

Numerical Modeling of Copepod's behavior in Turbulent Flows

Hamidreza Ardeshiri

Laboratoire de Mécanique de Lille - UMR 8107 Laboratoire d'Océanologie et de Géoscience - UMR 8187

Mechanical Engineering

F. G. Schmitt

25 Juin 2015 – Université d'Artois (FSA)

Thesis title:		Dynamics of Copepods in Turbulent Flows				
Advisor:		François SCHMITT, DR HDR CNRS, LOG (UMR 8187)				
Particip	oants:					
Co-advisor:		Enrico CALZAVARINI, MdC, Université de Lille 1				
International collaborator:		Federico TOSCHI, Full Professor, Technical University of Eindhoven				
Local collaborator:		Sami SOUISSI, Full Professor, Université de Lille 1				

Doctoral Schools SPI, Laboratoire de Mécanique de Lille (LML), UMR 8107 Doctoral Schools SMRE, Laboratoire d'Océanologie et de Géoscience (LOG), UMR 8187

Financial support:

Ministry of higher education and research fellowship, Bourse President Lille 1 for interdisciplinary subjects

Outline:

Motivation

- Introduction to Copepods
- > Methods
- > Analysis
- Perspective

Motivation!

- Important link in the food chain \succ Fishery Industry \succ
- Most numerous crustaceans in the \succ ocean
- Better understanding the oceanic life

What are copepods?

Copepods cultures at LOG Lab in Wimereux

Response to Stimulus

Acartia tonsa: The stimulus occurred 3 (ms) before the initiation of the escape response (dashed line)

Response parameters

Undinula vulgaris giesbrechti response

- L: latency to forward propulsion
- Pr: preparation
- R: rise
- P: force peaks
- D: kick (power strokes) duration
- T: termination

Component of the flow?

Thresholds

Siphon flow

- · longitudinal deformation
- acceleration

- · shear deformation
- acceleration
- vorticity

Oscillating chamber

acceleration

Kiorboe et all., (1999,

Rotating cylinder

- acceleration
- vorticity

Copepods react to deformation rate

Direction of Escape?

Buskey et all., (2002)

Lagrangian model

Modified Chlamydomonas model

$$rac{dm{x}}{dt} = m{v} + u_s m{p} \left\{ egin{array}{ccc} m{v} & ext{Fluid velocity} \ u_s & ext{Slipping velocity} \ m{p} & ext{Direction of motion} \end{array}
ight\}$$

Foraging velocity Jumping velocity

PARAMETER UNIT RANGE OF VALUES		VALUE	Dimensionless control parameters		
ν	$m^2 s^{-1}$	$O(10^{-6})$		10^{-6}	
ε	$m^2 s^{-3}$	10 ⁻⁸	10^{-4}	10^{-6}	u_J $ au_J$
η	m	3×10^{-3}	$3 imes 10^{-4}$	10^{-3}	$\frac{\overline{\eta_{\mu\nu}}}{\overline{\tau_{\mu\nu}}}$
$ au_\eta$	s	10	0.1	1	$\alpha\eta$ η
u_η	ms^{-1}	3×10^{-4}	3×10^{-3}	10^{-3}	$S_{threshold} imes au_\eta$
Re_{λ}	_		$O(10^2)$		

Properties of the ocean water

Analysis

Tracers

Copepods

Patchiness

Analysis

Quantifying spatial distribution of the copepods : Fractal dimension D_2

The **Grassberger-Procaccia** Algorithm:

$$\hat{C}(r) = \frac{2}{N(N-1)} \sum_{i < j} \theta(r - |\mathbf{x}_i - \mathbf{x}_j|) \qquad \theta(x) \text{ is Heaviside step function}$$

Monotonically decreasing like power law $C(r) \sim r^D$ as $r \to 0$

Probability to find a couple of particle whose distance is below r

$$D = \lim_{r \to 0} \frac{\log C(r)}{\log r}$$

Maxey JFM87, Squires & Eaton PF91, Fessler Eaton IJMF94

Analysis

Fractal dimension estimation as a function of the threshold value of the strain rate

Efficiency of the jump by considering the number of particles

Analysis

PDF of absolute value of single component velocity

Perspective

Collaboration with Institute of Environmental Engineering ETH Zurich, Switzerland

François-Gaël Michalec, Markus Holzner

- Tune the model's parameters
- Predict the behavior

Thank you!