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Résumé :

Les copépodes planctoniques sont de petits crustacés qui présentent une motilité caractérisée par des

phases quiescientes alternées par des régimes de déplacements rapides, dits sauts, produits par des

puissants mouvements de natation. Le comportement de saut a été associé à une réaction de fuite à des

perturbations d’écoulement dues à de grands prédateurs (tels que des larves de poissons) ou à d’autres

dangers externes (par exemple une forte turbulence). A travers des travaux à la fois expérimentaux et

numériques, nous étudions comment un comportement de saut crée de la concentration préférentiel de

copépodes dans un environnement turbulent. Nous passons en revue les résultats les plus récents obtenus

par l’analyse d’un modèle numérique fondé sur l’approche lagrangienne. En outre, nous proposons une

extension d’un tel modèle discret au niveau de la population au moyen d’une description eulérienne

continue.

Abstract :

Planktonic copepods are small crustaceans that display a motility characterised by quiescient phases

alternated by regimes of fast displacements, dubbed jumps, produced by powerful swimming strokes.

The jump behaviour has been associated to a reaction of escape from flow disturbances due to large

predators (such as fish larvae) or other external dangers (e.g. strong turbulence). Through a combi-

ned experimental and numerical study, we investigate how the jumping behaviour creates small-scale

patchiness of copepods in a turbulent environment. We review the most recent results obtained by the

analysis an individual based numerical model built on the Lagrangian approach. Further, we propose

an extension of such a discrete model to the population level by means of a continuous Eulerian des-

cription.

Mots clefs : Hydrodynamic turbulence,Particle laden flows, Swimmers, Plank-
ton, Marine Ecology
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1 Introduction

Copepods are often described as the largest and most variegated group of crustaceans in the aquatic

environment [1]. They populate the oceans and river estuaries with a number density that can be as high

as thousands individuals per litre of water. Their typical body size ranges from half to few millimetres,

a length which is of the order of the dissipative scale of turbulence in the ocean (η) [2, 3]. Their body

mass density is very close to the one of the fluid (1mg/mm3) meaning that they are essentially neu-

trally buoyant [4]. Copepods possess an elongated body with few pairs of swimming legs, a tale and

two receptive antennas which allow them to feel the surrounding fluid flow via mechanoreceptive hairs,

called setae. Copepods can swim, their locomotion behaviour in water is characterized by the alterna-

tion of passive phases, where they are simply carried by the flow, and active phases where rapid strong

displacements (called jumps) are performed. Such jumps are often the result of an escape reaction from

flow perturbations. These perturbations can be produced by predators of larger size or by the fluctuations

which are omnipresent in the oceanic turbulent fluid flow. Despite the fact that copepods escape response

can be elicited by different types of stimuli, e.g., hydrodynamical, photic and chemical ones, they appears

to react almost always in the same manner : by performing a series of jumps. During the jumps copepod

velocity reaches very high values, leading to a large body-scale Reynolds number (Re ∼ 102−3), which

is much higher compared to the Reynolds number they have in their quiescent state (also called foraging

state) (Re ∼ 100−1)[5].

In 1999, Kiørboe et al. [6] and Kiørboe and Visser [7] performed series of experiments investigating the

effect of swimming motion on copepods in relation to mechanical stimuli imparted by the surrounding

flow. The outcome of their research was that copepods react to the shear deformation rate of the flow.

The threshold value of the deformation rate for copepod species Acartia tonsa with 1mm in length was

reported to be 0.4 s−1. However, sensitivity to strain rate (velocity gradient) was reported to be 0.025 s−1

by Woodson et al. [8, 9] by putting copepods species (Acartia tonsa and Temora longicornis) in a plane

jet flume apparatus which mimics ocean characteristics. Notice that the threshold value appears to be

copepod size dependent and is inversely proportional to copepod’s size [6, 7]. Even the fact that co-

pepods react to deformation rate is presently under discussion, recently Webster et al. [10] examined

the behavioural response of Acartia tonsa and Temora longicornis in turbulent vortex, and highlighted

a sensitivity to vorticity cues rather than shear deformation. Taking into account the intensity of the

deformation rate as a threshold reaction criterion, Kiørboe in his book [11] made a compilation of expe-

rimental results on a plot showing the behaviour of the threshold deformation rate as a function of size.

