/kc (where kc = 3.117 is the wave vector of the
most unstable linear mode) [18]. Indeed, when AR = 2.02
the initial perturbation produce an immediate kinetic energy
growth and a steady convective flow pattern establishes. The
dimensionless heat flux [or Nusselt number (Nu)] goes from
the conductive unit value up to around Nu 	 2.66, see Ref.
[51]. In Fig. 8 we report the results of simulations conducted
with the two LB algorithms. We can observe [Fig. 8(a)] that the
temporal dynamics of the dimensionless global heat flux, i.e.,
the Nusselt number Nu(t), is identical for the two simulations,
furthermore they both agree with the analytical asymptotic
value given by Clever and Busse [51]. A grid convergence
study, performed by increasing the number of grid points of
the same factor in each Cartesian direction, shows that the
absolute error on Nusselt number as compared to the Clever
and Busse value reaches the second decimal digit [inset of
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FIG. 8. Comparison of streaming (ST) and finite-volume (FV) LB
algorithms in a simulation of the Rayleigh-Bénard system in steady
convective state. The system is two-dimensional, and characterised
by the control parameters value Ra = 104, Pr = 1, and AR = 2.02.
(a) Temporal dynamics of dimensionless global heat flux [Nusselt
number Nu(t)] as a function of time, in dissipative time units tD =
H 2/κ . The Nu steady state value is compared to a value linearly
interpolated from Clever and Busse calculations [51]. In the inset, the
grid convergence study displaying the absolute error of the measured
Nusselt number (Nu) with respect to Clever and Busse (Nuth) vs.

number of grid points in the y direction of a 2D grid. (b) Comparison
of temperature isolines in the asymptotic steady state. Levels are taken
at values Tn = T0 ± n �T/8, with n = 0,1,2,3.

Fig. 8(a)]. The isocontours lines for the temperature field
[Fig. 8(b)] further display the excellent agreement between
the two LB algorithms. The test exhibits not only the good
quality of the present FV method but also its consistency with
the standard ST method also for transient (i.e., time-dependent)
dynamics.

We then move forward to a more complex case. In
particular, we compare our results with the ones obtained by
Kunnen et al. [52] for a three-dimensional (3D) simulation of
a RB system (Fig. 9) characterized by: Ra = 2.5×106, Pr = 1,
and AR = 2 (see also Ref. [53]). In this condition the 3D system
dynamics is already highly chaotic (or moderately turbulent).
In Ref. [52] the authors employed a direct numerical simulation

FIG. 9. Illustration of the three-dimensional Rayleigh-Bénard
system.

based on a staggered finite-difference discretization of the
Navier-Stokes–Boussinesq equation system. The grid they
adopted has size (Nx,Ny,Nz) = (128,128,64), it is uniform
in the horizontal directions and has a sinh-type refinement [the
same as in (16)] in the vertical direction. Our benchmark is
as follows: we perform two series of simulations, one with
the ST method and the other with the FV approach, the
dimensionless parameters for the two cases are the same as
the ones of Kunnen et al., as well as the number of grid
points per direction. However, while the ST uses a uniform
grid in the FV case we use exactly the same grid as the
one adopted in the finite-difference simulation [52]. Table I
reports the numerical values of the parameters adopted for
the two LB simulations. Note that the large-scale velocity
U , which is roughly proportional to the so-called free-fall
velocity, i.e., U ∼ √

βg�T H is the same in both simulations.
It is a good practice in LB simulations to always keep control
of the large-scale velocity in order to prevent it to take too
large values: it is worth reminding that in order to reproduce
the incompressible fluid dynamics the condition U � 1 is
required (a commonly accepted rule of thumb in LB practice
is U 	 0.1). In order to reach a good convergence of the
statistical observables in the system the RB simulations are
carried on for a total time (ttot), which spans over several
large-eddy turnover times (T ). We estimate that ttot 	 12 T
for both FV and ST simulations, with T computed from the
zero-crossing time value of the autocorrelation function of the
total kinetic energy.

In Figs. 10 and 11 we show a comparison of the verti-
cal mean temperature profile (Tm) (averaged over horizon-
tal planes and time) and of the vertical root-mean-square

TABLE I. Parameter values used for the RB simulations at
Ra = 2.5×106, Pr = 1, and AR = 2: height (H ) and width (L)
of the cell, time step amplitude �t , fluid (τ ) and temperature
(τg) relaxation times, temperature gap across the cell �T , thermal
expansion coefficient value β, and intensity of gravity g. ttot is the
total simulation time in numerical units.

