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Abstract

In this paper we discuss some computational problems associated to matched filtering of experimental sign
gravitational wave interferometric detectors in a parallel-processing environment. We then specialize our discussio
use of the APEmille and apeNEXT processors for this task. Finally, we accurately estimate the performance of an A
system on a computational load appropriate for the LIGO and VIRGO experiments, and extrapolate our results to ape
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1. Introduction

Several earth-based interferometric experiments
the detection of gravitational waves (GW) are c
rently under development, and expected to reach
data-taking stage in the near future. On a longer t
scale, space-based experiments are foreseen [1]. T
experiments will search, among other, for GW gen
ated by inspiralling compact binary-star systems.

The expected functional form of the signal pr
duced by a coalescing system is known to good
proximation [2], so matched filtering is an effecti
strategy to extract GW signals from the noise ba
ground. Matched filtering is basically obtained by p
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E-mail address: calzavar@fe.infn.it (E. Calzavarini).
0010-4655/02/$ – see front matter 2002 Elsevier Science B.V. All rig
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jecting the experimental output (signal plus noi
onto the expected signal, and is best done in Fou
space, using Fast Fourier Transform (FFT) techniq
(see later for more details). The functional form of t
expected signal depends however on the physica
rameters (e.g., masses, angular momenta, eccentr
of the inspiralling system. It is necessary to match
experimental output to a set of expected signals
called templates) corresponding to points in the pa
meter space that cover the physical region of inte
and are close enough (under some appropriate
ric) to ensure sufficient overlap with any expected G
event.

The number of needed templates for, e.g.,
VIRGO experiment is of order of 105 · · ·106, so
the corresponding computational cost is huge
current standards. One would like to perform re
time analysis of the experimental data, which me
hts reserved.
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that available computing power should be enough
process experimental data at the rate at which t
are produced, so a prompt “trigger” of a GW even
possible [3].

Matched filtering to a (large) set of templates
an obvious candidate for parallel processing of
simplest form, e.g., data farming with all elemen
of the farm performing the same computation (Sin
Program Multiple Data (SPMD) processing). Inde
the experimental data stream is sent to all proces
in the farm, each element performing the match
procedures for a subset of the physical templates.

Massively parallel specialized SPMD architectur
with peak processing power of the order of 1 Tflo
have been developed by several groups to fulfill
computational requirements of Lattice Gauge Th
ries (LGT) [4]. In this paper we want to analyze t
performance of one such system (the APEmille s
tem [5]) for matched filtering of GW signals.

This paper is not a proposal to use APE-like s
tems in an actual experimental environment (the
ative merits of different computer systems in a la
experiment have so many facets that they can onl
assessed by those directly working on it). Rather,
potential usefulness of our work lies in the followin
Different computing strategies for the problem at ha
can be conceived and different computer systems (
very large clusters of PCs) can be used. It would
interesting to evaluate performances on such syste
However, given the fast pace of development in
computer industry, an experiment will try to delay t
choice of the best available combination of comput
strategy/computer system and the commissioning
production system to as late a point in time as possi
since huge gains in price and/or price/performance
be expected. This means that very large computing
pabilities will not be available for much needed ea
tests and simulations. APE systems might provide
answer to this problem.

The focus of this paper is the measurement of
performance of APE systems for matched filterin
Some parts of the paper have however a more gen
scope and refer to general parallelization criteria
the problem at hand.

This paper is structured as follows: Section 2 brie
reviews the formalism of matched filtering. Section
evaluates the associated computational cost in gen
terms and discusses some strategies to minimize
.

l

l

quantity. Section 4 discusses the features of the A
systems relevant for the problem, while Section
presents a procedure for allocation of templates
processors suitable for APE and general enoug
adapt to other computer systems. Section 6 pres
the result of actual performance measurements m
on APE, while Section 7 contains our concludi
remarks.

