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Abstract

In this paper we discuss some computational problems associated to matched filtering of experimental signals from
gravitational wave interferometric detectors in a parallel-processing environment. We then specialize our discussion to the
use of the APEmille and apeNEXT processors for this task. Finally, we accurately estimate the performance of an APEmille
system on a computational load appropriate for the LIGO and VIRGO experiments, and extrapolate our results to apeNEXT.
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1. Introduction jecting the experimental output (signal plus noise)
onto the expected signal, and is best done in Fourier

Several earth-based interferometric experiments for SPace, using Fast Fourier Transform (FFT) techniques
the detection of gravitational waves (GW) are cur- (see Iaterfqr more details). The functional form pf the
rently under development, and expected to reach the €XPected signal depends however on the physical pa-
data-taking stage in the near future. On a longer time "@Meters (e.g., masses, angular momenta, eccentricity)
scale, space-based experiments are foreseen [1]. Thes8f the inspiralling system. Itis necessary to maich the
experiments will search, among other, for GW gener- experimental output to a set _Of expec_ted _S|gnals (so-
ated by inspiralling compact binary-star systems. called templates) corresponding to points in the para-

The expected functional form of the signal pro- meter space that cover the physical region of_ interest
duced by a coalescing system is known to good ap- apd are close er!°.“9h (under some appropriate met-
proximation [2], so matched filtering is an effective ric) to ensure sufficient overlap with any expected GW
strategy to extract GW signals from the noise back- event.

L : . ) The number of needed templates for, e.g., the
ground. Matched filtering is basically obtained by pro VIRGO experiment is of order of £0--1CP, so

the corresponding computational cost is huge by
* Corresponding author. current standards. One would like to perform real-
E-mail address: calzavar@fe.infn.it (E. Calzavarini). time analysis of the experimental data, which means
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that available computing power should be enough to quantity. Section 4 discusses the features of the APE
process experimental data at the rate at which they systems relevant for the problem, while Section 5
are produced, so a prompt “trigger” of a GW eventis presents a procedure for allocation of templates to
possible [3]. processors suitable for APE and general enough to

Matched filtering to a (large) set of templates is adapt to other computer systems. Section 6 presents
an obvious candidate for parallel processing of the the result of actual performance measurements made
simplest form, e.g., data farming with all elements on APE, while Section 7 contains our concluding
of the farm performing the same computation (Single remarks.

Program Multiple Data (SPMD) processing). Indeed,

the experimental data stream is sent to all processors

in the farm, each element performing the matching 5 Eormalism

procedures for a subset of the physical templates.

Massively parallel specialized SPMD architectures,
with peak processing power of the order of 1 Tflops
have been developed by several groups to fulfill the
computational requirements of Lattice Gauge Theo-
ries (LGT) [4]. In this paper we want to analyze the
performance of one such system (the APEmille sys-
tem [5]) for matched filtering of GW signals.

This paper is not a proposal to use APE-like sys-
tems in an actual experimental environment (the rel-
ative merits of different computer systems in a large E[ﬁ(fl)ﬁ*(fz)] =1s5(f— fz)Sn(Ifll), (1)
experiment have so many facets that they can only be
assessed by those directly working on it). Rather, the whereE[...] means ensemble expectation value, tilde
potential usefulness of our work lies in the following: (~) stands for Fourier transformed functions and
Different computing strategies for the problem at hand asterisk §) for complex conjugation.
can be conceived and different computer systems (e.g., For the sake of definiteness, we consider in the fol-
very large clusters of PCs) can be used. It would be lowing templates computed to second post-Newtonian
interesting to evaluate performances on such systems.expansion. They depend, in principle, on several para-
However, given the fast pace of development in the meters: the coalescing phageand coalescing time,
computer industry, an experiment will try to delay the and the parameters corresponding to the physical char-
choice of the best available combination of computing acteristics of the system, called intrinsic parameters
strategy/computer system and the commissioning of a and globally referred to by the vectér A template is
production system to as late a pointin time as possible, precisely identified by:(¢; 8, ¢., t.). Itis believed that
since huge gains in price and/or price/performance can the most relevant intrinsic parameters are the masses
be expected. This means that very large computing ca- of the binary systems, so as a first approximation it is
pabilities will not be available for much needed early usual to neglect all other intrinsic parameters. In this
tests and simulations. APE systems might provide an approximationg is a vector of two components.

answer to this problem. In a matched filter the signal to noise ratio (SNR) is
The focus of this paper is the measurement of the ysually defined by

performance of APE systems for matched filtering.
Some parts of the paper have however a more generalﬁ — (. u) )
scope and refer to general parallelization criteria for N rms(n, u)’
the problem at hand.