H L �t τ τg �T β g ttot

FV 640 1280 4 0.5 0.5 2 1.325×10−4 1 1.28×106

ST 64 128 1 0.05 0.05 2 1.325×10−3 1 2.48×105
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temperature (Trms) profile, which are defined as follows:

Tm(z) = 1

ttot L2

∫ ttot

0

∫ L

0

∫ L

0
T (x,y,z,t) dx dy dt (20)

Trms(z)

=
(

1

ttotL2

∫ ttot

0

∫ L

0

∫ L

0
[T (x,y,z,t) − Tm(z)]2 dx dy dt

)1/2

.

(21)

We find good agreement among all the three types of
simulations. Furthermore, we observe that when the thickness
of the boundary layer λT is defined by the so-called slope
definition, λT ≡ �T (2 ∂zTm(z)|z=0)−1 (see Fig. 10) both the
Kunnen et al. data and the FV ones have about ten points
in the thermal boundary layer (BL), while the ST despite its
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and horizontal planes, as a function of the cell height z, and close-up
view around the BL peak value (inset).

remarkable agreement with the other methods, has only three
points in the BL. Small systematic differences can be seen
on the vertical profile of the mean (turbulent) kinetic energy,
km(z) = t−1

tot L−2
∫ ttot

0

∫ L

0

∫ L

0
1
2 u2 dx dy dt , reported in Fig. 12.

km(z) has a slower rate of convergence than the temperature
variance, this is the reason why small residual statistical
discrepancies remain present here despite of the large number
of turnover times of the simulation. In order to appreciate
more sensible differences between the FV and ST simulations,
one has to address either observables involving temperature-
velocity correlation or small-scale quantities, which are more
sensitive to the spatial resolution of the mesh, particularly
close to the walls. For this reason in Fig. 13 we compare
the time-averaged quota-dependent Nusselt number Nu(z) =
κ∂z〈T 〉 + 〈uzT 〉/(κ�/H ) (where for short 〈. . .〉 denotes time
and space horizontal averages) and the so-called Bolgiano
length LB(z) = (β g)−3/2〈εu〉5/4〈εT 〉−3/4 (where εu and εT are
respectively the velocity and temperature dissipation rates)
[54]. As far as the Nusselt number is concerned, despite a
very close mean value, we see important differences at the
wall. This is due to the combined effect of the boundary
conditions and the gradient computations in postprocessing
the data. The temperature gradient computations involved a
second-order central finite difference scheme at the bulk nodes
and a second-order forward-backward finite difference scheme
at the boundary nodes. These schemes have been applied to
both FV and ST algorithms. The FV method exhibits wall
oscillations, which are a factor 10 smaller than the ones seen
for the ST method, making more reliable the total heat flux
estimate. Furthermore, in the LB(z) measure we observe near
a 50% discrepancy at the wall and a smaller but non-negligible
difference in the bulk of the cell. Clearly a wall-clustered grid
is needed to resolve observables built on sharp temperature
and velocity gradients.

We now would like to address the matter of determining
which LB method is computationally more convenient. The
choice to have the same U in the FV and ST simulations
has an implication on the determination of the large-eddy
turnover time and therefore the total number of time steps
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and horizontal planes, as a function of the cell height z. Note the
discrepancies both at the wall and in the cell bulk.

needed to perform a simulation of equivalent physical time
span. The reasoning is as follows: the large turnover time goes
as T ∼ H/U therefore on the total number of time steps M for
a simulation that should span a time T scale as M ∼ H/�t . It
follows that the FV simulation will need in this case a number
of time steps larger by a factor 10/4 as compared to the ST
one (see Table I). Since the FV is more expensive than ST by a
factor 8–10 per time step, we get that the added computational
cost of the FV method is up to 	25 larger than the ST method.
However, such an increase in computational cost shall be
properly weighted by the enhancement in the spatial resolution
due to the wall-stretched grid. A univocal guideline is not
available in this context. A commonly employed criterion in
the numerics of bounded flows is to count the number of grid
nodes in the BL (another, although less restrictive, rule would
be to take into account the distance of the first collocation
point from the wall). Here, if we adopt such a criterion the
ratio is in favor of the FV method over ST by a factor 10/3,
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FIG. 14. Mean vertical temperature profile, Tm(z), close to the
upper and lower plates in the Rayleigh-Bénard system at Ra = 2.5 ×
106 (◦), Ra = 108 (×), and Ra = 109 (�). The Prandl number is
Pr = 1 and aspect ratio AR = 2. The thickness of slope boundary
layers is indicated by the dotted lines. Results were obtained by the
FV algorithm at resolution 64 × 1282, 1283, and 2563, respectively.