2. Formalism

In this section we briefly summarize the mathem
ical formalism recently developed to analyze match
filtering of GW signals from coalescing binaries. W
closely follow the notation presented in [8].

We callh(t) the interferometer output, which is th
sum of the signals(t) and the noisen(t), while u(t)

is a template.n(t) is characterized by its one-side
spectral density:

E
[
ñ(f1)ñ

∗(f2)
] = 1

2δ(f1 − f2)Sn
(|f1|

)
, (1)

whereE[. . .] means ensemble expectation value, ti
(∼) stands for Fourier transformed functions a
asterisk (∗) for complex conjugation.

For the sake of definiteness, we consider in the
lowing templates computed to second post-Newton
expansion. They depend, in principle, on several p
meters: the coalescing phaseφc and coalescing timetc,
and the parameters corresponding to the physical c
acteristics of the system, called intrinsic parame
and globally referred to by the vectorθ . A template is
precisely identified byu(t; θ, φc, tc). It is believed that
the most relevant intrinsic parameters are the ma
of the binary systems, so as a first approximation
usual to neglect all other intrinsic parameters. In t
approximation,θ is a vector of two components.

In a matched filter the signal to noise ratio (SNR
usually defined by

S

N
≡ 〈h,u〉

rms〈n,u〉 , (2)

where〈. . .〉 is a particular inner product defined as:

〈h,u〉 ≡ 2

+∞∫
−∞

h̃∗(f ) · ũ(f )
Sn(f )

df. (3)
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It can be shown that rms〈n,u〉 = (〈u,u〉)1/2, so (2)
simplify to S/N = 〈h,u〉, if normalized templates ar
used [6].

Filtering a signal means to look for local maxim
of the signal to noise ratio, in terms of its continuo
parameters. The maximization over the phaseφc can
be done analytically (it can be seen that the maxim
value is obtained computing two inner product as
(3) on two real templates with opposite phases
then summing their square values [10]). Maximiz
tion over tc instead is achieved at low computation
cost calculating the cross correlations by the FFT
gorithm. Maximizations over the intrinsic paramete
are not possible analytically. For this reason the n
mal procedure consists in a discretization of templa
in the space of the intrinsic parameters.

The obvious question concerns the number of te
plates needed to cover the whole parameter sp
A differential geometrical approach has been dev
oped recently [7]. One introduces a new function,
match M(θ1, θ2), which is the inner product of two
templates with different intrinsic parameters, wher
maximization is assumed overtc andφc:

M(θ1, θ2)≡ max
�φc,�tc

〈
u(θ1, φc +�φc, tc +�tc),

u(θ2, φc, tc)
〉
. (4)

The match between two templates with near eq
parameters may be Taylor expanded

M(θ , θ +�θ)� 1+ 1

2

(
∂2M(θ ,ω)

∂ωi∂ωj

)
ωk=θk

�θi�θj

(5)

suggesting the definition of a metric

gij (θ)≡ −1

2

(
∂2M(θ ,ω)

∂ωi∂ωj

)
ωk=θk

, (6)

M(θ , θ +�θ)� 1− gij�θ
i�θj . (7)

In the limit of close template spacing we have an
alytical function able to measure the distance betw
templates in the intrinsic parameter space. The me
gij (θ) depends on the intrinsic parameters so the
volume covered by a template varies locally. This
fect can be reduced writing the templates in terms
some new variables for which the metric is more r
ular. One suitable choice is the following [8]:
.

θ1 = 5

128
(πf0)

−5/3 · M
µ

, (8)

θ2 = 1

4
π1/3f

−5/3
0 · M

1/3

µ
, (9)

where M is the total mass of the binary syste
µ the reduced mass, andf0 an arbitrary frequency
This change of variables makes the metric ten
components constant at the first post-Newtonian or
so only smallθ -dependent contributions are presen
the second order approximation.