This paper is structured as follows: Section 2 briefly
reviews the formalism of matched filtering. Section 3 +°°}~l*(f) i)
evaluates the associated computational cost in generaly, ;) = 2 / — - ’df. (3)
terms and discusses some strategies to minimize this Sn(f)

In this section we briefly summarize the mathemat-
ical formalism recently developed to analyze matched
filtering of GW signals from coalescing binaries. We
closely follow the notation presented in [8].

We calli(¢) the interferometer output, which is the
sum of the signalb(z) and the noise:(r), while u(t)
is a templaten(z) is characterized by its one-sided
spectral density:

where(...) is a particular inner product defined as:

—00
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It can be shown that rnis, u) = ((u, u))1/2, so (2)
simplify to S/N = (h, u), if normalized templates are
used [6].

Filtering a sighal means to look for local maxima
of the signal to noise ratio, in terms of its continuous
parameters. The maximization over the phasean
be done analytically (it can be seen that the maximum
value is obtained computing two inner product as in

(3) on two real templates with opposite phases and

then summing their square values [10]). Maximiza-
tion overz. instead is achieved at low computational
cost calculating the cross correlations by the FFT al-
gorithm. Maximizations over the intrinsic parameters
are not possible analytically. For this reason the nor-
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where M is the total mass of the binary system,
u the reduced mass, anfh an arbitrary frequency.
This change of variables makes the metric tensor
components constant at the first post-Newtonian order,
so only smalP-dependent contributions are present at
the second order approximation.

It is now possible to simply estimate the total num-
ber of templates necessary to recover the signal at a

mal procedure consists in a discretization of templates 9'V€N level of accuracy. We calculate the volume cov-

in the space of the intrinsic parameters.

The obvious question concerns the number of tem-
plates needed to cover the whole parameter spac
A differential geometrical approach has been devel-
oped recently [7]. One introduces a new function, the
match M (01, 02), which is the inner product of two
templates with different intrinsic parameters, where a
maximization is assumed overandg,:

M(01,07) = Jmax (01, pc + A, 1 + Ate),

Cs t(‘
(02, b, 1c)). 4)

The match between two templates with near equal
parameters may be Taylor expanded

M@0,0 + A0)~1+ %(%)wk:ekAeiAef
©)
suggesting the definition of a metric
2
M@8,0+A0)~1—g;; AO' A/ (7)

ered by a single template in the parameter space in
term of a minimal value for the match, the so-called

e minimal match M M which states a minimal require-

ment on signal recovery capabilities. For example, if
we simply use a face centered hyper-cubic lattice, we
can write the maximum covering volume with:

D
AV = (2‘/7(1_MM)> :
D

whereD is the dimension of the parameter space (2 in
our example).

An approximate estimation of the total template
number, applicable wheN is very large [8], is given
taking the ratio between the total volume of the
physically relevant parameter space and the volume
covered by a template placed in the center of a lattice
tile

(10)

Np /
NMM) = m

AV (12)

Using (11) we estimate that in the range fror@®to
10.0 solar masses the total template number is roughly
3.8-10* for LIGO and 11 - 10° for VIRGO (see

In the limit of close template spacing we have an an- Section 5 for the additional assumptions involved in
alytical function able to measure the distance between this calculation).

templates in the intrinsic parameter space. The metric A last remark we want to make is that the minimal
gij () depends on the intrinsic parameters so the real match requirement also determines a threshold value
volume covered by a template varies locally. This ef- for the signal (and templates) sampling frequency.
fect can be reduced writing the templates in terms of This frequency can be simply estimated and will
some new variables for which the metric is more reg- be take into account later on in our computational
ular. One suitable choice is the following [8]: estimates.
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3. General strategy signal points. The resulting correlations are only valid
in their firstn p — nr points, all remaining points being
In this section we present some observations aboutaffected by the periodicity assumption implied in the
a general strategy to compute correlations. Here we FFT technique. We define padding-ratio the quantity
consider arideal case in which most computer-related Rpad=np/nr. The result obtained in this way covers
issues are neglected. We also limit our treatment only & time-period of lengtlin p — n7)/f;, wheref; is the
to the stored templates strategy, where templates are  sampling frequency of the experimental signal. The
pre-calculated, then Fourier transformed and preparedlast ny data-points will have to be re-analyzed in a
to be processed and finally stored in memory. This successive analysis.
ideal case is not unrealistic, given the pace at which ~ The computing power necessary for an on-line
actual memory sizes increase in real computers. Theanalysis of templates of givem; andnp (floating
quantity to be evaluated on every template is given by Pointoperations per second) is given by:

s

+00 szm(Anplogz(nP)+Bnp) (13)
~% ~ —i2r ft
cw= / @ (f)-$(He T df |, A and B are constants, usually of the same order,
- depending on the specific algorithm used. In this paper
_ h(f) we use a simple-minded FFT algorithm for power two
u(f)= Su(f)’ (12) length vectors that involvesd =5 andB = 12 for the
_ whole analysis.
where i(f) is the Fourier transform of a complex More efficient algorithms might be used, boosting
templateh(r). overall performance by small factors. It would be ap-

Atpresent the best way of compuiér) usesa FFT  propriate to include these improvements if an APE
algorithm, reducing the number of needed operations system is actually used in a production environment.
from n? to nlog, n. The FFT algorithm assumes input  In our exploratory work our simple-minded choice
periodicity, while in our case signal and templates are does not influences strongly the following observa-
not repeated data. The usual trick to overcome this tions and our final results.
problem [9] consists ipadding with a certain number One interesting question concerns the optimal
of zeros the tail of the templates to be processed. padding that minimizes computing requirements. If
Assume that the template has points. We pad one disregards the fact that (13) holds only for
it so its total length becomep, and then compute values that are powers of 2, the answer is given by
the correlation by using the padded template apd Fig. 1, where the minimum inp of Eq. (14) is plot-
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Fig. 1. Estimate of the computing power (floating point operations per second Flops), versus template7leiogién optimal choice ofi p .
We setA =5, B =12 andf; = 1 kHz (see Eq. (13)).
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Fig. 2. Computing power in Flops versus the padding raigny, for three typical template lengths. We use the same parameters as in the
previous figure.

ted as a function ofi 7, for f; = 1 kHz. The behavior APEmille systems are based on a building block
is very close to a logarithmic function iy, SO com- containing 8 processing nodes (processor and mem-
puting costs depend very weakly arr. This result ory) running in Single Instruction Multiple Data
is obtained for an optimal choice afp, as discussed  (SIMD) mode. Each processor is optimized for float-
above. As shown in Fig. 2, the optimal value fop ing point arithmetics and has a peak performance
grows withn7, implying in principle very large mem-  of 500 MFlops in IEEE single precision mode. The
ory requests. In practice however (see again Fig. 2) for processors are logically assembled as the sites of a
nr values relevant in the present discussion a value 2 x 2 x 2 mesh, with data links connecting the edges.
of np/nr >~ 2---4yields a computational cost within  This arrangement is called a “cluster” or a “Cube”.
a factor two of the optimal case. This finally means Large APEmille systems are based on a larger
that deviations from the optimal padding length do not 3-dimensional mesh of processor, based on replicas
produce drastic consequences on the computing powerof the above-described building block. The resulting
needed to perform the analysis, and thatan be eas-  mesh has a full set of first neighbor communication
ily adjusted to a suitable power of two. links. In a typical LGT application the whole system
works in lock-step mode as a single SIMD system.
More important for the present application, each
4. Analysison APEmille Cube is able to operate independently, running its
own program under the control of a Linux-based
The APE family of massively parallel processor personal-computer acting as a host. There is one
has been developed in order to satisfy the number host machine every 4 Cubes. A set of up to 32
crunching requirements of Lattice Gauge Theories Cubes (i.e. 256 nodes) and the corresponding 8 host
(LGT) [5]. Machines of the present APE generation machines is a fully independent unit housed in a
(APEmille) are installed at several sites, delivering standard-size mechanical enclosure. Each Cube has
an overall peak processing power of about 2 Tflops. access to networked disks with a bandwidth of about
The largest sites have typically 1000 processing nodes4 MByte/sec. In some APEmille installations, disks
(i.e. 520 Gflops) [12]. Sustained performance on have been mounted directly on the host PCs. In this
production-grade LGT codes is about 45% of peak case, bandwidthincreases approximately by a factor 4.
performance. A new APE generation (APEnext) is The next generation APE system (apeNEXT) is, for
under development, and expected to reach the physics-the purposes of the present discussion, just a faster
production stage in early 2004.(@) Tflops) peak  version of the same architecture. The only (welcome)
performance installations are being considered. architectural difference is the fact that the basic logical
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Fig. 3. Analysis time as a function of template lendih(n, 1) = f(n). Measured data points are fitted to the functional form of 14, with
c1=86-10"" sec,c; =6.6- 1076 sec and3 = 6.6- 104 sec.

