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Abstract. — We present new results from a direct numerical simulation of a three-dimensional
homogeneous Rayleigh-Bénard system (HRB), i.e. a convective cell with an imposed linear
mean temperature profile along the vertical direction. We measure the SO(3)-decomposition
of both velocity structure functions and buoyancy terms. We give a dimensional prediction
for the values of the anisotropic scaling exponents in this Rayleigh-Bénard systems. Measured
scaling does not follow dimensional estimate, while a better agreement can be found with the
anisotropic scaling of a different system, the random-Kolmogorov-flow (RKF) (BIFERALE L.,
DAUMONT I., LANOTTE A. and ToscHI F., Phys. Rev. E, 66 (2002) 056306). Our findings
support the conclusion that scaling properties of anisotropic fluctuations are universal, i.e.
independent of the forcing mechanism sustaining the turbulent flow.

Small-scale turbulent statistics is a challenging open problem for both theoretical and ex-
perimental studies in hydrodynamical systems [1]. Typical questions are connected to the
understanding of the universality issue, i.e. to which extent small-scale turbulent fluctuations
are statistically independent of the large-scale set-up used to inject energy in the flow. Ro-
bustness of small-scale physics cannot be exact. For instance, different forcings may inject
large-scale different anisotropic fluctuations, which must have some direct/indirect influence
on small-scale statistics.

A first strong requirement for universality to hold is therefore that large-scale anisotropic
fluctuations become more and more sub-leading by going to smaller and smaller scales. Such a
requirement is always observed in both experiments and numerical simulations, although some
subtle effects may show up due to the existence of anomalous anisotropic scaling (see [2-5] for
a detailed discussion of this issue). Another important question which must be asked about
universality of small-scale statistics is connected to the anisotropic components on their own,
independently of their comparison with the isotropic ones. In particular, it is important to
understand whether the anisotropic components of any turbulent correlation functions have
a scaling behavior characterized by universal exponents or not.
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In this letter we present first results of an attempt to study the small-scale anisotropic
behavior of a homogeneous three-dimensional Rayleigh-Bénard system (HRB), i.e. a convec-
tive cell with fixed linear mean temperature profile along the vertical direction. The main
focus of our analysis is a comparison between the statistical behavior of the HRB system with
a completely different anisotropic flow, a random Kolmogorov flow (RKF) [2,3]. From the
comparison, we show that the two systems have almost indistinguishable, in the limit of our
numerical resolution, small-scale anisotropic (and isotropic) scalings, i.e. we find a high degree
of small-scale universality for all measurable anisotropic components. This result is particu-
larly relevant because its validity is only possible if HRB has anomalous (to be defined below in
detail) anisotropic small-scale fluctuations. This letter is organized as follows. First, we briefly
discuss the physics of HRB flow and the details of our numerical simulations. Second, we re-
view the technique of SO(3) decomposition to disentangle different anisotropic contributions
to any velocity correlation functions. We then present our numerical results on the HRB.

We first show that the observed anisotropic scaling is anomalous, i.e. it does not follow
the dimensional predictions than can be derived by an analysis of the equation of motion. We
then address in detail small-scale universality by making the comparison between HRB and
RKF anisotropic properties, the central point of the present letter. A homogeneous Rayleigh-
Bénard system (HRB) is a convective cell with fixed linear mean temperature profile along the
vertical direction. The flow is obtained by decomposing the temperature field as the sum of
a linear profile plus a fluctuating part, T(x,y, 2;t) = T'(x,y, 2;t) + (AT/2 — zAT/H), where
H is the cell height and AT the background temperature difference. The evolution of a HRB
system can be described by a modified version [6] of the Boussinesq system [7]:

v+ (v-V)v = —Vp+vV3v+agT'z, (1)
AT
WT + (v-V)T' = wV2*T' + 7 Vs (2)

where « is the thermal expansion constant, ¥ and k the kinematic viscosity and the ther-
mal diffusivity coefficients, and g the intensity of the gravity field. Fully periodic boundary
conditions are used for the velocity field, v, and temperature, 7", fields.