It is now possible to simply estimate the total nu
ber of templates necessary to recover the signal
given level of accuracy. We calculate the volume c
ered by a single template in the parameter spac
term of a minimal value for the match, the so-cal
minimal match MM which states a minimal require
ment on signal recovery capabilities. For example
we simply use a face centered hyper-cubic lattice,
can write the maximum covering volume with:

�V =
(

2

√
(1−MM)

D

)D

, (10)

whereD is the dimension of the parameter space (2
our example).

An approximate estimation of the total templa
number, applicable whenN is very large [8], is given
taking the ratio between the total volume of t
physically relevant parameter space and the volu
covered by a template placed in the center of a lat
tile

N(MM)=
∫

dNθ
√

detg

�V
. (11)

Using (11) we estimate that in the range from 0.25 to
10.0 solar masses the total template number is roug
3.8 · 104 for LIGO and 1.1 · 106 for VIRGO (see
Section 5 for the additional assumptions involved
this calculation).

A last remark we want to make is that the minim
match requirement also determines a threshold v
for the signal (and templates) sampling frequen
This frequency can be simply estimated and w
be take into account later on in our computatio
estimates.
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3. General strategy

In this section we present some observations ab
a general strategy to compute correlations. Here
consider anideal case in which most computer-relat
issues are neglected. We also limit our treatment o
to thestored templates strategy, where templates ar
pre-calculated, then Fourier transformed and prep
to be processed and finally stored in memory. T
ideal case is not unrealistic, given the pace at wh
actual memory sizes increase in real computers.
quantity to be evaluated on every template is given

C(t)=
∣∣∣∣∣

+∞∫
−∞

ũ∗(f ) · s̃(f )e−i2πf t df

∣∣∣∣∣,

ũ(f )= h̃(f )

Sn(f )
, (12)

where h̃(f ) is the Fourier transform of a comple
templateh(t).

At present the best way of computeC(t) uses a FFT
algorithm, reducing the number of needed operati
from n2 to n log2n. The FFT algorithm assumes inp
periodicity, while in our case signal and templates
not repeated data. The usual trick to overcome
problem [9] consists inpadding with a certain numbe
of zeros the tail of the templates to be process
Assume that the template hasnT points. We pad
it so its total length becomenP , and then comput
the correlation by using the padded template andnP
signal points. The resulting correlations are only va
in their firstnP −nT points, all remaining points bein
affected by the periodicity assumption implied in t
FFT technique. We define padding-ratio the quan
Rpad= nP /nT . The result obtained in this way cove
a time-period of length(nP − nT )/fs , wherefs is the
sampling frequency of the experimental signal. T
last nT data-points will have to be re-analyzed in
successive analysis.

The computing power necessary for an on-l
analysis of templates of givennT and nP (floating
point operations per second) is given by:

Cp = fs

nP − nT
· (A · nP log2(nP )+B · nP

)
. (13)

A and B are constants, usually of the same ord
depending on the specific algorithm used. In this pa
we use a simple-minded FFT algorithm for power t
length vectors that involvesA = 5 andB = 12 for the
whole analysis.

More efficient algorithms might be used, boosti
overall performance by small factors. It would be a
propriate to include these improvements if an A
system is actually used in a production environme
In our exploratory work our simple-minded choi
does not influences strongly the following obser
tions and our final results.

One interesting question concerns the optim
padding that minimizes computing requirements
one disregards the fact that (13) holds only fornP
values that are powers of 2, the answer is given
Fig. 1, where the minimum innP of Eq. (14) is plot-
Fig. 1. Estimate of the computing power (floating point operations per second Flops), versus template lengthnT for an optimal choice ofnP .
We setA= 5,B = 12 andfs = 1 kHz (see Eq. (13)).
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in the
Fig. 2. Computing power in Flops versus the padding rationP /nT , for three typical template lengths. We use the same parameters as
previous figure.
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ted as a function ofnT , for fs = 1 kHz. The behavio
is very close to a logarithmic function innT , so com-
puting costs depend very weakly onnT . This result
is obtained for an optimal choice ofnP , as discussed
above. As shown in Fig. 2, the optimal value fornP
grows withnT , implying in principle very large mem
ory requests. In practice however (see again Fig. 2
nT values relevant in the present discussion a va
of nP /nT � 2 · · ·4 yields a computational cost withi
a factor two of the optimal case. This finally mea
that deviations from the optimal padding length do
produce drastic consequences on the computing po
needed to perform the analysis, and thatnp can be eas
ily adjusted to a suitable power of two.