He identified two thresholds, the lower one corresponding to the regions in the flow where the ambient

level of turbulence is too small (where the flow does not fluctuate) and the high threshold is associated

to the predators or the fluctuations generated by turbulence. The present study will focus particularly on

the latter (high threshold value), and region of the flow characterised by high deformation rates will be

called alert regions. We conclude by mentioning that wide uncertainties still persist on the understanding

of the spatial direction taken by a copepod through a jump. Some authors [12, 13] have reported that

for a horizontally located stimuli, copepods tend to jump upward in a vertical plane, furthermore it is

evident from the experimental observations that copepods rarely jump backward. For a more complete

review about copepods (anatomy, locomotion, their interaction with the fluid) we refer to [14].

The goal of the present study is to propose a model system for copepods dynamics in turbulent flow

and to study its salient features. The model is based on experimental measurements available in the li-

terature [5, 15, 16, 17, 18, 19, 20] and on the ones which were performed in Laboratory of Oceanology
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and Geoscience (LOG) in France. The aim is to propose a model which mimics copepods locomotion

and characterizes the resulting dynamics in a flow. In section 2.1 the experimental setup is briefly ex-

plained. Then a model of copepod dynamics based on a Lagrangian approach (Lagrangian Copepod

model, LC) is introduced and its implementation on turbulent flows is briefly described is sections 2.2

and 2.3. The results of the LC model are summarized in section 3.1. Later on we discuss the possibility

to extend the individual based LC model to a population based model capable to describe the evolution

of the concentration of the copepods in a flow, section 3.2. This proceeding ends with conclusion and

perspectives.

2 Methods

2.1 Experiments

We studied copepod individuals from species Eurytemora affinis and Acartia tonsa coming from conti-

nuous cultures of these species maintained at LOG Laboratory in the period between May and June

2015. The aim of the experiments consisted in recording highly resolved copepods trajectories during

jump events in still water. Experimental setup consists of a small aquarium, 63× 53× 6mm3 in length,

height and depth respectively, more bi-dimensional as possible (6mm in depth). The aquarium was

equipped by two lateral light sources. Copepods were introduced once at a time and the light sources

are manually switched on and off in order to stimulate copepods. Due to the escape reaction to the light,

copepods jump and their trajectories are recorded for variable durations of few seconds up to 23 sec. The

recording of the copepod displacement in the x− y vertical plane was performed by high speed camera

(1000 frames/second). Notice that the frequency at which the lights was switched on and off, was much

lower than the jump frequency of copepods and it seemed not to affect the jump behaviour but only

their directions (since copepods are attracted by the visible light). Figure 1 illustrates the configuration

of the experimental devices together with a test snapshot from the camera. More information on the

experimental setup can be found in [14, 21]. A typical copepod velocity amplitude signal as a function

Figure 1 – (left) The experimental setup is composed of a rectangular aquarium filled with water, two

light sources (white areas next to the dark aquarium) and a high-speed (1kHz) camera. The copepods tra-

jectories in the vertical plane are extracted by means of a particle tracking velocimetry software (TEMA

Motion by Image Systems). (right) A typical frame from the experiment, the labels “Point #1,2" denote

the body of a copepod of estimated size 1.05 ± 0.05 mm.

of time, and of total duration of 15 sec, can be found in Fig. 2. A zoomed-in version on the interval

of [1 − 5] sec shows how the copepod escape reaction are initiated by a sharp spike and are followed
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by a decaying function (see the panel B of Fig. 2). The analysis of the probability density function of

copepods velocity intensity (|V |) suggests that the spread in such a quantity is limited. This allows to

make a graph in which all the jumps are time-shifted in such a way that their peaks overlap (Fig. 3). This

manner of looking at the data suggests the existence of a characteristic pattern in the evolution of the

velocity intensity during the jumps.
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Figure 2 – A) Copepod velocity intensity, |V | =
√

v2x + v2y , as a function of time for ∼ 15 s. B) The

same quantity now zoomed-in on time [1, 5]sec.
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Figure 3 – (left) Superposition of several jumps by a shift. Almost all of the jumps decay exponentially.

(Inset) The probability density function (PDF) of the jump intensity. (right) Global average shape of

copepod velocity intensity. Solid line : Fitted exponential function uJe
−t/τJ where uJ is the jump inten-

sity and τJ is the decaying time of the jump. Dashed line : Same fit with the addition of a noise velocity

offset.