For large Rayleigh numbers, HRB shows a turbulent convective dynamics with absence
of both viscous and thermal boundary layers [6]. The typical scale characterizing the forcing
mechanism in a convective system, that was first proposed in [8], is the so-called Bolgiano scale.
This length, defined as Lg = 65/4]\/'*3/4(049)’3/2, where € and N are energy and temperature
dissipations, respectively, can be derived from dimensional estimate on the equation of motion.
It is thought that turbulent dynamics below the Bolgiano length is unaffected by buoyancy
effects, while above it the role of temperature may have a strong active feedback on the
velocity field. In the HRB system, Lp results of the order of the integral scale of the cell
(H), hence temperature fluctuations may have a leading role only at the largest scales in
the system. This has already been shown in a similar simulation [9], and is consistent with
the picture presented in [10]. The main advantage of the HRB system is that the intrinsic
homogeneity along the three directions allow a systematic study of scaling properties without
spurious (non-homogeneous) effects, always present in standard Rayleigh-Bénard systems with
boundary layers.

In order to asses the importance and properties of anisotropic components for any cor-
relation function, it is necessary to make a decomposition on the complete basis of the
SO(3) group [11]. In particular, in the following, we are mainly interested in the SO(3)
decomposition of scalar quantities, as for the case of velocity longitudinal structure functions,
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S®)(r) = ([(v(r) — v(0)) - #]P):
S( Z Z S(p) ]m 72) (3)

j=0m=—j

where the indices (j,m) label the total angular momentum and its projection on a reference
axis of the spherical harmonics Y m(7), respectively (see [3,11] for more details). The physics
is hidden in the projections, S (r) We are interested in measuring what are the scaling
properties (if any) of each prOJectlons on different anisotropic sectors: S(p )( ) ~ cjmrgj (),
where we have assumed, on the basis of theoretical [11] and numerical [3] evidences, that
the scaling exponents do not depend on the m index. To go back to the universality issue
discussed at the beginning, we expect that the coeflicients c;,, are strongly dependent on
the anisotropic properties of the large-scale physics while the values of the scaling exponents,
& (p), must enjoy a much higher degree of universality. This picture can be proved on a rig-
orous basis for some problems of scalar/vector advection by Gaussian, white-in-time, velocity
fields (Kraichnan models [12]).

As concerns the SO(3) analysis, let us notice that velocity structure functions have even
parity with respect to 7, therefore projections on odd j values vanish. In the following, we
consider also mixed velocity and temperature structure functions which have, on the other
hand, dominant odd parity.

From eq. (1), one may easily write down the stationary equation for the second-order
velocity structure functions; the extension of the Kdrman-Howarth equation in the presence
of a buoyancy term [13]. The result is, neglecting for simplicity tensorial symbols,

(0u(r)®) ~ er + agzr - (6T (r)év(r)),
§j=0,2,... j=0 j=1 @ j=1,3,... (4)

where with € we denote the energy dissipation and with (§v(r)3) and (§T(r)év(r)) the general
third-order velocity correlation and temperature-velocity correlation, respectively. The two
terms on the r.h.s. of eq. (4) are called, respectively, the energy-dissipation term and buoyancy
term. In (4) we report for each term the value of its total angular momentum, j. Let us notice
that the energy dissipation term in (4) has a non-vanishing limit, for high Reynolds numbers,
only in the isotropic sector, j = 0. On the other hand, the buoyancy coupling, agz, brings
only angular momentum j = 1. Due to the usual rule of composition of angular momenta
we have that the buoyancy term, agz - (6T (r)dév(r)), has a total angular momentum given
by the rule: jiot = 1®j ={j —1,7,5 + 1}. Using the angular momenta summation rule for
7 we can decompose the previous equation obtaining the following dimensional matching, in
the isotropic sector:

<6v(r)3>j:0 ~er+ agér<6v(r)5T(r)>j:1 + ... (5)
and in the anisotropic sectors, j > 0:
<6v(r)3>j ~ agﬁr<5v(r)5T(T)>(j_l) +..., (6)

where ... stands for contributions coming from the j and j + 1 sectors of (§v(r)0T(r)). In
the isotropic sector the buoyancy term is sub-dominant with respect to the dissipation term
at scales smaller than the Bolgiano length, r < Lg. Therefore, in our simulation the isotropic
velocity fluctuations are closer to the typical Kolmogorov scaling, dv(r) ~ r1/3_ rather than
to the Bolgiano-Obhukhov scaling, dv(r) ~ 73/5.
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Fig. 1 — A snapshot of the temperature fluctuations in the 3D HRB system. The system is fully
periodic. Notice the presence of typical convective structures [7] as the neat plume on the bottom/left
of the picture.

Let us now focus on the anisotropic sectors. Equation (6) is the simplest dimensional
prediction one can derive for this system consistently with the anisotropic properties of the
buoyancy term, sector by sector. It plays a key role in the following because we will show
that the observed anisotropic scaling in our HRB system differs from the matching (6), i.e.
we measure anomalous anisotropic scaling exponents.

Our HRB simulation was performed using a lattice Boltzmann scheme, with spatial resolu-
tion of 2403. We stored roughly 270 statistical independent configurations. The Prandtl num-
ber for the simulation is equal to unit, the Rayleigh number Ra = (agATH?)/(vk) = 1.38-107,
and the Taylor-scale Reynolds number Rey ~ 100. The measured Bolgiano scale is Ly ~ 370
grid points, roughly one and a half the cell size. A typical snapshot of the temperature field
is shown in fig. 1. Notice the well-detectable structures typical of all other Rayleigh-Bénard
cell [7,14-16]. In particular, there is a beautiful hot plume on the central bottom/left part of
the picture.

We now present our numerical results. In order to check the small-scale properties of
the HRB system, we have carried out the SO(3) decomposition of both longitudinal velocity
structure functions (3) up to order p = 6 and of the simplest set of buoyancy-like terms
made of ¢ velocity longitudinal increments and of one temperature increment, B(q’l)(r) =

([(v(r) = v(0)) - P]U(T(r) = T(0))):
B (p :Z Z B ()Y (7). (7)

=0m=—j

The dimensional matching made in (6) can be extended to any order of correlation function,
giving, in terms of the velocity and buoyancy projections, the leading scaling contribution

S (r) ~ B (1) (8)

j—1,m

Denoting with x7(g, 1) the anisotropic scaling properties of the buoyancy terms, B;q’i)m( ) ~

X (@) o get the dimensional estimate linking velocity and buoyancy scaling:

gp)=1+x5"p-21), 9)
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Fig. 2 — Log-log plot of quantities entering in the dimensional matching (8) for some anisotropic
sectors vs. r. Two top curves refer to S](-%)(r) (*) and to the buoyancy term TB;’:?(SI)(T) (O) with
p = 3 and j = 4. The two bottom curves refer to the case p = 5 with symbols, (+) for the velocity
projection and (x) for the buoyancy term. Inset: same for 7 = 6. Notice that the buoyancy term
decays faster in all cases. In both plots, buoyancy terms are shifted along the y-axis for the sake of
presentation and we limited the r-range extension to those values with a statistically significant signal.

where we have added a subscript d to remind the reader that it is the result of a dimensional
matching.

Let us first discuss the issue of anisotropic anomalous scaling by making a comparison
between the numerical measurements and the dimensional estimate (9). In fig. 2 we show a
comparison between the velocity and buoyancy for the j = 4 projections for p = 3, 5.

The inertial scaling measured for the projection of the velocity structure function, S;fg (r),

is more intermittent than the corresponding buoyancy term, rB;-’i Izri)(r) In other words, the
observed velocity scaling is different from the dimensional matching derived from the equations
of motion: it is anomalous. This result holds for all measurable orders also for j = 2 and for
j = 6 sector (j = 6 is shown in the inset).