4. Analysis on APEmille

The APE family of massively parallel process
has been developed in order to satisfy the num
crunching requirements of Lattice Gauge Theor
(LGT) [5]. Machines of the present APE generati
(APEmille) are installed at several sites, deliver
an overall peak processing power of about 2 Tflo
The largest sites have typically 1000 processing no
(i.e. 520 Gflops) [12]. Sustained performance
production-grade LGT codes is about 45% of pe
performance. A new APE generation (APEnext)
under development, and expected to reach the phy
production stage in early 2004. O(10 Tflops) peak
performance installations are being considered.
r

-

APEmille systems are based on a building blo
containing 8 processing nodes (processor and m
ory) running in Single Instruction Multiple Dat
(SIMD) mode. Each processor is optimized for flo
ing point arithmetics and has a peak performa
of 500 MFlops in IEEE single precision mode. T
processors are logically assembled as the sites
2× 2× 2 mesh, with data links connecting the edg
This arrangement is called a “cluster” or a “Cube”.

Large APEmille systems are based on a lar
3-dimensional mesh of processor, based on rep
of the above-described building block. The result
mesh has a full set of first neighbor communicat
links. In a typical LGT application the whole syste
works in lock-step mode as a single SIMD syste
More important for the present application, ea
Cube is able to operate independently, running
own program under the control of a Linux-bas
personal-computer acting as a host. There is
host machine every 4 Cubes. A set of up to
Cubes (i.e. 256 nodes) and the corresponding 8
machines is a fully independent unit housed in
standard-size mechanical enclosure. Each Cube
access to networked disks with a bandwidth of ab
4 MByte/sec. In some APEmille installations, dis
have been mounted directly on the host PCs. In
case, bandwidth increases approximately by a facto

The next generation APE system (apeNEXT) is,
the purposes of the present discussion, just a fa
version of the same architecture. The only (welcom
architectural difference is the fact that the basic log
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Fig. 3. Analysis time as a function of template lengthTC(n,1) = f (n). Measured data points are fitted to the functional form of 14, w
c1 = 8.6 · 10−7 sec,c2 = 6.6 · 10−6 sec andc3 = 6.6 · 10−4 sec.
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building block (capable of independent operation
now just one processing node.

A large APEmille system can be seen as a la
farm of processors, whose basic element is a SI
machine of dimension 8. A better way to look at t
SIMD cluster in our case follows the paradigm of ve
tor computing: the SIMD cluster applies the input s
nal to a vector of 8 templates and produces a ve
of 8 correlations. In a variation of the same meth
the same template could be present on all node
the SIMD cluster, and correlations at 8 staggered t
points could be computed. Since the number of co
lations is of the order of 105 · · ·106, each element o
a large farm (say 103 SIMD clusters) takes respons
bility for several hundreds or thousands of templa
This is good news, since APE processors can exp
vector processing also within the node to reach h
efficiency (we just recall here for reader interested
architectural details that intra-node vector process
effectively helps to hide memory access latencies)

We have written an APE code performing all t
steps needed for matched filtering on a pre-calcula
(and pre-FFT transformed) set (vector) ofk templates
each of lengthn, and measured its performance
an APE cluster. An analysis of the details of t
APEmille processor suggest to model the computa
timeTC(n, k) as