An average performed over all the jump velocity tracks fits well with an exponential function : this is

illustrated for E. affinis in Fig. 3. One can then estimate the average copepod jump amplitude (a very

high intensity, uJ 83mm/s) and the jump decay time (very quick decay, τJ ≃ 8ms). We observe

also the presence of a drifting noise with a negligible amplitude (about 5mm/s) as compared to the

jump intensity of copepods. Due to its small intensity, we were unable to identify if the drift was due to

foraging motion of copepods or to other experimentally induced fluctuations.

The exponential decay of velocity can be linked to the hydrodynamic forces acting on copepods during

the jumps. In its most coarse description, the dynamics of copepods can be thought as the balance

between the acceleration imposed by a nearly instantaneous force, leading to the jump, and the fluid
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drag force acting on the body. Taking as a model the equation of a small material particle in fluid flows

[23] and retaining only the drag force, one can write down the following equation :

ẍ(t) =
1

τp
(u(t,x(t))− ẋ(t)) (1)

in the absence of an external fluid flow (u = 0) and with an initial condition ẋ(0) = uJ (produced by

the instantaneous jump force), the resulting velocity can be written as :

ẋ(τ) ∼= uJ e−τ/τp (2)

where τp is particle response time associated to the drag force. In case of a Stokes flow regime, it reads

τp = a2

3βν where a is copepod effective radius, ν is the kinematic viscosity and β =
3ρf

2ρp+ρf
represents

the density ratio, here ≃ 1. An evaluation of the maximal Reynolds number reached during a jump based

on the copepod size, i.e., Re = uJ 2a/ν leads here to Re ≃ 87 which is well beyond the Stokes regime.

Based on this observation, we are lead to associate the time τJ , the copepods’ jump decay time that we

extracted from the experiments, to an effective drag-related response time of the copepods.

2.2 Lagrangian copepod (LC) model system

The above presented experimental jump data analysis and available observations in the literature [5,

15, 16, 17, 18, 19, 20], can be exploited to introduce a simple model system of copepod’s swimming

behaviour. We use here a Lagrangian modelling approach, similar to the one adopted for the modelling

of a material particle laden in a flow. In this Lagrangian model, copepods are considered to be as rigid,

homogenous and neutrally buoyant particles which respond always in the same way to external flow

disturbances. Copepods in this model are advected by the flow like a perfect fluid tracer, except for the

time when a jump event takes place. It is further assumed that a mechanical signal with a single threshold

is the only stimuli that triggers the jumps. Any other activity induced by light, food, or chemistry (e.g.,

pheromones) are ignored here. Copepod-copepod interactions and also their mechanical feedback on the

surrounding flow are neglected. Drag is the only hydrodynamical force that is taken into account. The

Lagrangian copepod equation of motion, thus reads as follows :

ẋ(t) = u(x(t), t) + J(t, ti, te, γ̇,p) (3)

where u(x(t), t) is the velocity of the carrying fluid at time t and position x(t) and where J is an added

velocity term that describes the active behaviour (jump) of the copepod and has to be modelled. If it is

true that copepod’s jump velocity decays exponentially, we still need to define a jump spatial orientation

and one also has to define when the jump is triggered and when it ends. Here we introduce a set of

basic rules based on few schematic ideas such that (i) a copepod jumps when it is in alert region (region

where its shear rate is above a threshold, γ̇ > γ̇T ), (ii) it can not jump when it is already jumping and

(iii) the end of jump is after a prescribed time interval which we define to be when the jump velocity has

decreased one percent of the initial amplitude. These rules can be mathematically expressed as :

J(t, ti, te, γ̇,p) = H[γ̇(ti)− γ̇T ]H[te − t]uJ e
ti−t

τJ p(ti) (4)

where H[x] denotes the Heaviside step function, γ̇T is a threshold value of the shear rate, uJ and τJ are

the two characteristic parameters characterising the jump shape, its velocity amplitude (uJ ) and duration
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(τJ ) respectively and p represents the orientation vector. The initial and final time of a jump are defined

as :

ti = t if (γ̇(t) > γ̇T ) ∩ (t > te) (5)

te = ti + c τJ = ti + log(102) τJ (6)

and the duration of a jump is τw = te − ti and the strain rate is then defined as γ̇ =
√
2S : S where S

is the fluid deformation rate symmetric tensor as Sij = 1/2(∂iuj + ∂jui). The orientation of the jump

is determined by instantaneous copepod orientation at time ti, in other words it is p(t = ti) with the

copepod’s orientation dynamic given by the following general equation :