that means that we need approximately 3–4 more nodes in
the ST simulation. However, if we want to also keep the same
aspect ratio of the simulation domain, and since ST is bounded
to cubic grids, such an increase of the resolution shall be
applied to every Cartesian direction, which makes the FV grid
advantage greater by a factor of (10/3)3 	 37. In conclusion,
in a ST RB simulation we need 37 times more computation
nodes to perform a simulation with comparable resolution of
the FV method. By combining the above estimates, we see that
a simulation of same physical time span and same boundary
layer resolution is about 1 − 25/37 ∼ 33% less expensive for
the FV method than the ST one. In summary, even if the cost
per unit physical time in a FV simulation is higher than ST,
when a criterion for the minimal spatial resolution (particularly
near walls or obstacles and in a three-dimensional geometry)
is chosen, the FV method becomes advantageous.

Finally, we have performed RB simulations at increasingly
higher Ra numbers (Ra = 108,109). All these simulations have
around ten grid points in the thermal BL as shown in Fig. 14. No
numerical instabilities were noticeable as Ra was increased,
demonstrating that the FV algorithm can deal with turbulence
at high Rayleigh number conditions.

VI. CONCLUSIONS

In this paper we have presented a finite-volume algorithm
for the lattice Boltzmann equation. The method has been
validated through a systematic comparison with the standard
streaming LB approach, by means of test case simulations in
laminar as well as in unsteady and turbulent flows with heat
transfer. The tests have shown that the FV has the same order
of incompressibility accuracy as the ST algorithm and an
improved spatial accuracy (third compared to second order).
It has, however, a much more elevated computational cost that
we estimate to be around 8–10 times per time step. One notable
advantage of the FV method is the possibility to adopt stretched
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rectilinear grids, which makes it suitable for the simulation
of turbulent bounded flows. Taking this into account, i.e.,
taking into consideration (for instance) the minimal number
of collocation points required in a boundary layer for a proper
simulation, the FV algorithm surpasses the ST method.

A number of improvements can still be made on the
proposed algorithm. First, the boundary conditions can be
improved. We have noticed that in strongly sheared flows,
such as channel flow turbulence, some spurious oscillations
at the boundaries can destabilize the simulations. Second,
in stretched Cartesian grids the number of interpolant
coefficients to be stored is considerably more limited than
for other cases of structured grids. In the former case the
treatment of advection can be further optimized compared
to the one used in the present study, allowing for some extra
saving in computational costs.

The FV discretization proposed in this work builds on
the standard streaming algorithm, as a consequence the two
algorithms do not differ much. The major difference is of
course the way in which the advection is computed. However,

their strong resemblance may be useful in the development of
simulation codes that combine the two methods. Therefore,
one possible development of the present study is to set up
simulations that use the more efficient ST method in flow
domain regions where a fine grid is needed, and the FV method
in regions where a more coarse grid will suffice (among others,
a typical application could be the simulation of atmospheric
boundary layer with ST at ground level and FV on the upper
residual layer). This is a prospect that we plan to explore in a
future work.
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APPENDIX: MIXED SEMI-IMPLICIT FINITE-VOLUME LB SCHEME

In the following we briefly show how to derive the discretized form (7) from the finite-volume LB equation (5). First, the
discretization in time is applied by adopting a mixed approach: while for the collision and forcing terms a semi-implicit method
is used, for the advection a simple explicit Euler is implemented. This leads to the form:

f (t+�t)
α = f (t)

α − �t
Sj

V
cα · nj

[
f (t)

α

]
j
+ �t
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(
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Note that by bringing on the left-hand side all the terms to be evaluated at (t + �t):
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One now introduces the redefined distribution function f̃α = fα − �t
2τ

(f eq
α − fα + τFα). It shall be noted that, at equilibrium

condition, from the above definition we get f̃
eq
α = f

eq
α − �t

2 Fα , and therefore the relation can be easily inverted leading to

fα = f̃α + �t

2τ + �t

(
f̃ eq

α − f̃α

) + �t

2
Fα. (A3)

At this point the new relaxation time is introduced τ̃ = τ + �t
2 , and the equation can be written as
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The above equation coincides with (7), once the correction factor (1 − �t
2τ̃

) is applied to the force intensity Fα [36].
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