TC(n, k)= f (n) · g(k) · k. (14)
f (n) is related to the complexity of the computatio
that we model asc1n · log2(n) + c2n + c3, following
Eq. (13) and introducing one more parameter (c3)
covering machine effects.g(k) is a measure of th
processor efficiency as a function of the vector len
k, that we normalize tog(1)= 1. Taking into accoun
that the computation is memory-bandwidth limited
opposed to processing-power limited), we adopt
following functional form forg(k):

g(k)= c4/k + c5. (15)

Measured and fitted values forf (n) and g(k), pre-
sented in Figs. 3 and 4, respectively, show t
APEmille efficiencies are smooth functions ofnP
andk.

For instance, one APEmille processor handles
templates of 210 numbers in slightly more than 10 ms
corresponding to a performance of about 100 Mflo
or � 20% of peak performance, including all comp
tational overheads.

5. Allocation criteria and processor numbers

A general templates allocation strategy on r
computers has to take into account the limited s
in memory and the available computing power. H
we present some quantitative aspects of memory
CPU usage involved in our analysis, then we g
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Fig. 4. Normalized processor efficiencyg(k) as a function of the vector lengthk. Measured points are fitted to (15).
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our allocation criteria for the optimal template numb
manageable by a single processor.

This discussion focuses on criteria that are app
priate for the APE family of processors. The focus
to exploit vectorization as much as possible and to
ways to reduce input–output bandwidth requireme
so our discussion can be applied to a larger clas
processors.

We start from memory. Each processor hask stored
templates of similar lengthnT . (In the APEmille case
the term processor must be understood to refer to
basic cluster of 8 processing element.)

Vector processing of all the templates handled
each node requires that they are all padded to
samenP , so we needk arrays ofnP complex words,
and matching space for the final correlation results

There are two basic memory allocation strateg
we may assign different sets ofk templates to each e
ement in a basic 8 processor cluster, and have a
them compute the corresponding correlations for
same time stretch(nP − nT )/fs , so each cluster com
putes 8k correlations. Alternatively, we may assign t
same set of templates to all processing elements
have each of them compute correlations for differ
time intervals. With this choicek correlations are com
puted for a longer time stretch 8(nP − nT )/fs . The
best choice between these two nearly equivalent c
is based on bandwidth constraints. In APEmille, d
items reaching the cluster can be delivered to just
element, or broadcast to all of them. In the latter ca
bandwidth is effectively multiplied by a large fact
(×8), so there is an advantage if large data blocks m
be broadcast to the complete cluster. We will use qu
titatively these observations later on in this section

We now consider processing power. The re
time requirement stipulates that each processor c
ter completes processing all its templates within
elapsed time(nP − nT )/fs (or 8(nP − nT )/fs ). As
shown later on, for several realistic templates siz
the processing timeT (nP , k) is much shorter that th
elapsed time for thek value allowed by memory con
straints. We may therefore try to use the same clu
for a different set of templates. This may become
efficient since loading a large data base (the new
of templates) may be a lengthy procedure. This c
may be reduced by using the same templates se
times (corresponding to longer elapsed times) be
loading a new set of templates.

We disregard the overhead associated to the ou
of the computer correlations, that can be made v
small taking into account the Gaussian characte
the noise (e.g., a 3σ -cut could reduce the numbe
of the output correlations to the order of 1%). Mo
interestingly a cross correlation among closely spa
templates could be performed on line packing m
densely the available information.