ṗ(t) = Ω · p(t). (7)

Here Ω is the fluid rotation rate antisymmetric tensor, defined as Ωij = 1/2(∂iuj − ∂jui). We observe

that this is a rather crude version of the equation for the rotation of a material particle. It assumes that

the particle is spherical, that the inertia of the copepods does not play any role, and finally that copepods

can not reorient themselves. Given the fact that copepods are non-spherical, α ≡ l/d is the aspect ratio

of copepods given by the ratio of length (l) to diameter (d), which is typically around 3 for Eurytemora

affinis, a more appropriate description can resort from Jeffery’s equation [24].

2.3 Coupling of LC model to a turbulent flow

We now want to address the question of the dynamics of copepods which are carried on by a flow and

more specifically their natural environment flow. The habitat of copepods is the fluid flow in the ocean

(or in river estuaries) which is most of the time in developed turbulent condition [3, 2]. For this reason, in

our study we generate a turbulent flow by means of a direct numerical simulation of the incompressible

Navier-Stokes equations based on a pseudo-spectral method. The simulated equations are,

∂tu+ u · ∇u = −∇p/ρf + ν∆u+ f , ∇ · u = 0, (8)

where u(t,x(t)) is the fluid velocity field, p is the pressure, ν is the kinematic viscosity, ρp is the fluid

density and f is a large scales forcing which allows to produce a statistically homogenous and isotropic

turbulent flow. The computational domain we use is a box of 1283 grid points which enables to reach a

turbulent intensity characterised by a Taylor-Reynolds number of Reλ ≈ 80. We refer to Table 1 for a

comparison between the typical ocean properties and the numerical values set in our simulation.

For the coupling of the Lagrangian copepod model to the Eulerian simulation of fluid-dynamics tur-

bulence we proceed as follows. First, we choose the dissipative scales of turbulence (η, uη, τη) as the

relevant scales for the problems at hand, and we perform a similarity analysis that allows to recast the

LC model in terms of three dimensionless control parameters : τJ/τη, uJ/uη and τηγ̇T . Second, such

parameters are chosen in the physically relevant ranges : uJ/uη ∈ [1, 400] and τηγ̇T ∈ [0, 4], whilst

τJ/τη = 10−2. Third, these parameters are assigned to independent groups (called families) of LC in-

dividuals with about 2.56× 105 particles per family. The simulations, Eulerian and Lagrangian one, are

performed simultaneously and with all the families at the same time. Note that this is possible because

LC particles do not interact with each other but are only one-way coupled to the fluid flow (see [21]

for extended details on the numerical implmentations). More details on the implementation of the LC

model in turbulent flows can be found in [14, 21].
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Parameter Unit Range Our simulations

ν m2s−1 ∼ 10−6 10−6

ǫ m2s−3 10−8 10−4 10−6

η m 3× 10−3 3× 10−4 10−3

τη s 10 0.1 1

uη ms−1 3× 10−4 3× 10−3 10−3

Reλ – O(102) 80

Table 1 – Reference properties of the ocean turbulent flow as from [3, 2]. ǫ is the mean turbulent energy

dissipation rate, η, τη and uη are the turbulence space, time and velocity dissipative scales. Reλ is the

Taylor-scale based Reynolds number. Their approximate range of variability is given together with the

reference values chosen for the similarity analysis in the present study.

3 Results

3.1 The LC model phenomenology

The aim of this section is to offer a concise overview of the results obtained so far by the study of the