building block (capable of independent operation) is f(n) is related to the complexity of the computation,
now just one processing node. that we model ag1n - l0g,(n) + con + c3, following

A large APEmille system can be seen as a large Eq. (13) and introducing one more parametes) (
farm of processors, whose basic element is a SIMD covering machine effectg (k) is a measure of the
machine of dimension 8. A better way to look at the processor efficiency as a function of the vector length
SIMD cluster in our case follows the paradigm of vec- &, that we normalize tg(1) = 1. Taking into account
tor computing: the SIMD cluster applies the input sig-  that the computation is memory-bandwidth limited (as
nal to a vector of 8 templates and produces a vector Opposed to processing-power limited), we adopt the
of 8 correlations. In a variation of the same method, following functional form forg(k):
the same template could be present on all nodes of
the SIMD clust?ar, and correlatizns at 8 staggered time 8(k) = ca/k +cs. (15)
points could be computed. Since the number of corre- Measured and fitted values fgf(n) and g(k), pre-
lations is of the order of T0 - 10°, each element of  sented in Figs. 3 and 4, respectively, show that
a large farm (say 10SIMD clusters) takes responsi- APEmille efficiencies are smooth functions of
bility for several hundreds or thousands of templates. andk.
This is good news, since APE processors can exploit  For instance, one APEmille processor handles 20
vector processing also within the node to reach high templates of 2 numbers in slightly more than 10 msec,
efficiency (we just recall here for reader interested in corresponding to a performance of about 100 Mflops,
architectural details that intra-node vector processing or >~ 20% of peak performance, including all compu-
effectively helps to hide memory access latencies).  tational overheads.

We have written an APE code performing all the
steps needed for matched filtering on a pre-calculated
(and pre-FFT transformed) set (vector)kofemplates 5. Allocation criteria and processor numbers
each of lengthm, and measured its performance on
an APE cluster. An analysis of the details of the A general templates allocation strategy on real
APEmille processor suggest to model the computation computers has to take into account the limited size
time Tc(n, k) as in memory and the available computing power. Here

we present some quantitative aspects of memory and

Tc(n, k)= f(n)-gk) -k. (14) CPU usage involved in our analysis, then we give
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Fig. 4. Normalized processor efficiengyk) as a function of the vector length Measured points are fitted to (15).

our allocation criteria for the optimal template number bandwidth is effectively multiplied by a large factor

manageable by a single processor. (x8), so there is an advantage if large data blocks must
This discussion focuses on criteria that are appro- be broadcast to the complete cluster. We will use quan-

priate for the APE family of processors. The focus is titatively these observations later on in this section.

to exploit vectorization as much as possible andto find ~ We now consider processing power. The real-

ways to reduce input-output bandwidth requirements, time requirement stipulates that each processor clus-

so our discussion can be applied to a larger class of ter completes processing all its templates within an

processors. elapsed time(np — nr)/f; (or 8mp — nr)/fs). As
We start from memory. Each processor hasored  gnown later on, for several realistic templates sizes,

templates of similar lengthz. (In the APEmille case,  ihe processing im& (n p, k) is much shorter that the
the term processor must be understood to refer to theelapsed time for thé value allowed by memory con-
basic cluster of 8 processing element.) straints. We may therefore try to use the same cluster
Vector processing of all the templates handled by for a different set of templates. This may become in-
:Zrcnhe nodseo ﬁguége(f&tg?:atgegf arecsrlTl] plzs(\j/\?:rdtg the efficient since loading a large data base (the new set
e ys olnp P ' of templates) may be a lengthy procedure. This cost

and matching space for the final correlation results. .
. . .. may be reduced by using the same templates several
There are two basic memory allocation strategies:

we may assign different sets btemplates to each el- time; (corresponding to longer elapsed times) before
ement in a basic 8 processor cluster, and have all of loading _a new set of templates. )

them compute the corresponding correlations for the Ve disregard the overhead associated to the output
same time stretctn p — n7)/f;, S0 each cluster com- of the compqter correlations, that can be made very
putes & correlations. Alternatively, we may assign the small taking into account the Gaussian character of
same set of templates to all processing elements andthe noise (e.g., adcut could reduce the number
have each of them compute correlations for different Of the output correlations to the order of 1%). More
time intervals. With this choick correlations are com-  interestingly a cross correlation among closely spaced
puted for a longer time stretch(i8 — nr)/f;. The templates could be performed on line packing more
best choice between these two nearly equivalent caseslensely the available information.

is based on bandwidth constraints. In APEmille, data  We would like to optimize among these conflicting
items reaching the cluster can be delivered to just one requirements. Let us consider the total compute time
element, or broadcast to all of them. In the latter case, both for different sets of templates (case 1) or the same
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set of templates (case 2) on each cluster element. We  n7)/f;. Case 2b (multiple data loads) is also
have easily computed as

o Case 1: We want to compute sets of & correla- rknp/B+8nprl/B +1rT.(np,k). 19)
tions each on templates of length, correspond-
ing to the same time interval. We compute correla-
tions on! adjoining time intervals before switch-
ing to a new set of templates. The computation
time can be modeled as

In case 2, we are interested in optimizing in
terms of the same parameters as in the previous
case.

There is one free parameter in the optimization

8rknp/B+npl/B +IrT.(np,k), (16) process ). If we increasel we reduce the relative

cost associated with template loading, but increase the
where B is the cluster input—output bandwidth |atency associated to the computation. We arbitrarily
(measured in words per unit time). The first gecide to keep small enough so the latency for any
term in (16) is the time required to load the . s not longer that a fixed amount of tinf&y . We
templates on all processors, the second term is chopseTy, as the time length of the longest template
the time needed to broadcast signal points to  contained in the set. This choice may be useful
all cluster elements while the third term refers to 5159 for data-organization purposes: evéiy time

the actual computation, to be performedimes.  ipterval all correlations corresponding to templates
Templates, correlations and input data must fit of gl |engths are made available. The result of the
inside the memory, implying thak + lnp < optimization process are given in Table 1 for APEmille

My, whereMr is the available memory on each  gnq Taple 2 for apeNEXT. Results depend weakly
node (measured in units of complex words). Als0, on the allocation procedure discussed above, and are
the computation must complete in a time interval |5rgely dominated by the sustained processing power.
l(np —nr)/fs. In (16) we assume that all data- gangwidth limitations are neatly dealt with: if we
points are loaded once. This reduces input-output jncrease the available bandwidth by a factor four (e.g.,
time but reserves a large fraction of memory ging |ocal disks) the number of templates handled

space to data-points (as opposed to templates).py each cluster increases by less than 10%. With our
Alternatively (case 1b), we may load a smaller

set of data-points every time we start a new
computation. The corresponding compute time Taple 1

becomes Number of templates handled by each APEmille processor cluster,
as a function of the template lengih
8rknp/B +nprl/B+IrT.(np, k) (17) nr Case 1 Case 1b Case 2 Case 2b

while the memory constraint changes @& + 28 4824 4955 4937 4854
Lnp < Mr. For any physical template of length Zio 4344 4549 4535 4382
nr, we must maximize & in terms ofr, k, / and 2, 3 4016 4003 3r7s
L X 2 3177 3474 3458 3252
np satisfying all constral_nts. 12 2511 2004 2885 2606
o Case?2: The procedure discussed above can be ap- 513 1792 2226 2197 1893
plied also in this case. The corresponding process- 14 1143 1558 1526 1315
ing time is given by 215 657 1091 1057 865
216 349 679 644 510
rknp/B +8npl/B+1rT.(np,k). (18) 217 180 378 329 274
218 - 191 201 135

This equation differs from (16) since we now 519 - 86 _ _
brc,)adcaSI templates Whlle we load different data- Parameters are (see the text for definitioffg)= 2048 Hz, B =
points to e?‘Ch processing eI_ements. The MEeMOry 5. 105w../sec, Ty = 1024 sec. Numbers in bold flag the best case,
constraint is the same as in case 1, while the while — mark cases where allocation cannot be performed due to
maximum allowed processing time iS(8p — memory limits.
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Table 2

303

Table 3

Same as 1, extrapolated to apeNEXT. We re-scale processing powerSpectral density noise parameters for LIGO and VIRGO from [11]

per node by a factor 3 and bandwidth by a factor 4. Memory
increases by a factor 4 arfgy = 4096 sec

Su()=Sp 2+ S f~ 1+ Ss(L+ (f/ funeo?