We would like to optimize among these conflictin
requirements. Let us consider the total compute t
both for different sets of templates (case 1) or the sa
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set of templates (case 2) on each cluster element
have

• Case 1: We want to computer sets of 8k correla-
tions each on templates of lengthnP , correspond-
ing to the same time interval. We compute corre
tions onl adjoining time intervals before switch
ing to a new set of templates. The computat
time can be modeled as

8rknP /B + nP l/B + lrTc(nP , k), (16)

whereB is the cluster input–output bandwid
(measured in words per unit time). The fir
term in (16) is the time required to load th
templates on all processors, the second term
the time needed to broadcastnP signal points to
all cluster elements while the third term refers
the actual computation, to be performedlr times.
Templates, correlations and input data must
inside the memory, implying that(2k + l)nP �
MT , whereMT is the available memory on eac
node (measured in units of complex words). Al
the computation must complete in a time inter
l(nP − nT )/fs . In (16) we assume that all dat
points are loaded once. This reduces input–ou
time but reserves a large fraction of memo
space to data-points (as opposed to templa
Alternatively (case 1b), we may load a smal
set of data-points every time we start a n
computation. The corresponding compute ti
becomes

8rknP /B + nP rl/B + lrTc(nP , k) (17)

while the memory constraint changes to(2k +
1)nP � MT . For any physical template of leng
nT , we must maximize 8rk in terms ofr, k, l and
nP satisfying all constraints.

• Case 2: The procedure discussed above can be
plied also in this case. The corresponding proce
ing time is given by

rknP /B + 8nP l/B + lrTc(nP , k). (18)

This equation differs from (16) since we no
broadcast templates while we load different da
points to each processing elements. The mem
constraint is the same as in case 1, while
maximum allowed processing time is 8l(nP −
nT )/fs . Case 2b (multiple data loads) is al
easily computed as

rknP /B + 8nP rl/B + lrTc(nP , k). (19)

In case 2, we are interested in optimizingrk in
terms of the same parameters as in the prev
case.

There is one free parameter in the optimizat
process (l). If we increasel we reduce the relativ
cost associated with template loading, but increase
latency associated to the computation. We arbitra
decide to keepl small enough so the latency for an
nT is not longer that a fixed amount of timeTW . We
chooseTW as the time length of the longest templa
contained in the set. This choice may be use
also for data-organization purposes: everyTW time
interval all correlations corresponding to templa
of all lengths are made available. The result of
optimization process are given in Table 1 for APEm
and Table 2 for apeNEXT. Results depend wea
on the allocation procedure discussed above, and
largely dominated by the sustained processing po
Bandwidth limitations are neatly dealt with: if w
increase the available bandwidth by a factor four (e
using local disks) the number of templates hand
by each cluster increases by less than 10%. With

Table 1
Number of templates handled by each APEmille processor clu
as a function of the template lengthnT

nT Case 1 Case 1b Case 2 Case 2b

28 4824 4955 4937 4854
29 4344 4549 4535 4382
210 3720 4016 4003 3775
211 3177 3474 3458 3252
212 2511 2904 2885 2606
213 1792 2226 2197 1893
214 1143 1558 1526 1315
215 657 1091 1057 865
216 349 679 644 510
217 180 378 329 274
218 – 191 201 135
219 – 86 – –

Parameters are (see the text for definitions)fs = 2048 Hz,B =
5 · 105Wc/sec,TW = 1024 sec. Numbers in bold flag the best ca
while – mark cases where allocation cannot be performed du
memory limits.
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Table 2
Same as 1, extrapolated to apeNEXT. We re-scale processing p
per node by a factor 3 and bandwidth by a factor 4. Mem
increases by a factor 4 andTW = 4096 sec

nT Case 1 Case 1b Case 2 Case 2b

28 15631 15765 15750 15704
29 14599 14834 14815 14728
210 13626 13852 13832 13752
211 12455 12844 12812 12673
212 10969 11597 11546 11321
213 9401 9992 9917 9735
214 7782 8614 8528 8264
215 5881 6907 6790 6466
216 3979 4991 4852 4540
217 2409 3418 3280 3102
218 1282 2205 2107 1944
219 673 1259 1189 1087
220 – 641 657 546
221 – 285 – –

choice of parameters case 1b is the preferred one
almost all template lengths.