LC model. We refer to [14] for a more complete description. First, the LC single-point velocity statis-

tics (probability density function of copepods velocity) displays a qualitative agreement with available

experimental observations of copepods in turbulence. Their statistics does not follow a Gaussian distri-

bution exhibited by fluid tracers and such a deviation depends both on the jump intensity and on jump

duration. Conversely, increasing the level of turbulence reduces the non-Gaussian effects. Similar trends

have been measured in recent experiments at ETH, Zurich by Michalec et al. [25]. Second, the LC mo-

del in turbulence leads to preferential concentration of copepods due to the escape reaction from regions

with high strain rate intensities. This is the most remarkable feature of the LC model since the clustering

mechanism displayed is due to the non-homogeneity in space while the model is isotropic, which is in

stark contrast with the clustering mechanism observed for motile algae given by the gyrotactic effect,

which is a non-isotropic effect of the gravity [26]. We further quantified the clustering of LC, via the

fractal dimension D2. We showed that D2 can be as low as ∼ 2.3 and that it critically depends on the

shear-rate sensitivity of the proposed LC model, in particular it exhibits a minimum in a narrow range

of shear-rate values [21]. The preferential concentration of these microorganisms is ecologically crucial

since this can directly affect many biological process which are typically determined by the individual

interaction or inter-species contact rate. For instance the formation of patches by an escape reaction, can

increase the reproduction of copepods due to the increase in contact rate with mates. However this might

have a negative effect and can increase the competition between microorganisms for food uptake.

Third, the encounter rate of copepods in a developed turbulent flow with intensity comparable to the one

found in copepods’ habitat is numerically investigated [22]. Our analysis shows that the encounter rate

for copepods of typical perception radius of ∼ η, where η is the dissipative scale of turbulence, can be

increased by a factor up to ∼ 102 compared to the one experienced by passively transported fluid tra-

cers. Furthermore, we address the effect of introducing in the LC model a minimal waiting time between

consecutive jumps. It is shown that any encounter-rate enhancement is lost if such a time goes beyond

the dissipative time-scale of turbulence, τη. Because typically in the ocean η ∼ 10−3 m and τη ∼ 1 s,

this provides stringent constraints on the turbulent-driven enhancement of encounter-rate due to a purely

mechanical induced escape reaction. A final notable result is that the particles orientational dynamics

has no effect on the PDF of velocity and on the correlation dimension of copepods. This negligible im-
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pact of orientation for the case examined here, suggests the possibility to formulate an accurate Eulerian

mean-field particle model based on the introduction of a space-dependent effective diffusivity. We now

focus on this in the following.

3.2 Towards a copepod population model system

The individual based description of copepods offered by the Lagrangian model, is suitable when addres-

sing questions about the single organism displacement in turbulence or questions about encounter rates

or accumulation of organisms. Such a description becomes non-viable in computational terms if the fo-

cus is on the behaviour of a large population which can occupy spatial domains larger than the integral

scale of the turbulent flow (roughly speaking above the meter scale). In the latter situation it would be

desirable to adopt a mean-field approach and to be able to describe the evolution of a continuous posi-

tive definite field accounting for the local population concentration. Such an approach, called in short

Eulerian, is more common in the oceanographic studies, where the involved scales go much beyond the

meter size and involve populations of millions of organisms. A notable example is the description of the

evolution of thin plankton layers formed in the upper-ocean, which extends till O(101−2)m below the

sea level. While rudimentary Eulerian model for the less mobile phytoplankton are already available,

the modelling of the zooplankton, due to its inherent high-motility, represents a more challenging task.

The goal of this section is to propose an Eulerian model system for the evolution of the concentration of

copepods that properly upscale the Lagrangian copepod (LC) model previously discussed.

In [21] we have observed that the shape of the particle, hence the orientation of jumps seems not to play

a major role in the resulting particle dynamics. In fact it only marginally affects the small scale clustering

as quantified by the correlation dimension D2. This justifies a modelling approach in which copepods

motility is parametrised in term of a diffusion coefficient. The starting equation to be considered for the

description of copepods concentration C is the advection-diffusion equation :

∂tC + u · ∇C = K∆C (9)

where C(t,x(t)) represents the fraction of individuals per unit volume, u is the advecting incompres-

sible fluid velocity field and K is a suitable effective diffusion coefficient. However, the diffusion term

needs to be examined in detail since it has to correctly model the copepod jump dynamics. Because

jumps are performed only in alert regions, it is clear that the diffusion coefficient has to carry a spatial

dependence, not directly but through its dependancy on the strain rate (γ̇). A space dependence diffu-

sivity calls for a modification of the advection diffusion equation presented above, because it can be

easily shown that starting from a homogeneous population C = const., eq. (9) would not produce any

localisation of copepods, even if K was a time and space dependent function. Two alternatives modifi-

cations of (9) are available and can be considered, the first is to write the diffusion term as ∇ (K · ∇C),

a second way is to express this term as ∆(KC) [27, 28]. These two plausible ways of expressing the

spatial-dependent diffusion term model different individual behaviours. Which one should be used ? The

choice shall be based on the physical interpretation. Our aim here is to find an equivalent Eulerian repre-

sentation for the Lagrangian copepod model : the key feature of this model is that an initial homogenous

distribution of copepods evolves into a non-homogenous spatial distribution (clustering). In other words

the global variance of C can increase as a function of time. This request can be satisfied only by the
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diffusive term ∆(KC). In fact when expanded it gives :