Let us now discuss the other important issue of universality. We argue that not only HRB
has anomalous anisotropic scaling but also that the measured behavior is indistinguishable
from what measured in the random Kolmogorov flow [3] at Rey = 70. The point is far from
being trivial and must not be underestimated. The HRB has an anisotropic forcing, given
by the buoyancy term, which acts at all scales, ~ g2dT(r), i.e. there is also a direct inject
of anisotropies at small scale, at variance with the RKF, where the forcing was only at large
scales. In fig. 3 we show an overall comparison of Sj(-ﬁg (r) measured on the HRB and on the
RKF [3]. Comparison is shown for j = 4 and m = 0,2. We do not show j = 2 because RKF
data from the simulation of [3] have a sign inversion in that sector which makes comparison
inconclusive. Moreover, at the resolution of both simulations the j = 4 sector is more intense
than the j = 2 sector at all scales. As can be seen, the agreement is quite satisfactory, except
for the very small scales, smaller than the viscous scale, where, as usual, the SO(3) decompo-
sition suffers from interpolation errors. The small discrepancies at large scales are also to be
expected: the inertial properties of the two flows have to match quite different conditions at
large scale. As concerns the dependency on the order of the moment, p, for a fixed anisotropic
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Fig. 3 — Log-log plot of compensated anisotropic 7 = 4, m = 0 projections Sifg (r)/r§4(p) vs. r for both
HRB and RKF flows. Top curves refer to p = 2, the best fit exponent which compensate HRB and
RKF are £*(2) = 1.7 and £*(2) = 1.66, respectively. Medium curves refer to the same quantities but for
p = 4, compensation has been obtained with £*(4) = 2.05 and £*(4) = 2.2 for the HRB and RKF. Bot-
tom curves refer to p = 6, compensation have been obtained with £*(6) = 2.3 and £*(6) = 2.5 for the
HRB and RKF. Notice that curves from the two flows are compensated with very similar values of the
exponents (within 10%). Inset: the same but for j = 4, m = 2, compensation have been done with the
same values used for j = 4, m = 0 to show the independency of the m value in the scaling behaviour.

scaling, j, we notice that, as already found for the RKF, there is a tendency toward saturation,
i.e. the higher the j sector the less the increasing of the scaling exponents as a function of p.
The same comparison for j = 6 (not shown) qualitatively supports the same result.

Independency of the small-scale statistics from the m value is an indication of universality,
i.e. independency from the external forcing mechanism which breaks rotational invariance.

The fact that inertial-scale fluctuations of the HRB and of the RKF are almost indistin-
guishable is the first important confirmation of the universality of anisotropic fluctuations
with respect to the external forcing in sectors with 7 = 4,6. Similar conclusions can be drawn
for the j = 2 sector in different experimental set-up [5,17,18] (the only sector measurable,
indirectly, in experiments).

Let us conclude by summarizing the two main results of this letter. First, anisotropic
fluctuations in Rayleigh-Bénard systems are anomalous. Second, notwithstanding the direct
influence of the forcing mechanism also at small scale, anisotropic fluctuations are universal,
i.e. the small-scale dynamics is dominated by anomalous fluctuations, coming from the self-
organization of the inertial evolution. Similar behavior is at the origin of anomalous scaling in
Kraichnan models of passive/vector advection, as already discussed in the introduction. In the
latter case, one connects rigorously the anomalous inertial scaling with the existence of zero
modes of the inertial operator (see, for example, [19,20] for a detailed analysis of anisotropic
scaling in passive advection of scalar and vector quantities, respectively). Here, for the Navier-
Stokes equation, one may only stress the striking similarities, without being able to push it to
some rigorous statement. As concerns universalities for the isotropic scaling of this Rayleigh-
Bénard system, we notice that due to the large value of the Bolgiano scale —of the order of the
system size— we expect to observe small-scale isotropic fluctuations close to the usual Kol-
mogorov 1941 scaling (plus intermittency). This is indeed the case. The Bolgiano-Obhukhov
isotropic regime with dv(r) ~ r3/% cannot be accessed from this simulation. In the framework
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of the dimensional matching (5), the existence of a Bolgiano-Obhukhov scaling in the isotropic
sector corresponds to a leading influence of the buoyancy term in the scaling range [21].
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