We remark that processing time has been dire
measured on APEmille, while apeNEXT values a
extrapolations obtained by appropriately re-scaling
basic machine parameters, such as memory size
bandwidth, and processor frequency.

6. Actual estimates on processors numbers

We present here an accurate calculation of the
tal computational cost, and thus of the total proces
number, required in order to analyze systems of c
lescing binaries whose masses are in a certain ran

The main point of this calculation is the productio
given a definite mass range, of a suitable set of t
plates covering the corresponding parameter sp
We remark that for our purposes (i.e. an estimation
the computational cost) we only need a realistic te
plate distribution in the parameter space and not a
cise covering procedure for placing all the templa
Therefore we will adopt a simplified placing algorith
based on a weighted random generation method.
also important to note that the number of template
very sensible to the shape of the experimental n
spectrum.

In our template distribution strategy we ado
the regular metricgij obtained using the variable
.

Table 3
Spectral density noise parameters for LIGO and VIRGO from [1

Sn(f )= Spf
−5 + Smf

−1 + Ss(1+ (f/fknee)
2)

Experiment fseism Sp Sm Ss fknee

LIGO 4K 40 5.6 · 1036 3.9 · 1044 1.1 · 1046 83
VIRGO 4 9.0 · 1037 4.5 · 1043 3.24 · 1046 500

defined in (8), (9). We envisage a square lattice
the θ1, θ2 parameter space whose links�θ are set to
�θ = (minθ

√
detg)−1/2, where minimization is on

the domainθ corresponding to the physical paramet
we are interested in. Under these assumptions
surface corresponding to a square lattice in theθ1, θ2
space can be approximated withS(θ) = √

detg ·
(�θ)2, where

√
detg is the value calculated in a poin

at the center of the square. Hence the minimal sur
corresponding to a lattice tile is unit. Now we obse
that S is proportional to the number of templat
needed in that square region of the parameter sp
and that it is roughly equal to the number of templa
when divided by�V of Eq. (10):

N(θ)per square=
√

detg(θ) · (�θ)2/�V. (20)

Finally we allocate to every square in the lattice
number of templates equal to the rounded value of
previous expression, placing the first one in its cen
and the others randomly distributed inside the sa
region.

The noise spectral densitySn(f ), an experimen
tally measured and fitted curve, has different beha
for each experiment. It imposes particular constra
on lower and upper frequency cutoffs and on samp
(or interpolation) frequency. In Table 3 we list the fi
ting functions relative to the VIRGO and LIGO expe
iment and corresponding parameters that we use in
calculations.

The noise curves for LIGO and VIRGO are qu
different. While LIGO is very sensible in a narro
frequency interval VIRGO has a lower peak sensibi
but is better in a wider range of frequencies.

In Table 3 fseism indicates the so-called seism
frequency, i.e. the frequency below which seism
noise is expected to dominate over all other no
sources. Slightly different definitions forfseismexists,
see [8,11]. Integration below this limit does not co
tribute significantly to detectability but is quite expe
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aximum
Table 4
Frequency cuts used in our analysis, depending on signal to noise recovery and on
Minimal Match

Experiment fl (Hz) fu SNR recovery fint atMM = 0.97

LIGO 4K 55 (2.0%) 390 (1.0%) 97.0% 1203
VIRGO 26 (1.9%) 900 (1.1%) 97.0% 3253

Fig. 5. Behavior of the total computation cost (in GFlops) in the infinite memory availability case versus the lower mass limit, where m
total mass is 10.M� . Here we use VIRGO and LIGO noise spectrum, freq. sampling at 2048 Hz and 1024 Hz, respectively, andMM = 97%.
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sive in terms of computing power since it increases
number of templates and the template length.

In our calculations, as proposed in [10], in ord
to reduce computing requirements we adopt a m
restrictive frequency range. We fix a lower and
upper frequency boundsfl and fu such that the
total SNR recovery is at least of 97% (we assu
the lower SNR loss of 2% and the upper of 1%
We note that template lengths are very sensible
the lower frequency cut-off, as the duration tim
which influences linearly the storage requirements
logarithmically the computation cost, scales asf

−8/3
l .