∆(KC) = C∆K+∇K∇C +∇ (K · ∇C) . (10)

While the terms involving spatial derivatives of the concentration (∇C and ∆C) are zero in a homo-

geneous population, the extra term C∆K is responsible for the growth of C in regions around local

maxima of the diffusivity (∆K > 0). We therefore adopt the dynamical equation :

∂tC + u · ∇C = ∆(KC) (11)

Note that in the context of zooplankton studies a similar continuous model system has been proposed

in [29] by upscaling a much alike random jump motility individual model in a quiescent (no-flow) en-

vironment.

We already mentioned that the diffusivity K depends on space not directly but through its dependence

on the strain-rate γ̇. The next step in modelling is therefore to introduce a functional form for such a

dependence. In view of numerical implementation of the model it is desirable to have a smooth rather

than a discontinuous K(γ̇) dependency. As a first attempt we choose an hyperbolic step function of the

following form :

K(γ̇) = Ks +
Ka −Ks

2

(

1 + tanh

(

γ̇ − γ̇T
δγ̇

))

(12)

Here the parameter Ka indicates the effective diffusivity in alert regions while Ks is an additional (op-

tional) small diffusivity in the safe regions (Ks ≪ Ka). The alert region are defined by γ̇ > γ̇T , while

the parameter δγ̇ corresponds to the width of the transition in terms of the strain-rate. Indeed, even if

the boundary between alert and safe regions is sharp, given by the contour lines where γ̇(x) > γ̇T ,

the transition between a high and low diffusivity region is always smoother because jumping copepods

can enter into safe regions with a high velocity and vice versa (when Ks > 0) some organisms in safe

regions can diffuse in the alert ones.

In order to obtain the numerical value of the parameter Ka, the standard link between the Mean Squared

Displacement (MSD) of a Brownian particle and diffusivity can be exploited. Here we consider LC par-

ticles that are permanently set in alert state and in an environment without flow. We then evaluate

Ka =
〈(x(t)− x(t0))

2〉
2D (t− t0)

, (13)

where x(t0) refers to the initial copepod position at the initial time t0, D is the dimension of the domain

(here D = 2), and the symbol 〈. . .〉 refers to ensemble average over LC independent particles. We

observe that the link expressed by eq. (13) can hold only approximately, since it ignores the fact that the

jump velocity intensity has a time dependence.

We now test the proposed Eulerian population model in a simple setup. We consider the Taylor-Green

vortex flow (TGV) (also known as cellular flow or Solomon and Gollub flow [30]) which is a lami-

nar, steady, incompressible, 2-dimensional flow with periodic boundary conditions. The cellular flow is

composed of a periodic array of eddies in square cells of size L and it can be specified by the following
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velocity field,







ux = U0 sin
(

πx
L

)

cos
(πy

L

)

uy = −U0 cos
(

πx
L

)

sin
(πy

L

)

.
(14)

In such a flow we define alert and safe areas based on the threshold value γ̇T = 1
3
γ̇max, where γ̇max

denotes the maximum strain-rate in the flow. Since the velocity field is time independent such regions

are here fixed once for all. The parameter δγ̇ is arbitrary set to a value ≪ γ̇max, here δγ̇ = 1
20
γ̇max.

The diffusion coefficient of copepods in alert regions Ka is estimated by means of eq. (13) on a LC

setting characterised by the parameters uJ = 250 U0 and τJ = 10−2 L/U0. This leads to the value

Ka = 130 U0L. We also add a small random displacement in the LC model, such that in the safe region

this leads to a diffusivity Ks = 0.01 U0L. This simplifies the numerical implementation of the Eulerian

simulation. The advection-diffusion equation (11) is solved via a standard pseudo-spectral method. The

field C is initialised to be constant in space (Ch) and the velocity field u is given by the TGV above

described flow.