Experiment i S S S
nr Case 1 Case 1b Case 2 Case 2b P Jseism P m s fknee
3 LIGO4K 40 56-10°° 39.10" 11.10 83
2 15631 15765 15750 15704 VIRGO 4 90.10%7 45.10% 324.10% 500
29 14599 14834 14815 14728
210 13626 13852 13832 13752
21t 12455 12844 12812 12673 _ . _ _
212 10969 11597 11546 11321 defined in (8), (9). We envisage a square lattice on
213 9401 9992 9917 9735 the 61, 62 parameter space whose link® are set to
21‘5‘ 7782 8614 8528 8264 A® = (ming «/detg) /2, where minimization is on
;16 ??98;3; iggz %gg igig the domaird corresponding to the physical parameters
17 2409 218 3280 3102 we are interested |n Under these a_ssu_mptions the
518 1282 2905 2107 1944 surface corresponding _to a square lattice in@he)-
219 673 1259 1189 1087 space can be app.rOX|mated with@) = «/_detg g
220 - 641 657 546 (A)2, where,/detg is the value calculated in a point
221 - 285 - - at the center of the square. Hence the minimal surface

choice of parameters case 1b is the preferred one for

almost all template lengths.
We remark that processing time has been directly
measured on APEmille, while apeNEXT values are

extrapolations obtained by appropriately re-scaling the N(8)per square= v/detg (@) - (AB)2/AV.

corresponding to a lattice tile is unit. Now we observe
that S is proportional to the number of templates
needed in that square region of the parameter space,
and that it is roughly equal to the number of templates
when divided byAV of Eq. (10):

(20)

basic machine parameters, such as memory size, 1/0

bandwidth, and processor frequency.

6. Actual estimateson processorsnumbers

We present here an accurate calculation of the to-

Finally we allocate to every square in the lattice a
number of templates equal to the rounded value of the
previous expression, placing the first one in its center
and the others randomly distributed inside the same
region.

The noise spectral densit§, (f), an experimen-

tal computational cost, and thus of the total processors tally measured and fitted curve, has different behavior
number, required in order to analyze systems of coa- for each experiment. It imposes particular constraints
lescing binaries whose masses are in a certain range. on lower and upper frequency cutoffs and on sampling
The main point of this calculation is the production, (or interpolation) frequency. In Table 3 we list the fit-
given a definite mass range, of a suitable set of tem- ting functions relative to the VIRGO and LIGO exper-
plates covering the corresponding parameter space.imentand corresponding parameters that we use in our
We remark that for our purposes (i.e. an estimation of calculations.
the computational cost) we only need a realistic tem- ~ The noise curves for LIGO and VIRGO are quite
plate distribution in the parameter space and not a pre- different. While LIGO is very sensible in a narrow
cise covering procedure for placing all the templates. frequency interval VIRGO has a lower peak sensibility
Therefore we will adopt a simplified placing algorithm  but is better in a wider range of frequencies.
based on a weighted random generation method. Itis In Table 3 fseism indicates the so-called seismic
also important to note that the number of templates is frequency, i.e. the frequency below which seismic
very sensible to the shape of the experimental noise noise is expected to dominate over all other noise
spectrum. sources. Slightly different definitions fg&eismexists,
In our template distribution strategy we adopt see [8,11]. Integration below this limit does not con-
the regular metricg;; obtained using the variables tribute significantly to detectability but is quite expen-
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Table 4
Frequency cuts used in our analysis, depending on signal to noise recovery and on
Minimal Match

Experiment  f; (Hz) fu SNRrecovery fintatMM =0.97
LIGO 4K 55 (2.0%) 390 (1.0%) 97.0% 1203
VIRGO 26 (1.9%) 900 (1.1%) 97.0% 3253
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Fig. 5. Behavior of the total computation cost (in GFlops) in the infinite memory availability case versus the lower mass limit, where maximum
total mass is 10/ . Here we use VIRGO and LIGO noise spectrum, freq. sampling at 2048 Hz and 1024 Hz, respectivéfian®7%.