Our frequency bounds are reported in the first t
column of Table 4.

Another point concerns the Minimal Match. We s
MM = 0.97, which corresponds to an event rate lo
of roughly 10% [8].

As discussed at the end of Section 2 theMM level
sets not only the density of templates in the param
space (by�V , see (10)) but also the signal (an
templates) sampling frequency. This frequency co
be very high, so in some cases, memory requirem
could be severe.
An alternative analysis strategy consist in sampl
the signal at a lower frequency and then obtaining c
relations at half-time points by an interpolation. In fa
this can be simply achieved performing further an
Fourier transforms after introducing in the integral
suitable phase displacement. The number of interp
tions obviously multiplies the analysis time.

In our estimate we fix the sampling frequency
fs = 2fu (rounding its value to the greatest power
two), so we havefs = 1024 Hz for LIGO andfs =
2048 Hz for VIRGO. This means (see last colum
in Table 4) that we have to compute correlations
intermediate times by interpolations once for VIRG
and once for LIGO.

First, we show in Fig. 5 the total computational co
to compute the correlation for binary systems wh
masses are in a range ofmmin to 10 solar masses, a
a function ofmmin, under the assumption of optim
padding. We use the parameters listed in Table
and 4. The computational cost roughly follows
(fitted) power-law behavior, with exponent of the ord
of 2.4. This behavior can be easily guessed, tak
advantage of the fact that the computational load
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,
Fig. 6. Number of needed APE nodes versus the lower mass limit, maximum total mass is 10.M� . Using VIRGO and LIGO noise spectrum
freq. sampling of 2048 and 1024 Hz, respectively,MM = 97%.
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each template depends very weakly on its leng
and that detg(θ) depends weakly on theθ variables.
Under these assumptions the computational cost sc
up to log-corrections as the area of the region inθ

space corresponding to a given interval of allow
star-masses. The latter can be easily shown by po
counting to behave asm7/3

min.
The large difference in computational cost betwe

the two experiment, clearly noticeable in Fig.
derives, although in a complex way, from the differe
noise spectra and from the correspondingly differ
frequency cuts.

We now specialize the discussion to APE syste
We proceed establishing a mass interval, then ge
ating its template distribution. We “stretch” templa
lengths to the nearest power of two larger than the
tual length (a slightly pessimistic assumption). Fina
we divide each group of templates of equal len
by the corresponding number of templates handled
one processor cluster (the bold numbers in Table
and 2), and sum all the resulting quotients. The fi
result represent the number of APE processor nee
to satisfy the real time requirement on the given m
interval.

The computational cost of this matching filt
analysis is particularly sensible to the lower ma
limit because of the increasing template length a
of the irregular behavior of the metric tensorgij in
that region of the parameter space. For this reaso
is useful to plot the number of processor versus
lower mass limit. The number of nodes (one clus
consist of 8 nodes) for a mass interval frommmin to
10M� is plotted in Fig. 6, where we use noise spec
relevant for LIGO and VIRGO. This complete o
analysis.

7. Conclusions

In this paper we have developed a reliable estim
of the computational costs for real-time match
filters for GW search from binary star systems, in
massively parallel processing environment.

We have analyzed some criteria to optimally al
cate the processing load to a farm of processors.
have written a code performing the analysis on an A
system and we have measured its performances.
result is that available (APEmille) systems are able
satisfy the requirements of a real-time analysis of
complexity corresponding to the LIGO experiment
the mass range between 0.25 and 10M�.

The VIRGO experiment (with its lower and wide
noise curve) has substantially larger computing
quirements that cannot be fulfilled by an APEmi
system in the same mass range. The new APE ge
ation, expected to be available in early 2004, partia
closes this performance gap.
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