Figure 4 shows a comparison between the stationary state of the population concentration as derived

from the LC model (panel B) and from the Eulerian one with the above described parameters (panel

A). It is evident that, despite the fact that a non uniform distribution develops, the Eulerian model can

not reproduce the same features of the Lagrangan model. We thought that this may come from the

delicate tuning of the parameters in the model, such as δγ̇ and Ka. A second simulation with the value

of diffusivity Ka = 1 U0L (panel C) offers a much improved resemblance with the LC population

distribution pattern. The above described numerical test highlights the fact that the tuning of the Eulerian

  (A)                                                       (B)                                                     (C) 

Figure 4 – Visualization in x-y plane of the normalised population density concentration C(x, y)/Ch in

asymptotical steady-state regime in TGV flow. C(x, y) represents the local number density population

concentration, while Ch is the same quantity corresponding to the homogenous distribution at initial

time. The color-bar encode the C(x, y)/Ch excursions in logarithmic scale. Contour lines (white color)

are traced at value of C(x)/Ch = 1. We compare the Lagrangian LC model (panel B) with Eulerian

model results (panel A, C) at Ks = 0.01 U0L and respectively Ka = 130 U0L (A) and Ka = 1 U0L
(C).

model on the Lagrangian one can be delicate. A difficulty lies in the way to treat the dependency of the

diffusivity on the width term δγ̇. A proper model tuning requires the quantity δγ̇ to be linked to the width

of the transition in space (δx) of the diffusivity K. An idea for a possible improvement is here proposed.
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First, the Taylor expansion of the strain-rate around the transition point between alert and safe regions

(xT ) is written down :

γ̇(x) ≃ γ̇T +∇γ̇|xT
· (x− xT ). (15)

Second, a rough estimate of δx is built on the dimensional estimate of the displacement produced by

a jump, δx ≃ uJτJ . Finally, combining these two approximations, one obtains the order of magnitude

estimate δγ̇ = ||∇γ̇|xT
|| · δx = ||∇γ̇|xT

|| uJτJ . In conclusion, a better tuning for δγ̇ can be obtained

through the evaluation of the norm of the gradient of the shear rate at the interface. While this approach

seems to be feasible in the TGV flow, where γ̇ has an analytical expression as a function of position, it

seems complicated to adapt it to turbulent flows (particularly in a higher spatial dimension).

A second caveat concerns the sensitivity of the model tuning to the functional form of K(γ̇). From eq.

(11) and eq. (10), if we take into account that diffusivity is a function of γ̇ and the strain-rate in turn

depends on space, then one can write

∆(KC) = K∆C +
dK

dγ̇
(C∆γ̇ + 2∇γ̇∇C) +

d2K

dγ̇2

(

(∇γ̇)2C
)

. (16)

In the case when C is chosen to be uniform, the terms contributing to the creation of the clustering are
dK
dγ̇ (C∆γ̇) and d2K

dγ̇2

(

(∇γ̇)2C
)

. This shows that the development of non-homogeneities is linked to

the first derivative and to the second derivative of diffusivity with respect to γ̇ . Therefore, it seems that

an accurate tuning of the Eulerian model is delicate and our choice of an hyperbolic transition shape for

K(γ̇), eq (12), might not be an optimal one.

4 Conclusion

We conclude by underlying that the originality of the present study lies in its bottom-up approach :

the experimental work and the associated data analysis was used to introduce an individual model for

copepod dynamics. Such a model has been applied to the setting of small-scale oceanic turbulent flows

and has allowed to suggest a mechanism for clustering of copepods in turbulence. Non-homogenous

distribution of copepods has a key ecological importance particularly because it affects the encounter

rates between organisms of the same kind and hence their reproduction. The negligible effect of the

copepod orientational dynamics on the resulting spatial statistics implies that the dynamical properties of

LC model can recast in terms of a space-time dependent diffusivity coefficient. Based on this observation

a continuous Eulerian model has been proposed for the evolution of the population concentration of

copepods. Preliminary encouraging results, based on a simple steady laminar flow have been shown. The

problems connected to a proper tuning of the parameters of the continuous model have been discussed.

The adaptation of the model to copepod populations in turbulent flows will be addressed in a future

study.
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