sive in terms of computing power since it increasesthe  An alternative analysis strategy consist in sampling
number of templates and the template length. the signal at a lower frequency and then obtaining cor-
In our calculations, as proposed in [10], in order relations at half-time points by an interpolation. In fact
to reduce computing requirements we adopt a more this can be simply achieved performing further anti-
restrictive frequency range. We fix a lower and an Fourier transforms after introducing in the integrals a
upper frequency boundg; and f, such that the  suitable phase displacement. The number of interpola
total SNR recovery is at least of 97% (we assume tions obviously multiplies the analysis time.
the lower SNR loss of 2% and the upper of 1%). In our estimate we fix the sampling frequency by
We note that template lengths are very sensible to f; =2, (rounding its value to the greatest power of
the lower frequency cut-off, as the duration time, two), so we havef, = 1024 Hz for LIGO andf, =
which influences linearly the storage requirements and 2048 Hz for VIRGO. This means (see last column

logarithmically the computation cost, scalesf’ffss/ 3 in Table 4) that we have to compute correlations at
Our frequency bounds are reported in the first two intermediate times by interpolations once for VIRGO
column of Table 4. and once for LIGO.

Another point concerns the Minimal Match. We set First, we show in Fig. 5 the total computational cost
MM = 0.97, which corresponds to an event rate loss to compute the correlation for binary systems whose
of roughly 10% [8]. masses are in a range @fnin to 10 solar masses, as

As discussed at the end of Section 2 W@/ level a function ofmmin, under the assumption of optimal
sets not only the density of templates in the parameter padding. We use the parameters listed in Tables 3
space (byAV, see (10)) but also the signal (and and 4. The computational cost roughly follows a
templates) sampling frequency. This frequency could (fitted) power-law behavior, with exponent of the order
be very high, so in some cases, memory requirementsof 2.4. This behavior can be easily guessed, taking
could be severe. advantage of the fact that the computational load of
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Fig. 6. Number of needed APE nodes versus the lower mass limit, maximum total mas&is.10sing VIRGO and LIGO noise spectrum,
freq. sampling of 2048 and 1024 Hz, respectivélyl = 97%.

each template depends very weakly on its length, that region of the parameter space. For this reason it
and that de¢(9) depends weakly on the variables. is useful to plot the number of processor versus the
Under these assumptions the computational cost scaledower mass limit. The number of nodes (one cluster
up to log-corrections as the area of the regiorvin  consist of 8 nodes) for a mass interval frammin to
space corresponding to a given interval of allowed 10M is plotted in Fig. 6, where we use noise spectra
star-masses. The latter can be easily shown by powerrelevant for LIGO and VIRGO. This complete our

counting to behave a/B;/Ii analysis.
The large difference in computational cost between
the two experiment, clearly noticeable in Fig. 5, 7 concusions

derives, although in a complex way, from the different
noise spectra and from the correspondingly different | this paper we have developed a reliable estimate
frequency cuts. of the computational costs for real-time matched
We now specialize the discussion to APE systems. filters for GW search from binary star systems, in a
We proceed establishing a mass interval, then gener-massive|y para||e| processing environment.
ating its template distribution. We “stretch” template We have ana|yzed some criteria to opt|ma||y allo-
lengths to the nearest power of two larger than the ac- cate the processing load to a farm of processors. We
tual length (a slightly pessimistic assumption). Finally have written a code performing the analysis on an APE
we divide each group of templates of equal length system and we have measured its performances. Our
by the corresponding number of templates handled by result is that available (APEmille) systems are able to
one processor cluster (the bold numbers in Tables 1 satisfy the requirements of a real-time analysis of the
and 2), and sum all the resulting quotients. The final complexity corresponding to the LIGO experiment in
result represent the number of APE processor neededthe mass range between 0.25 andVig.
to satisfy the real time requirement on the given mass  The VIRGO experiment (with its lower and wider
interval. noise curve) has substantially larger computing re-
The computational cost of this matching filter quirements that cannot be fulfilled by an APEmille
analysis is particularly sensible to the lower mass system in the same mass range. The new APE gener-
limit because of the increasing template length and ation, expected to be available in early 2004, partially
of the irregular behavior of the metric tensgs in closes this performance gap.
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